Citation: | LIU Yan, TONG Fei, CHEN Pimao, YUAN Huarong, FENG Xue. Comparison and optimization of total phosphorus determination method in mariculture tailwater[J]. South China Fisheries Science, 2023, 19(1): 58-66. DOI: 10.12131/20220056 |
[1] |
KONG W, HUANG S, YANG Z, et al. Fish feed quality is a key factor in impacting aquaculture water environment: evidence from incubator experiments[J]. Sci Rep, 2020, 10(1): 187. doi: 10.1038/s41598-019-57063-w
|
[2] |
多田邦尚, 中國正寿, 山口一岩,等. 魚類養殖場における堆積物への有機物負荷の評価[J]. 日本水産学会誌, 2021, 87(6): 672-678. doi: 10.2331/suisan.21-00018
|
[3] |
QI Z, SHI R, YU Z, et al. Nutrient release from fish cage aquaculture and mitigation strategies in Daya Bay, southern China[J]. Mar Poll Bull, 2019, 146: 399-407. doi: 10.1016/j.marpolbul.2019.06.079
|
[4] |
BERZI-NAGY L, MOZSAR A, TOTH F, et al. Effects of different fish diets on the water quality in semi-intensive common carp (Cyprinus carpio) farming[J]. Water, 2021, 13(9): 1215. doi: 10.3390/w13091215
|
[5] |
梁庆洋, 齐占会, 巩秀玉, 等. 大亚湾鱼类深水网箱养殖对环境的影响[J]. 南方水产科学, 2017, 13(5): 25-32. doi: 10.3969/j.issn.2095-0780.2017.05.004
|
[6] |
廖秀丽, 黄洪辉, 齐占会, 等. 亚热带海湾养殖环境综合分级定量评价研究[J]. 南方水产科学, 2020, 16(1): 98-109. doi: 10.12131/20190067
|
[7] |
EDWARDS P. Aquaculture environment interactions: past, present and likely future trends[J]. Aquaculture, 2015, 447: 2-14. doi: 10.1016/j.aquaculture.2015.02.001
|
[8] |
CHEN H, ZHAO L, YU F, et al. Detection of phosphorus species in water: technology and strategies[J]. Analyst, 2019, 144(24): 7130-7148. doi: 10.1039/C9AN01161G
|
[9] |
WORSFOLD P, MCKELVIE I, MONBET P. Determination of phosphorus in natural waters: a historical review[J]. Analytica Chimica Acta, 2016, 918: 8-20. doi: 10.1016/j.aca.2016.02.047
|
[10] |
MA J, YUAN Y, ZHOU T, et al. Determination of total phosphorus in natural waters with a simple neutral digestion method using sodium persulfate[J]. Limnol Oceanogr, 2017, 15(4): 372-380. doi: 10.1002/lom3.10165
|
[11] |
WU M, ZHANG T, WAN D, et al. Electrochemical impedance sensor based on nano-cobalt-oxide-modified graphenic electrode for total phosphorus determinations in water[J]. Int J Environ Sci Technol, 2021: 1-6.
|
[12] |
DUFFY G, MAGUIRE I, HEERY B, et al. PhosphaSense: a fully integrated, portable lab-on-a-disc device for phosphate determination in water[J]. Sensors Actuators B, 2017, 246: 1085-1091. doi: 10.1016/j.snb.2016.12.040
|
[13] |
JOHN M K. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid[J]. Soil Sci, 1970, 109(4): 214-220. doi: 10.1097/00010694-197004000-00002
|
[14] |
WARWICK C, GUERREIRO A, SOARES A. Sensing and analysis of soluble phosphates in environmental samples: a review[J]. Biosens Bioelectron, 2013, 41: 1-11. doi: 10.1016/j.bios.2012.07.012
|
[15] |
鲁蕴甜, 杨颖, 于治森, 等. 钼酸铵分光光度法测定总磷的影响因素探讨[J]. 绿色科技, 2021, 23(18): 122-123. doi: 10.3969/j.issn.1674-9944.2021.18.035
|
[16] |
HUANG X L, ZHANG J Z. Neutral persulfate digestion at sub-boiling temperature in an oven for total dissolved phosphorus determination in natural waters[J]. Talanta, 2009, 78(3): 1129-1135. doi: 10.1016/j.talanta.2009.01.029
|
[17] |
MESKO M F, CRIZEL M G, NOVO D L R, et al. New and feasible method for total phosphorus and sulfur determination in dietary supplements by ion chromatography[J]. Arab J Chem, 2020, 13(1): 2076-2083. doi: 10.1016/j.arabjc.2018.03.006
|
[18] |
FLORES É M D M. Microwave-assisted sample preparation for trace element determination[M]. Amsterdam: Elsevier, 2014: 3-58.
