LIU Yan, TONG Fei, CHEN Pimao, YUAN Huarong, FENG Xue. Comparison and optimization of total phosphorus determination method in mariculture tailwater[J]. South China Fisheries Science, 2023, 19(1): 58-66. DOI: 10.12131/20220056
Citation: LIU Yan, TONG Fei, CHEN Pimao, YUAN Huarong, FENG Xue. Comparison and optimization of total phosphorus determination method in mariculture tailwater[J]. South China Fisheries Science, 2023, 19(1): 58-66. DOI: 10.12131/20220056

Comparison and optimization of total phosphorus determination method in mariculture tailwater

More Information
  • Received Date: March 07, 2022
  • Revised Date: July 11, 2022
  • Accepted Date: July 31, 2022
  • Available Online: August 07, 2022
  • In order to improve the efficiency of the determination of total phosphorus (TP) in the mariculture tailwater, we determined the TP content by microplate reader instead of spectrophotometer in mariculture tailwater, and optimized the digestion method of TP, the type of microwell plate and the amount of sample. The results show that there was no significant difference between 60 min of digestion using a temperature-controlled heating plate and 30 min of digestion using an autoclave (P>0.05). The sensitivity of the assay was better than those of the other experimental groups (200 µL for 96-well plate, 200 µL for 96-well quartz plate, 200 and 500 µL for 48-well plate, 500 µL and 1 mL for 24-well plate) when using a 48-well plate with 1 mL of sample. The linear correlation between phosphate concentration and absorbance was the best (R2=0.999 9) for the 48-well plate with 1 mL and the 96-well plate spiked with 200 µL. The accuracy and precision validation of TP determination in mariculture tailwater showed that the relative error (RE) and relative standard deviation (RSD) of the 48-well plate spiked with 1 mL were higher than those of the other experimental groups (96-well plate 200 µL, 96-well quartz plate 200 µL, 48-well plate 200 µL and 500 µL, 24-well plate 500 µL and 1 mL). The recoveries of disodium glycerophosphate (β-GLP) and sodium hexametaphosphate (SHMP) were 98.2%−99.6% and 93.4%−97.1%, respectively, and the limit of quantification (LOQ) of TP were 0.25 µmol·L−1; the RE and RSD of 96-well ELISA plate spiked with 200 µL were −14.03%−0.21% and 2.63%−14.23%, respectively, and the recoveries for β-GLP and SHM were 94.7%−99.0% and 88.9%−97.3%, respectively, and the LOQ of TP was 0.55 µmol·L−1. At TP concentration of 0.55−6.4 µmol·L−1, the accuracy and precision of the two optimized methods meet the determination requirements and can be used for the determination of TP in mariculture tailwater.
  • [1]
    KONG W, HUANG S, YANG Z, et al. Fish feed quality is a key factor in impacting aquaculture water environment: evidence from incubator experiments[J]. Sci Rep, 2020, 10(1): 187. doi: 10.1038/s41598-019-57063-w
    [2]
    多田邦尚, 中國正寿, 山口一岩,等. 魚類養殖場における堆積物への有機物負荷の評価[J]. 日本水産学会誌, 2021, 87(6): 672-678. doi: 10.2331/suisan.21-00018
    [3]
    QI Z, SHI R, YU Z, et al. Nutrient release from fish cage aquaculture and mitigation strategies in Daya Bay, southern China[J]. Mar Poll Bull, 2019, 146: 399-407. doi: 10.1016/j.marpolbul.2019.06.079
    [4]
    BERZI-NAGY L, MOZSAR A, TOTH F, et al. Effects of different fish diets on the water quality in semi-intensive common carp (Cyprinus carpio) farming[J]. Water, 2021, 13(9): 1215. doi: 10.3390/w13091215
    [5]
