HAO Yuxin, WAN Rong, ZHOU Cheng, YE Xuchang, GUAN Qinglong, ZHANG Xiaoxian. Hydrodynamic performance of Argentine shortfin squid (Illex argentinus) bottom trawl[J]. South China Fisheries Science, 2022, 18(5): 118-127. DOI: 10.12131/20210343
Citation: HAO Yuxin, WAN Rong, ZHOU Cheng, YE Xuchang, GUAN Qinglong, ZHANG Xiaoxian. Hydrodynamic performance of Argentine shortfin squid (Illex argentinus) bottom trawl[J]. South China Fisheries Science, 2022, 18(5): 118-127. DOI: 10.12131/20210343

Hydrodynamic performance of Argentine shortfin squid (Illex argentinus) bottom trawl

More Information
  • Received Date: November 16, 2021
  • Revised Date: January 08, 2022
  • Accepted Date: February 13, 2022
  • Available Online: February 27, 2022
  • Illex argentinus, inhabiting in shallow waters with a short life cycle, is an important economic cephalopod in the high seas fishing ground of the southwest Atlantic Ocean. Squid jigging and bottom trawling are the main fishing patterns to catch this species. However, there are some problems in bottom trawl, such as high energy consumption, and poor matching between vessel and trawl. Thus, it is necessary to understand the hydrodynamic performance of bottom trawl for I. argentinus. In this paper, we conducted a model experiment in the dynamic water tank to explore the effects of towing speed, horizontal spreading ratio, buoyancy weight ratio on the hydrodynamic performance of height of net opening, resistance, coefficient of energy consumption and power consumption. The model net was designed based on the small mesh six-panel single boat bottom trawl used for the main capture of I. argentinus [Main scale: 200 m×113.8 m (84.6 m)]. According to the Tauti's Law, the model experiment was scaled with the large scale ratio of 1∶30 and the small scale ratio of 1∶5. When the towing speed V was 3 kn and the horizontal spreading ratio L/S was 0.54, the buoyancy weight ratio increased from 0.6 to 0.7, the height of the net opening increased from 9.66 m to 14.1 m, and the resistance increased from 73.73 kN to 83.48 kN. However, with the increase of towing speed, the influence of the buoyancy weight ratio on the height of the net opening and resistance decreased. When the sweeping area of trawl opening was less than 200 m2, the energy consumption coefficient was greatly affected by the horizontal expansion ratio, on the contrary, it was greatly affected by the height of trawl opening. The power consumption increased with towing speed and horizontal spreading ratio. It accounted for more than 10% of main engine power for vessel when the towing speed was more than 4 kn.
  • [1]
    陈新军, 刘必林, 方舟, 等. 头足纲[M]. 北京: 海洋出版社, 2019: 347-348.
    [2]
    刘岩. 西南大西洋公海底拖网资源探捕的初步研究[D]. 青岛: 中国海洋大学, 2012: 9.
    [3]
    FAO. Global production statistics 1950−2019[DB/OL]. 2021-09-05. http://www.fao.org/fishery/statistics/global−production/query/en.
