SHAO Yanqiu, HUANG Hui, LI Laihao, YANG Xianqing, CHEN Shengjun, HAO Shuxian, WU Yanyan, CEN Jianwei, DENG Shanggui. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)[J]. South China Fisheries Science, 2022, 18(6): 137-145. DOI: 10.12131/20210358
Citation: SHAO Yanqiu, HUANG Hui, LI Laihao, YANG Xianqing, CHEN Shengjun, HAO Shuxian, WU Yanyan, CEN Jianwei, DENG Shanggui. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)[J]. South China Fisheries Science, 2022, 18(6): 137-145. DOI: 10.12131/20210358

Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)

More Information
  • Received Date: November 27, 2021
  • Revised Date: March 09, 2022
  • Accepted Date: March 28, 2022
  • Available Online: October 17, 2022
  • To study the comprehensive utilization of by-products from eel processing, the angiotensin-converting enzyme inhibitory peptide was prepared from eel (Anguilla japonica) bone collagen by enzymatic hydrolysis. The ACE inhibitory activity and degree of hydrolysis were used as evaluation indexes, we determined the optimal hydrolysis conditions by single factor and response surface experiments. Furthermore, the amino acid composition and molecular mass distribution of the hydrolysate prepared under the optimized conditions were determined. The results show that alkaline protease was the optimal enzyme, and the optimal hydrolysis conditions were as follows: temperature of 50 ℃, mass concentration of 15 g·L−1, hydrolysis time of 5.25 h, enzyme dosage of 3.1% (Mass fraction) and pH of 9.2. Under these conditions, the ACE inhibitory activity was 70.33%, which was close to the predicted value. The molecular weight of peptides below 1 000 D and 1 000–3 000 D in enzymatic hydrolysate accounted for 57.02% and 36.55%, respectively. Amino acid composition analysis shows that the content of hydrophobic amino acids related to ACE inhibition activities (Such as Pro、Val、Ile、Leu、Phe) increased.
  • [1]
    FAN Y, YU Z P, ZHAO W Z, et al. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin[J]. Food Sci Hum Well, 2020, 9(3): 257-263. doi: 10.1016/j.fshw.2020.04.001
    [2]
    SUN S Q, XU X T, SUN X, et al. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis[J]. Mar Drugs, 2019, 17(3): 179. doi: 10.3390/md17030179
    [3]
    LIAO P Y, LAN X D, LIAO D K, et al. Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from the enzymatic hydrolysate of carapax trionycis (the shell of the turtle Pelodiscus sinensis)[J]. J Agric Food Chem, 2018, 66(27): 7015-7022. doi: 10.1021/acs.jafc.8b01558
    [4]
    于志鹏, 赵文竹, 刘博群, 等. 血管紧张素转化酶抑制肽研究进展[J]. 食品科学, 2010, 31(11): 308-311.
    [5]
    GAO D D, ZHANG F M, MA Z R, et al. Isolation and identification of the angiotensin-I converting enzyme (ACE) inhibitory peptides derived from cottonseed protein: optimization of hydrolysis conditions[J]. Int J Food Prop, 2019, 22(1): 1296-1309. doi: 10.1080/10942912.2019.1640735
    [6]
    HUANG Y B, JIA F, ZHAO J S, et al. Novel ACE inhibitory peptides derived from yeast hydrolysates: screening, inhibition mechanisms and effects on HUVECs[J]. J Agr Food Chem, 2021, 69(8): 2412-2421. doi: 10.1021/acs.jafc.0c06053
    [7]
    KASIWUT J, YOURAVONG W, SIRINUPONG N. Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor[J]. J Food Biochem, 2019, 43(12): e13058.
    [8]
    DENG Z Z, LIU Y J, WANG J, et al. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive rats (SHRs)[J]. Mar Drugs, 2018, 16(9): 299. doi: 10.3390/md16090299
    [9]
    ISHAK N H, SHAIK M I, YELLAPU N K, et al. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate[J]. J Food Sci Technol, 2021, 58(12): 4567-4577. doi: 10.1007/s13197-020-04944-y
    [10]
    DEY T K, CHATTERJEE R, MANDAL R S. et al. ACE inhibitory peptides from Bellamya bengalensis protein hydrolysates: in vitro and in silico molecular assessment[J]. Processes, 2021, 9(8): 1316. doi: 10.3390/pr9081316
    [11]
    LI J P, LIU Z Y, ZHAO Y H, et al. Novel natural angiotensin converting enzyme (ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure-activity relationship[J]. Mar Drugs, 2018, 16(8): 271. doi: 10.3390/md16080271