    梁庆洋, 齐占会, 巩秀玉, 等. 大亚湾鱼类深水网箱养殖对环境的影响[J]. 南方水产科学, 2017, 13(5): 25-32. doi: 10.3969/j.issn.2095-0780.2017.05.004
    [6]
    廖秀丽, 黄洪辉, 齐占会, 等. 亚热带海湾养殖环境综合分级定量评价研究[J]. 南方水产科学, 2020, 16(1): 98-109. doi: 10.12131/20190067
    [7]
    EDWARDS P. Aquaculture environment interactions: past, present and likely future trends[J]. Aquaculture, 2015, 447: 2-14. doi: 10.1016/j.aquaculture.2015.02.001
    [8]
    CHEN H, ZHAO L, YU F, et al. Detection of phosphorus species in water: technology and strategies[J]. Analyst, 2019, 144(24): 7130-7148. doi: 10.1039/C9AN01161G
    [9]
    WORSFOLD P, MCKELVIE I, MONBET P. Determination of phosphorus in natural waters: a historical review[J]. Analytica Chimica Acta, 2016, 918: 8-20. doi: 10.1016/j.aca.2016.02.047
    [10]
    MA J, YUAN Y, ZHOU T, et al. Determination of total phosphorus in natural waters with a simple neutral digestion method using sodium persulfate[J]. Limnol Oceanogr, 2017, 15(4): 372-380. doi: 10.1002/lom3.10165
    [11]
    WU M, ZHANG T, WAN D, et al. Electrochemical impedance sensor based on nano-cobalt-oxide-modified graphenic electrode for total phosphorus determinations in water[J]. Int J Environ Sci Technol, 2021: 1-6.
    [12]
    DUFFY G, MAGUIRE I, HEERY B, et al. PhosphaSense: a fully integrated, portable lab-on-a-disc device for phosphate determination in water[J]. Sensors Actuators B, 2017, 246: 1085-1091. doi: 10.1016/j.snb.2016.12.040
    [13]
    JOHN M K. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid[J]. Soil Sci, 1970, 109(4): 214-220. doi: 10.1097/00010694-197004000-00002
    [14]
    WARWICK C, GUERREIRO A, SOARES A. Sensing and analysis of soluble phosphates in environmental samples: a review[J]. Biosens Bioelectron, 2013, 41: 1-11. doi: 10.1016/j.bios.2012.07.012
    [15]
    鲁蕴甜, 杨颖, 于治森, 等. 钼酸铵分光光度法测定总磷的影响因素探讨[J]. 绿色科技, 2021, 23(18): 122-123. doi: 10.3969/j.issn.1674-9944.2021.18.035
    [16]
    HUANG X L, ZHANG J Z. Neutral persulfate digestion at sub-boiling temperature in an oven for total dissolved phosphorus determination in natural waters[J]. Talanta, 2009, 78(3): 1129-1135. doi: 10.1016/j.talanta.2009.01.029
    [17]
    MESKO M F, CRIZEL M G, NOVO D L R, et al. New and feasible method for total phosphorus and sulfur determination in dietary supplements by ion chromatography[J]. Arab J Chem, 2020, 13(1): 2076-2083. doi: 10.1016/j.arabjc.2018.03.006
    [18]
    FLORES É M D M. Microwave-assisted sample preparation for trace element determination[M]. Amsterdam: Elsevier, 2014: 3-58.
    [19]
    QI T, SU Z, JIN Y, et al. Electrochemical oxidizing digestion using PbO2 electrode for total phosphorus determination in a water sample[J]. RSC Adv, 2018, 8(12): 6206-6211. doi: 10.1039/C8RA00220G
    [20]
    丁明军. 水质总氮、总磷在线监测装置的研究与实现[D]. 无锡: 江南大学, 2012: 15-22.
    [21]
    BARHOUMI L, BARAKET A, NOOREDEEN N M, et al. Silicon nitride capacitive chemical sensor for phosphate ion detection based on copper phthalocyanine-acrylate-polymer[J]. Electroanalysis, 2017, 29(6): 1586-1595. doi: 10.1002/elan.201700005
    [22]
    FORANO C, FARHAT H, MOUSTY C. Recent trends in electrochemical detection of phosphate in actual waters[J]. Curr Opin Electrochem, 2018, 11: 55-61. doi: 10.1016/j.coelec.2018.07.008
    [23]
    PANG H, CAI W, SHI C, et al. Preparation of a cobalt-Fe2+-based phosphate sensor using an annealing process and its electrochemical performance[J]. Electrochem Commun, 2021, 124: 1-7.