    [4]
    刘赫威, 余为, 陈新军. 西南大西洋阿根廷滑柔鱼资源及其对环境响应的研究进展[J]. 中国水产科学, 2020, 27(10): 1254-1265.
    [5]
    徐鹏翔. 南极磷虾中层拖网性能研究[D]. 上海: 上海海洋大学, 2016: 1.
    [6]
    苏志鹏, 许柳雄, 朱国平, 等. 拖速和曳纲长度对南极磷虾中层拖网网位的影响[J]. 中国水产科学, 2017, 24(4): 884-892.
    [7]
    许永久, 黄洪亮, 王磊, 等. 六角形目经编网片和菱形目有结绞捻网片水动力性能比较研究[J]. 浙江海洋学院学报(自然科学版), 2010, 29(4): 299-305.
    [8]
    万荣, 侯恩淮. 拖网的网袖结构对其性能的影响[J]. 海洋湖沼通报, 1992(3): 60-63.
    [9]
    陈雪忠, 郁岳峰, 刘峰, 等. 四片式中层拖网主要部件尺寸变化对其性能的影响[J]. 水产学报, 1997, 21(1): 50-57.
    [10]
    王永进, 万荣, 王鲁民, 等. 大网目底拖网网身长度对网具性能的影响[J]. 海洋渔业, 2014, 36(3): 260-264. doi: 10.3969/j.issn.1004-2490.2014.03.010
    [11]
    LIU W, TANG H, YOU X X, et al. Effect of cutting ratio and catch on drag characteristics and fluttering motions of midwater trawl codend[J]. J Mar Sci Eng, 2021, 9(3): 256. doi: 10.3390/jmse9030256
    [12]
    王永进, 万荣, 张勋, 等. 网袖长度对底层大网目拖网性能的影响[J]. 中国水产科学, 2015, 22(2): 332-339.
    [13]
    FUJIISHI A. Model tests of a high-speed midwater rope trawl for estimating the optimum buoyancy-weight ratio[J]. Bull Jpn Soc Sci Fish, 1990, 56(12): 2011-2018. doi: 10.2331/suisan.56.2011
    [14]
    周爱忠, 冯春雷, 张勋, 等. 调整作业参数对小网目南极磷虾拖网水动力性能的影响[J]. 海洋渔业, 2016, 38(1): 74-82. doi: 10.3969/j.issn.1004-2490.2016.01.002
    [15]
    WAN R, JIA M X, GUAN Q L, et al. Hydrodynamic performance of a newly-designed Antarctic krill trawl using numerical simulation and physical modeling methods[J]. Ocean Eng, 2019, 179: 173-179. doi: 10.1016/j.oceaneng.2019.03.022
    [16]
    刘志强, 许柳雄, 唐浩, 等. 拖网作业参数对南极磷虾捕捞效率的影响[J]. 中国水产科学, 2019, 26(6): 1205-1212.
    [17]
    许柳雄. 渔具理论与设计学[M]. 北京: 中国农业出版社, 2004: 113.
    [18]
    黄洪亮, 伍贻惠, 郁岳峰, 等. 减少渔具模型试验误差的方法: 200510027879. X [P]. 2009-06-03.
    [19]
    ROBERTA A S, MANUEL H. Food and feeding of the short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil[J]. Fish Res, 1997, 55: 139-147.
    [20]
    王晓晖, 林兴国. 阿根廷—福克兰鱿钓渔场特征与渔法特点[J]. 海洋渔业, 2000, 22(1): 41-42. doi: 10.3969/j.issn.1004-2490.2000.01.015
    [21]
    陈雪忠, 徐宝生, 项忆军, 等. 底拖网网口垂直扩张的分析研究[C]//中国水产学会水产捕捞专业委员会. 中国水产捕捞学术研讨会论文集. 苏州: 苏州大学出版社, 1997: 167-170.
    [22]
    郁岳峰, 张勋, 冯春雷, 等. 单船深水底拖网渔具渔法的试验研究[J]. 现代渔业信息, 2008, 23(9): 9-12.
    [23]
    伍贻惠, 郁岳峰, 林淮, 等. 拖网模型试验若干问题的研究[C]//中国水产学会水产捕捞专业委员会. 中国水产捕捞学术研讨会论文集. 苏州: 苏州大学出版社, 1997: 27-36.
    [24]
    薄佳男. 远洋大网目底拖网设计和模型试验研究[D]. 舟山: 浙江海洋大学, 2020: 31.
    [25]
    崔建章. 渔具渔法学[M]. 北京: 中国农业出版社, 1997: 270-280.
    [26]
    刘新山. 对六片式底拖网在也门和阿曼渔场的适应性分析与研究[J]. 大连水产学院学报, 1997(3): 61-67.
    [27]
    孟涛. 基于模型试验的我国南极磷虾中层拖网扩张性能研究[D]. 上海: 上海海洋大学, 2014: 32.
    [28]
    崔建章. 中型单拖网渔船拖力与渔具系统匹配的研究[J]. 水产学报, 1993(4): 289-296.
    [29]
    弗里德曼. 渔具理论与设计[M]. 侯恩淮, 高清廉, 译. 北京: 海洋出版社, 1988: 70.
    [30]
    赵俊铟. 鱼类的行动[M]. 北京: 农业出版社, 1986: 179-183.
    [31]
    许传才. 北方沿海小型单船底拖网的研制和试验[J]. 大连水产学院学报, 1997(1): 29-36.
  • Related Articles