    [12]
    CHEN J, LIU Y, WANG G, et al. Processing optimization and characterization of angiotensin-Ι-converting enzyme inhibitory peptides from lizardfish (Synodus macrops) scale gelatin[J]. Mar Drugs, 2018, 16(7): 228. doi: 10.3390/md16070228
    [13]
    YU F M, ZHANG Z W, LUO L W, et al. Identification and molecular docking study of a novel angiotensin-I converting enzyme inhibitory peptide derived from enzymatic hydrolysates of Cyclina sinensis[J]. Mar Drugs, 2018, 16(11): 411. doi: 10.3390/md16110411
    [14]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2021: 25.
    [15]
    张婷婷, 赵峰, 张涛, 等. 中国鳗鱼产业发展及其资源保护建议[J]. 渔业信息与战略, 2019, 34(4): 235-243.
    [16]
    钱跃威, 徐瀚麟, 吕奇晏, 等. 鳗鱼骨胶原肽钙螯合物的制备及其稳定性和Caco-2吸收特性[J]. 食品科学, 2020, 41(24): 1-8. doi: 10.7506/spkx1002-6630-20200706-078
    [17]
    蔡路昀, 史航, 曹爱玲, 等. 鲽鱼骨胶原蛋白的结构及流变学特性[J]. 中国食品学报, 2020, 20(3): 66-73.
    [18]
    BALTI R, BOUGATEF A, SILA A, et al. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats[J]. Food Chem, 2015, 170: 519-525. doi: 10.1016/j.foodchem.2013.03.091
    [19]
    苏盛亿. 小米ACE抑制肽的制备及其降血压活性的研究 [D]. 大连: 大连工业大学, 2019: 8-16.
    [20]
    李德俊. 鱼鳞胶原蛋白肽的制备及工厂设计 [D]. 南昌: 南昌大学, 2015: 13-14.
    [21]
    GUO L D, HARNEDY P A, O'KEEFE M B, et a1. Fractionation and identification of Alaska pollock skin collagen-derived minera I chelating peptides[J]. Food Chem, 2015, 173: 536-542. doi: 10.1016/j.foodchem.2014.10.055
    [22]
    张风, 夏旭, 周爱梅, 等. 虾头虾壳蛋白质酶解制备抗氧化肽的研究[J]. 南方水产科学, 2015, 11(6): 79-87. doi: 10.3969/j.issn.2095-0780.2015.06.011
    [23]
    魏洁琼, 余群力, 韩玲, 等. 牛骨胶原蛋白肽制备工艺优化及抗氧化活性分析[J]. 甘肃农业大学学报, 2020, 55(5): 203-211, 218.
    [24]
    朱迎春, 许小琴, 马俪珍. 鲶鱼骨酶解物的降血压肽活性研究[J]. 青岛农业大学学报 (自然科学版), 2009, 26(1): 61-65.
    [25]
    李华亮, 郑雅惠, 冒小妹, 等. 鳄鱼骨胶原活性肽的制备及其抑制血管紧张素酶 (ACE) 的功能研究 [C]//中国生物化学与分子生物学会, 浙江省生物化学与分子生物学会. 中国生物化学与分子生物学会2016年全国学术会议论文集. 杭州: 中国生物化学与分子生物学会, 2016: 235.
    [26]
    田海娟, 王蕾, 刘名鑫, 等. 混菌发酵紫苏粕小肽提取工艺优化及体外抗氧化活性研究[J]. 食品与发酵工业, 2021, 47(20): 219-224.
    [27]
    田旭静, 段鹏慧, 范三红, 等. 响应面法优化酶解藜麦糠蛋白制备抗氧化肽工艺[J]. 食品科学, 2018, 39(10): 158-164. doi: 10.7506/spkx1002-6630-201810025
    [28]
    任海伟, 石菊芬, 蔡亚玲, 等. 响应面法优化超声辅助酶解制备藏系羊胎盘肽工艺及抗氧化能力分析[J]. 食品科学, 2019, 40(24): 265-273. doi: 10.7506/spkx1002-6630-20181101-009
    [29]
    王小慧, 戚勃, 杨贤庆, 等. 响应面法优化末水坛紫菜蛋白酶解工艺及其酶解液抗氧化活性研究[J]. 南方水产科学, 2019, 15(2): 93-101. doi: 10.12131/20180099
    [30]
    涂宗财, 唐平平, 郑婷婷, 等. 响应面优化鱼鳔胶原肽制备工艺及其抗氧化活性研究[J]. 食品与发酵工业, 2017, 43(5): 160-166.
    [31]
    邱娟, 沈建东, 翁凌, 等. 利用牡蛎制备ACE抑制肽的工艺优化[J]. 食品科学, 2017, 38(16): 165-172. doi: 10.7506/spkx1002-6630-201716026
    [32]
    SHI J, SU R Q, ZHANG W T, et al. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein[J]. J Food Sci Technol, 2020, 57(11): 3927-3934. doi: 10.1007/s13197-020-04427-0
    [33]
    KIM H S, LEE W W, JAYAWARDENA T U, et al. Potential precursor of angiotensin-I converting enzyme (ACE) inhibitory activity and structural properties of peptide from peptic hydrolysate of cutlassfish muscle[J]. J Aquat Food Prod T, 2020, 29(6): 544-552. doi: 10.1080/10498850.2020.1773595
    [34]
    王晓丹, 薛璐, 胡志和, 等. ACE抑制肽构效关系研究进展[J]. 食品科学, 2017, 38(5): 305-310. doi: 10.7506/spkx1002-6630-201705049
    [35]
    王琳琳, 陈立, 李建科. 食源血管紧张素转化酶抑制肽研究进展[J]. 中国果菜, 2020, 40(6): 71-76.
    [36]
    管骁, 洪延涵, 刘静, 等. ACEC-结构域选择性抑制二肽与ACE结构域的结合模式[J]. 食品科学, 2017(5): 170-176.
    [37]
    周育, 韩三青, 王茹茹, 等. 食源血管紧张素转化酶抑制肽研究进展[J]. 安徽农业大学学报, 2019, 46(5): 751-760.
    [38]
    XUE L, YIN R, HOWELL K, et al. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides[J]. Compr Rev Food Sci F, 2021, 20(2): 1150-1187. doi: 10.1111/1541-4337.12711
    [39]
    MURAPA P, DAI J, CHUNG M, et al. Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes[J]. Phytother Res, 2012, 26: 106-112. doi: 10.1002/ptr.3510
    [40]
    CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of ACE importance of the COOH-terminal dipeptide sequence[J]. J Bio Chem, 1980, 255: 401-407. doi: 10.1016/S0021-9258(19)86187-2
    [41]
    于志鹏, 吴雨, 樊玥, 等. 基于三元二次正交设计的文蛤水解肽制备工艺优化及ACE抑制活性分析[J]. 食品工业科技, 2016, 37(24): 181-185.
  • Related Articles