    [24]
    XIU J Y, YING C. Determination of free phosphorus and total phosphorus in hydroxypropyl distarch phosphate by ion chromatography[J]. China Food Addit, 2020(12): 79-83.
    [25]
    XIE W J, WANG X L, LI Y S, et al. Simultaneous determination of various phosphates in water-soluble ammonium polyphosphate[J]. Chromatographia, 2019, 82(11): 1687-1695. doi: 10.1007/s10337-019-03786-x
    [26]
    PACKA V, MAEDLER S, HOWELL T, et al. Unbiased measurement of phosphate and phosphorus speciation in surface waters[J]. Environ Sci Technol, 2019, 53(2): 820-828. doi: 10.1021/acs.est.8b05089
    [27]
    SU Y Y, CHEN H, WANG Z M, et al. Recent advances in chemiluminescence[J]. Appl Spectrosc Rev, 2007, 42(2): 139-176. doi: 10.1080/05704920601184275
    [28]
    许金, 袁东星, 王婷, 等. 环境水样中总磷分析方法及仪器的研究进展[J]. 分析测试学报, 2021, 40(6): 860-868. doi: 10.3969/j.issn.1004-4957.2021.06.011
    [29]
    MAURICIO A S, JAMES W L, JULIANE M M, et al. Rapid spectrophotometric analysis of soil phosphorus with a microplate reader[J]. Commun Soil Sci Plant Anal, 2004, 35(3/4): 547-557. doi: 10.1081/CSS-120029731
    [30]
    温云杰. 水体和土壤磷的批量快速测定及土壤磷酸盐氧同位素分析[D]. 北京: 中国农业科学院, 2016: 20-30.
    [31]
    张怡, 姜翠玲, 杨艳青, 等. 多功能酶标仪测定微量水体中总磷[J]. 分析试验室, 2017, 36(11): 1264-1268. doi: 10.13595/j.cnki.issn1000-0720.2017.0271
    [32]
    GLISZCZYNSKA-SWIGLO A, RYBICKA I. Fast and sensitive method for phosphorus determination in dairy products[J]. J Consum Prot Food S, 2021, 16(3): 213-218. doi: 10.1007/s00003-021-01329-x
    [33]
    朱红霞, 张霖琳, 薛荔栋, 等. 微波消解-离子色谱法测定地表水中痕量总磷[J]. 中国环境监测, 2022, 38(2): 151-155. doi: 10.19316/j.issn.1002-6002.2022.02.19
    [34]
    LI C, WANG B, WAN H, et al. An integrated optofluidic platform enabling total phosphorus on-chip digestion and online real-time detection[J]. Micromachines, 2020, 11(1): 1-12.
    [35]
    ZHANG J Z. Current wet persulfate digestion method considerably underestimates total phosphorus content in natural waters[J]. Environ Sci Technol, 2012, 46(24): 13033-13034. doi: 10.1021/es304373f
    [36]
    MOCAK J, BOND A M, MITCHELL S, et al. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report)[J]. Pure Appl Chem, 1997, 69(2): 297-328. doi: 10.1351/pac199769020297
    [37]
    KARL D M, BJÖRKMAN K M. Dynamics of dissolved organic phosphorus[M]//2nd ed. HANSELL D A, CARLSON C A. Biogeochemistry of marine dissolved organic matter. Burlington: Academic Press , 2015, 233-334.
    [38]
    贾润中, 李敏, 杨静怡. 钼酸铵分光光度法测定水中总磷方法的改进[J]. 山东化工, 2015, 44(20): 69-70,73. doi: 10.3969/j.issn.1008-021X.2015.20.026
    [39]
    王海峰, 李春燕, 刘新侠. 钼酸铵分光光度法测定水中总磷的改进消解方法[J]. 中国给水排水, 2009, 25(16): 81-83. doi: 10.3321/j.issn:1000-4602.2009.16.025
    [40]
    胡伟. 钼酸铵分光光度法测定水中总磷的改进消解方法[J]. 化工管理, 2019(22): 21-22. doi: 10.3969/j.issn.1008-4800.2019.22.015
    [41]
    丁丹丹, 吴珺, 杜静芳. 长江水源水中总磷测定相关问题探讨[J]. 安徽科技, 2020(9): 53-55. doi: 10.3969/j.issn.1007-7855.2020.09.023
    [42]
    夏莉. 水质总磷测定方法的改进与应用[J]. 河南化工, 2019, 36(4): 51-53. doi: 10.14173/j.cnki.hnhg.2019.04.016
    [43]
    MAHER W, WOO L. Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus[J]. Analytica Chimica Acta, 1998, 375(1/2): 5-47.