|
[19] |
QI T, SU Z, JIN Y, et al. Electrochemical oxidizing digestion using PbO2 electrode for total phosphorus determination in a water sample[J]. RSC Adv, 2018, 8(12): 6206-6211. doi: 10.1039/C8RA00220G
|
[20] |
丁明军. 水质总氮、总磷在线监测装置的研究与实现[D]. 无锡: 江南大学, 2012: 15-22.
|
[21] |
BARHOUMI L, BARAKET A, NOOREDEEN N M, et al. Silicon nitride capacitive chemical sensor for phosphate ion detection based on copper phthalocyanine-acrylate-polymer[J]. Electroanalysis, 2017, 29(6): 1586-1595. doi: 10.1002/elan.201700005
|
[22] |
FORANO C, FARHAT H, MOUSTY C. Recent trends in electrochemical detection of phosphate in actual waters[J]. Curr Opin Electrochem, 2018, 11: 55-61. doi: 10.1016/j.coelec.2018.07.008
|
[23] |
PANG H, CAI W, SHI C, et al. Preparation of a cobalt-Fe2+-based phosphate sensor using an annealing process and its electrochemical performance[J]. Electrochem Commun, 2021, 124: 1-7.
|
[24] |
XIU J Y, YING C. Determination of free phosphorus and total phosphorus in hydroxypropyl distarch phosphate by ion chromatography[J]. China Food Addit, 2020(12): 79-83.
|
[25] |
XIE W J, WANG X L, LI Y S, et al. Simultaneous determination of various phosphates in water-soluble ammonium polyphosphate[J]. Chromatographia, 2019, 82(11): 1687-1695. doi: 10.1007/s10337-019-03786-x
|
[26] |
PACKA V, MAEDLER S, HOWELL T, et al. Unbiased measurement of phosphate and phosphorus speciation in surface waters[J]. Environ Sci Technol, 2019, 53(2): 820-828. doi: 10.1021/acs.est.8b05089
|
[27] |
SU Y Y, CHEN H, WANG Z M, et al. Recent advances in chemiluminescence[J]. Appl Spectrosc Rev, 2007, 42(2): 139-176. doi: 10.1080/05704920601184275
|
[28] |
许金, 袁东星, 王婷, 等. 环境水样中总磷分析方法及仪器的研究进展[J]. 分析测试学报, 2021, 40(6): 860-868. doi: 10.3969/j.issn.1004-4957.2021.06.011
|
[29] |
MAURICIO A S, JAMES W L, JULIANE M M, et al. Rapid spectrophotometric analysis of soil phosphorus with a microplate reader[J]. Commun Soil Sci Plant Anal, 2004, 35(3/4): 547-557. doi: 10.1081/CSS-120029731
|
[30] |
温云杰. 水体和土壤磷的批量快速测定及土壤磷酸盐氧同位素分析[D]. 北京: 中国农业科学院, 2016: 20-30.
|
[31] |
张怡, 姜翠玲, 杨艳青, 等. 多功能酶标仪测定微量水体中总磷[J]. 分析试验室, 2017, 36(11): 1264-1268. doi: 10.13595/j.cnki.issn1000-0720.2017.0271
|
[32] |
GLISZCZYNSKA-SWIGLO A, RYBICKA I. Fast and sensitive method for phosphorus determination in dairy products[J]. J Consum Prot Food S, 2021, 16(3): 213-218. doi: 10.1007/s00003-021-01329-x
|
[33] |
朱红霞, 张霖琳, 薛荔栋, 等. 微波消解-离子色谱法测定地表水中痕量总磷[J]. 中国环境监测, 2022, 38(2): 151-155. doi: 10.19316/j.issn.1002-6002.2022.02.19
|
[34] |
LI C, WANG B, WAN H, et al. An integrated optofluidic platform enabling total phosphorus on-chip digestion and online real-time detection[J]. Micromachines, 2020, 11(1): 1-12.
|
[35] |
ZHANG J Z. Current wet persulfate digestion method considerably underestimates total phosphorus content in natural waters[J]. Environ Sci Technol, 2012, 46(24): 13033-13034. doi: 10.1021/es304373f
|
[36] |
MOCAK J, BOND A M, MITCHELL S, et al. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report)[J]. Pure Appl Chem, 1997, 69(2): 297-328. doi: 10.1351/pac199769020297
|
[37] |
KARL D M, BJÖRKMAN K M. Dynamics of dissolved organic phosphorus[M]//2nd ed. HANSELL D A, CARLSON C A. Biogeochemistry of marine dissolved organic matter. Burlington: Academic Press , 2015, 233-334.