    [1]ZHANG Chen, LIU Huang, ZHANG Chenglin, YAO Chunjing, ZHANG Fan. Optimization of inlet and outlet configurations for rectangular aquaculture tanks based on model experiments[J]. South China Fisheries Science, 2025, 21(3): 24-35. DOI: 10.12131/20250094
    [2]WANG Shaomin, MA Zhenhua, HU Jing, WANG Wenfei, MAO Fukao, BAI Zemin, WANG Lixian. Hydrodynamic performance of a square-type submersible net cage under combined wind, wave and current conditions[J]. South China Fisheries Science, 2025, 21(2): 1-13. DOI: 10.12131/20240245
    [3]WANG Zhiqiang, YU Deshuang, PANG Guoliang, WANG Gang, HUANG Xiaohua, CHENG Xiaofei. Comparative analysis of hydrodynamic response tests of gravity-type liftable cage under different connection rope lengths[J]. South China Fisheries Science. DOI: 10.12131/20250095
    [4]WU Yuanjin, HUANG Xiaohua, LIU Haiyang, HU Yu, CHEN Changping, YUAN Taiping, WANG Shaomin, TAO Qiyou. Experimental study on mooring force of a single-point mooring fish cage with ship-type truss structure[J]. South China Fisheries Science, 2021, 17(4): 118-125. DOI: 10.12131/20210025
    [5]WANG Shaomin, YUAN Taiping, YANG Xieqiu, TAO Qiyou, SHEN Wei, HU Yu, HUANG Xiaohua. Frequency domain analysis of hydrodynamic characteristics of mariculture ship with truss and plate frame hybrid structure[J]. South China Fisheries Science, 2021, 17(4): 82-90. DOI: 10.12131/20210021
    [6]WANG Yongjin, ZHANG Xun, ZHANG Yu, ZHOU Aizhong, LI Ziniu, WANG Shuaijie, LIU Longteng, WANG Lumin. Influence of main structural parameters on performance of bottom trawl with large-size mesh[J]. South China Fisheries Science, 2021, 17(4): 66-73. DOI: 10.12131/20210026
    [7]WANG Jiamei, TANG Zhenzhao, DING Ling, JIA Xiaoping, ZHANG Zhongzhe. Study on local scour of artificial reef based on flume test[J]. South China Fisheries Science, 2020, 16(6): 32-38. DOI: 10.12131/20200074
    [8]SONG Liming, LI Yiting. Research progress of mechanical property of tuna longline gear[J]. South China Fisheries Science, 2020, 16(2): 121-127. DOI: 10.12131/20190183
    [9]LIU Jian, HUANG Hongliang, WU Yue, RAO Xin, LI Lingzhi, CHEN Shuai, YANG Jialiang, ZHOU Bin. Model test of hydrodynamic characteristics of two types of vertical cambered slotted otter boards[J]. South China Fisheries Science, 2015, 11(1): 68-74. DOI: 10.3969/j.issn.2095-0780.2015.01.010
    [10]LIU Yan, ZHANG Xiumei, ZHOU You, SUN Ming. An analysis of biological characteristics of Argentine shortfin squidIllex argentinus collected by trawl in southwest Atlantic in 2011[J]. South China Fisheries Science, 2012, 8(3): 39-47. DOI: 10.3969/j.issn.2095-0780.2012.03.006

Catalog

    Recommendations
    Influence of miniature temperature-depth recorder (tdr-2050) on hook depth of tuna longline fishing hooks
    SONG Liming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Enhancement of underwater images on improved stargan by mixed attention module
    ZHENG Haojun et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Investigation on behavioral preferences oflutjanus erythropterusjuvenile towards artificial reef models with different pore shapes and sizes
    JIANG Manju et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Hydraulic conductivity of the hemp stems under water stress
    Mehmet Yuksel et al., FORTUNE JOURNAL OF HEALTH SCIENCES, 2023
    Analysis of the characteristic statistics of eddies in patagonia sea and their relationship with the spatial and temporal distribution of argentine shortfin squid,illex argentinus
    ZHANG Lichuan et al., JOURNAL OF FISHERY SCIENCES OF CHINA, 2024
    Underwater fluid-driven soft dock for dynamic recovery of auvs with improved pose tolerance
    Lin, Mingwei et al., OCEAN ENGINEERING, 2024
    Biodegradation of sulfametoxydiazine by alcaligenes aquatillis fa: performance, degradation pathways, and mechanisms
    Du, Yuqian et al., JOURNAL OF HAZARDOUS MATERIALS, 2023
    Experimental study on the hydrodynamic performance of a multi-dofwec-type floating breakwater
    RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, 2024
    Hydrodynamics of jet-flapping combinatorial propulsion in a squid-like swimmer: a study on different coordination modes
    PHYSICS OF FLUIDS
    Powered by
    Article views (631) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return