    [44]
    黄君礼, 鲍治宇. 紫外吸收光谱法及其应用[M]. 北京: 中国科学技术出版社, 1992: 1-9.
    [45]
    高丹丹, 郭瑞涛. 钼酸铵分光光度法测定水中总磷质量控制指标研究[J]. 资源节约与环保, 2016(4): 65. doi: 10.3969/j.issn.1673-2251.2016.04.054
    [46]
    BERGQUIST J, TURNER C. Analytical chemistry for a sustainable society: trends and implications[J]. Anal Bioanal Chem, 2018, 410(14): 1-3.
  • Related Articles

    [1]MA Wenyu, YANG Wei, QIN Xiaoming, CAO Wenhong, LIN Haisheng. Ameliorative effect of oyster enzymatic products on glucocorticoid-induced osteoporosis in rats[J]. South China Fisheries Science. DOI: 10.12131/20240223
    [2]ZHANG Xianbing, QIN Yiwen, YANG Wei, LI Geng, HU Yupeng, YANG Shengfa, HU Jiang, LI Wenjie. Progress in study and application of fish bioenergetics models[J]. South China Fisheries Science, 2024, 20(6): 53-61. DOI: 10.12131/20240106
    [3]LIAO Zujun, WANG Xuefeng, ZHOU Yanbo, ZHANG Lei, LYU Shaoliang, WU Qia'er, DONG Jianyu, MA Shengwei. Analysis of effects of environmental factors on Sthenoteuthis oualaniensis based on structural equation model[J]. South China Fisheries Science, 2024, 20(2): 11-18. DOI: 10.12131/20230127
    [4]ZHENG Huanyu, GAO Jialong, ZHANG Chaohua, SI Rui, ZHENG Huina, CAO Wenhong, QIN Xiaoming. Effects of Chlamys nobilis and its enzymatic hydrolysates on reproductive capacity of hemi-castrated male rats[J]. South China Fisheries Science, 2021, 17(3): 94-101. DOI: 10.12131/20200251
    [5]ZHANG Kui, CHEN Zuozhi, HUANG Zirong, XU Youwei. Comparison of delay difference model and surplus production model applied to albacore (Thunnus alalunga) in the South Atlantic Ocean[J]. South China Fisheries Science, 2015, 11(3): 1-6. DOI: 10.3969/j.issn.2095-0780.2015.03.001
    [6]KE Changliang, LIN Qin, GAN Juli, LI Liudong, CHEN Jiewen, WANG Zenghuan, HUANG Ke. Thermodynamic model and impact factors for organic pesticide adsorption in environment[J]. South China Fisheries Science, 2013, 9(1): 68-73. DOI: 10.3969/j.issn.2095-0780.2013.01.012
    [7]LIU Qun, XU Binduo, REN Yiping. Prediction of freshwater aquaculture production of Qingdao city by using a grey prediction model[J]. South China Fisheries Science, 2009, 5(5): 38-43. DOI: 10.3969/j.issn.1673-2227.2009.05.007
    [8]CUI He, LIU Qun, WANG Yanjun. Application of a continuous Fox-form production model in fishery stock assessment[J]. South China Fisheries Science, 2008, 4(2): 34-42.
    [9]WANG Yingbin, LIU Qun. An elementary study of impacts of error structure on the estimation of fish natural mortality coefficient using cohort analysis (CA) model[J]. South China Fisheries Science, 2006, 2(3): 7-15.
    [10]GUO Quan-you, YANG Xian-shi. Comparison of different bacteria growth models on chilled Pseudosciaena crocea[J]. South China Fisheries Science, 2005, 1(5): 44-49.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (594) PDF downloads (37) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return