    [1]WEI Cun, YU Peng, YU Mingchao, SHAN Hongwei. Preliminary study of screening and characteristics of strains with Quorum sensing inhibition activity in shrimp culture environment[J]. South China Fisheries Science, 2018, 14(1): 27-34. DOI: 10.3969/j.issn.2095-0780.2018.01.004
    [2]LI Junwei, ZHU Changbo, XIE Xiaoyong, GUO Yongjian, CHEN Suwen. Research progress on breeding, aquaculture and development of Sipunculus nudus[J]. South China Fisheries Science, 2014, 10(5): 94-98. DOI: 10.3969/j.issn.2095-0780.2014.05.014
    [3]LI Haipeng, LUO Peng, YU Zonghe, HU Chaoqun, ZHANG Lüping, XIA Jianjun, REN Chunhua. Preliminary feasibility study of cage culture of tropical sea cucumber (Stichopus horrens) in the wide[J]. South China Fisheries Science, 2013, 9(6): 1-7. DOI: 10.3969/j.issn.2095-0780.2013.06.001
    [4]BAO Xuteng, XU Hao, ZHANG Jianhua, DING Jianle. Best management practices for controlling aquaculture non-point pollution[J]. South China Fisheries Science, 2012, 8(3): 79-86. DOI: 10.3969/j.issn.2095-0780.2012.03.012
    [5]WEI Bojuan, WU Chengye, QIAN Zhuozhen. Evaluation of uncertainty for detection of Quinolones residues in aquatic products by HPLC-MS/MS[J]. South China Fisheries Science, 2012, 8(3): 59-64. DOI: 10.3969/j.issn.2095-0780.2012.03.009
    [6]LIU Huang, CHE Xuan. Elementary study on evaluation of CO2 emissions from aquaculture in China[J]. South China Fisheries Science, 2010, 6(4): 77-80. DOI: 10.3969/j.issn.1673-2227.2010.04.013
    [7]MA Zhiming, XU Shihuai, JIA Xiaoping. Research status and exploitation prospect in production, basic biology and aquaculture of octopus[J]. South China Fisheries Science, 2008, 4(5): 69-73.
    [8]CAI Wenchao, OU Youjun, LI Jiaer. Present research status and aquaculture foreground of southern flounder Paralichthys lethostigma in China[J]. South China Fisheries Science, 2007, 3(6): 75-80.
    [9]LU Zhenbin, CAI Qinghai, ZHANG Xuemin. Estimation of the aquaculture pollution to water body in Tongan Bay[J]. South China Fisheries Science, 2007, 3(1): 54-61.
    [10]LIU Hong-bo, LI Ming-shuang, YANG Jian. Environment impacts of aquaculture in foreign developing countries[J]. South China Fisheries Science, 2006, 2(2): 43-50.
  • Cited by

    Periodical cited type(17)