|
[38] |
贾润中, 李敏, 杨静怡. 钼酸铵分光光度法测定水中总磷方法的改进[J]. 山东化工, 2015, 44(20): 69-70,73. doi: 10.3969/j.issn.1008-021X.2015.20.026
|
[39] |
王海峰, 李春燕, 刘新侠. 钼酸铵分光光度法测定水中总磷的改进消解方法[J]. 中国给水排水, 2009, 25(16): 81-83. doi: 10.3321/j.issn:1000-4602.2009.16.025
|
[40] |
胡伟. 钼酸铵分光光度法测定水中总磷的改进消解方法[J]. 化工管理, 2019(22): 21-22. doi: 10.3969/j.issn.1008-4800.2019.22.015
|
[41] |
丁丹丹, 吴珺, 杜静芳. 长江水源水中总磷测定相关问题探讨[J]. 安徽科技, 2020(9): 53-55. doi: 10.3969/j.issn.1007-7855.2020.09.023
|
[42] |
夏莉. 水质总磷测定方法的改进与应用[J]. 河南化工, 2019, 36(4): 51-53. doi: 10.14173/j.cnki.hnhg.2019.04.016
|
[43] |
MAHER W, WOO L. Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus[J]. Analytica Chimica Acta, 1998, 375(1/2): 5-47.
|
[44] |
黄君礼, 鲍治宇. 紫外吸收光谱法及其应用[M]. 北京: 中国科学技术出版社, 1992: 1-9.
|
[45] |
高丹丹, 郭瑞涛. 钼酸铵分光光度法测定水中总磷质量控制指标研究[J]. 资源节约与环保, 2016(4): 65. doi: 10.3969/j.issn.1673-2251.2016.04.054
|
[46] |
BERGQUIST J, TURNER C. Analytical chemistry for a sustainable society: trends and implications[J]. Anal Bioanal Chem, 2018, 410(14): 1-3.
|
[1] | MA Wenyu, YANG Wei, QIN Xiaoming, CAO Wenhong, LIN Haisheng. Ameliorative effect of oyster enzymatic products on glucocorticoid-induced osteoporosis in rats[J]. South China Fisheries Science. DOI: 10.12131/20240223 |
[2] | ZHANG Xianbing, QIN Yiwen, YANG Wei, LI Geng, HU Yupeng, YANG Shengfa, HU Jiang, LI Wenjie. Progress in study and application of fish bioenergetics models[J]. South China Fisheries Science, 2024, 20(6): 53-61. DOI: 10.12131/20240106 |
[3] | LIAO Zujun, WANG Xuefeng, ZHOU Yanbo, ZHANG Lei, LYU Shaoliang, WU Qia'er, DONG Jianyu, MA Shengwei. Analysis of effects of environmental factors on Sthenoteuthis oualaniensis based on structural equation model[J]. South China Fisheries Science, 2024, 20(2): 11-18. DOI: 10.12131/20230127 |
[4] | ZHENG Huanyu, GAO Jialong, ZHANG Chaohua, SI Rui, ZHENG Huina, CAO Wenhong, QIN Xiaoming. Effects of Chlamys nobilis and its enzymatic hydrolysates on reproductive capacity of hemi-castrated male rats[J]. South China Fisheries Science, 2021, 17(3): 94-101. DOI: 10.12131/20200251 |
[5] | ZHANG Kui, CHEN Zuozhi, HUANG Zirong, XU Youwei. Comparison of delay difference model and surplus production model applied to albacore (Thunnus alalunga) in the South Atlantic Ocean[J]. South China Fisheries Science, 2015, 11(3): 1-6. DOI: 10.3969/j.issn.2095-0780.2015.03.001 |
[6] | KE Changliang, LIN Qin, GAN Juli, LI Liudong, CHEN Jiewen, WANG Zenghuan, HUANG Ke. Thermodynamic model and impact factors for organic pesticide adsorption in environment[J]. South China Fisheries Science, 2013, 9(1): 68-73. DOI: 10.3969/j.issn.2095-0780.2013.01.012 |
[7] | LIU Qun, XU Binduo, REN Yiping. Prediction of freshwater aquaculture production of Qingdao city by using a grey prediction model[J]. South China Fisheries Science, 2009, 5(5): 38-43. DOI: 10.3969/j.issn.1673-2227.2009.05.007 |
[8] | CUI He, LIU Qun, WANG Yanjun. Application of a continuous Fox-form production model in fishery stock assessment[J]. South China Fisheries Science, 2008, 4(2): 34-42. |
[9] | WANG Yingbin, LIU Qun. An elementary study of impacts of error structure on the estimation of fish natural mortality coefficient using cohort analysis (CA) model[J]. South China Fisheries Science, 2006, 2(3): 7-15. |
[10] | GUO Quan-you, YANG Xian-shi. Comparison of different bacteria growth models on chilled Pseudosciaena crocea[J]. South China Fisheries Science, 2005, 1(5): 44-49. |