    1. 汪洋,袁跃峰,苗晓君,范庆仁. 工厂化水产养殖自动投饲机下料仿真. 农村经济与科技. 2024(04): 68-72 .
    2. 高炜鹏,谢永和,李德堂,王君. 基于CFD-DEM耦合的养殖工船自动投饲机的研制与实验. 饲料工业. 2024(10): 10-18 .
    3. 王龙宝,杨翰瑜,王庆杰,卢彩云,王超,何进. 小麦气流辅助直线投种装置设计与试验. 农业机械学报. 2024(06): 111-120 .
    4. 董建涛,陈传峰,杨蕾. 基于EDEM-Fluent耦合仿真的湿性混凝土颗粒气力清扫起动特性研究. 大众科技. 2023(04): 32-36 .
    5. 高炜鹏,谢永和,李德堂,王君,陈卿,洪永强,张佳奇. 养殖工船自动投饲机设计和螺旋下料器的仿真分析. 渔业现代化. 2023(04): 59-67 .
    6. 骆意,张方华,朱端祥,魏树辉,黄建伟,程晓夏. 深远海养殖设备投料选择器结构设计探讨. 机械工程师. 2023(12): 85-88 .
    7. 欧阳联格,汪仑,王会,王冠,黄飞,龙天明. 抽吸式地震救援机特大颗粒负压输送数值模拟. 震灾防御技术. 2023(04): 864-872 .
    8. 俞国燕,陈振雄,刘皞春,姬文超,张宏亮. 船载式投饲机饲料输送关键参数仿真分析. 渔业现代化. 2022(02): 10-17 .
    9. 丁乐声,陈潇,谢庆墨,严俊,曹南. 基于CFD-DEM的气力投饵分配器参数影响分析. 饲料研究. 2022(08): 118-122 .
    10. 张三丰,熊威,柯林,黄静林,沈学锋. 针对饲料气力输送系统设备选型参数的理论及仿真计算. 中国水运(下半月). 2022(08): 72-74 .
    11. 黄建伟,骆意,魏树辉,陈铭治,朱端祥,刘亮清. 深远海养殖自动投饲系统仿真分析与试验验证. 渔业现代化. 2022(05): 68-75 .
    12. 买买提明·艾尼,加合甫·阿汗,吾尔科木·冉合木,古丽巴哈尔·托乎提,金阿芳. 籽棉团悬浮速度的理论算法与试验验证. 农业工程学报. 2022(24): 52-62 .
    13. 张三丰,熊威,柯林,黄静林,沈学锋. 针对饲料气力输送系统设备选型参数的理论及仿真计算. 中国水运. 2022(16): 72-74 .
    14. 王晓晨,高自成,李立君,廖凯,庞国友,赵凯杰. 基于CFD-DEM油茶果负压吸附系统数值模拟及试验研究. 农机化研究. 2021(08): 192-197 .
    15. 侯娟,周为峰,王鲁民,樊伟,原作辉. 中国深远海养殖潜力的空间分析. 资源科学. 2020(07): 1325-1337 .
    16. 仝玉超. 锂离子电池正负极材料气力输送系统研究. 决策探索(中). 2020(08): 94 .
    17. 林礼群,王志勇. 工船养殖颗粒饲料气力输送系统参数优化. 船舶工程. 2020(S2): 51-55 .

    Other cited types(11)

Catalog

    Recommendations
    低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
    贺铮 et al., 南方水产科学, 2025
    不同脱腥方法对薛氏海龙肽粉的脱腥效果比较
    陈茂森 et al., 南方水产科学, 2025
    Hctlr1通过myd88-nf-κb信号通路参与三角帆蚌抗菌免疫应答
    路俊怡 et al., 南方水产科学, 2024
    抗副溶血弧菌卵黄抗体制备及其与不同血清型菌株交叉反应研究
    陈静妮 et al., 南方水产科学, 2024
    罗非鱼at2-r抑制罗非鱼湖病毒复制的初步研究
    文静 et al., 水产科学, 2024
    罗非鱼鱼鳞胶原的制备及其理化性质、流变性能研究
    李龙 et al., 渔业研究, 2024
    Highly efficient mg0.75ce0.25fe12o19 @zif-67 heterojunction co-catalyst for photo-reduction of rhodamine b
    Nazir, Muhammad Altaf et al., KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024
    Enhanced mechanism of copper doping in magnetic biochar for peroxymonosulfate activation and sulfamethoxazole degradation
    Wang, Chuanbin et al., JOURNAL OF HAZARDOUS MATERIALS, 2023
    Grp78 promotes the osteogenic and angiogenic response in periodontal ligament stem cells
    EUROPEAN CELLS & MATERIALS, 2023
    Anti-biofilm activities of silver nanoparticle conjugated rhazya stricta phytocompounds in periprosthetic joint infections by staphylococcus aureus
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
    Powered by
    Article views (444) PDF downloads (40) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return