YUAN Yuan, SU Lingqia, ZHANG Kang, ZHU Xuyang, XIA Wei, WU Jing. Recombinant expression of Bacillus licheniformis chitinase in B. subtilis and preparation of amino-oligosaccharides[J]. South China Fisheries Science, 2022, 18(2): 39-47. DOI: 10.12131/20210297
Citation: YUAN Yuan, SU Lingqia, ZHANG Kang, ZHU Xuyang, XIA Wei, WU Jing. Recombinant expression of Bacillus licheniformis chitinase in B. subtilis and preparation of amino-oligosaccharides[J]. South China Fisheries Science, 2022, 18(2): 39-47. DOI: 10.12131/20210297

Recombinant expression of Bacillus licheniformis chitinase in B. subtilis and preparation of amino-oligosaccharides

More Information
  • Received Date: October 11, 2021
  • Revised Date: January 05, 2022
  • Accepted Date: January 16, 2022
  • Available Online: February 06, 2022
  • In this study, a chitinase blchiA from Bacillus licheniformis was recombinantly expressed in B. subtilis, and the B. subtilis engineering strain (B. subtilis WS9/pHY300PLK-blchiA) was constructed. The enzyme activity in the fermentation supernatant was 0.73 U·mL−1. The enzymatic properties of recombinant enzyme BLCHIA were characterized, and its best activity was obtained at pH 6.0 and 60 ℃, and the specific activity was 3.68 U·mg−1. 10 mmol·L−1 Cu2+ and Fe2+ could promote its activity, and its stability was good at pH 5.0−8.0 and 50−60 ℃. In addition, the catalytic ability of the recombinant enzyme on chitosan with a degree of deacetylation> 95% was significantly better than that of colloidal chitin, and the types of hydrocolloid chitin and chitosan were significantly different. Using colloidal chitin as substrate, the recombinant enzyme could mainly produce chitobiose, but using chitosan as substrate, it could produce chitosan oligosaccharide with polymerization degree of 2−7. The results have a good application prospect for viscosity reduction of chitosan and preparation of oligosaccharides with different polymerization degrees.
  • [1]
    赵沙, 颜子娟, 张舒, 等. 细菌几丁质酶结构、功能及分子设计的研究进展 [J/OL]. 生物化学与生物物理进展. (2021-09-24). https://kns.cnki.net/kcms/detail/11.2161.Q.20210924.1033.002.html.
    [2]
    DOAN C T, TRAN T N, WANG S L. Production of thermophilic chitinase by Paenibacillus sp. TKU052 by bioprocessing of chitinous fishery wastes and its application in N-acetyl-D-glucosamine production [J]. Polymers, 2021,  13(18):  3048-3065.
    [3]
    马帅, 杨绍青, 刘翊昊, 等. 枯草芽孢杆菌壳聚糖酶在毕赤酵母中的高效表达及其酶解特性 [J].  食品科学,  2019,  40(14):  99-106.
    [4]
    李汶潓, 李亚鹤, 徐年军, 等. 壳聚糖酶法降解工艺优化及其产物的抗氧化活性 [J].  中国食品学报,  2017,  17(11):  121-130.
    [5]
    AFFES S, MAALEJ H, ARANAZ I, et al. Enzymatic production of low-Mw chitosan-derivatives: characterization and biological activities evaluation [J].  Int J Biol Macromol,  2020,  144:  279-288.
    [6]
    杨春贵, 王纪亭. 壳寡糖在水产养殖中的应用研究进展 [J].  山东畜牧兽医,  2009,  30(4):  44-46.
    [7]
    OYELEYE A, NORMI Y M. Chitinase: diversity, limitations, and trends in engineering for suitable applications [J]. BiosciRep, 2018, 38: BSR2018032300.
    [8]
    文霞, 周少璐, 杨秀茳, 等. 海洋微生物多糖降解酶的研究进展 [J]. 生物技术通报, 2016, 32(11): 38-46.
    [9]
    张新月, 张月琪, 王凤彪, 等. 海洋细菌来源几丁质酶的研究进展 [J]. 食品工业科技, 2021, 42(22): 383-389.
    [10]
    张康. 枯草芽孢杆菌菌株改造、启动子优化和普鲁兰酶的高效制备研究[D].  无锡:  江南大学,  2018:  29.
    [11]
    ZHANG K, SU L Q, WU J. Enhanced extracellular pullulanase production in Bacillus subtilis using proteasedeficient strains and optimal feeding [J]. Appl Microbiol Bio,  2018,  102(12):  5089-5103.
    [12]
    SANDHYA C, ADAPA L K, NAMPOOTHIRI K M, et al. Extracellular chitinase production by Trichoderma harzianum in submerged fermentation [J].  J Basic Microbiol,  2004,  44(1):  49-58.
    [13]
    罗洒. 新型壳聚糖酶的高效表达及壳寡糖制备工艺研究 [D].  上海:  华东理工大学,  2019:  15.
    [14]
    SONGSIRIRITTHIGUL C, LAPBOONRUENG S, PECHSRICHUANG P, et al. Expression and characterization of Bacillus lichenifor-mis chitinase (chiA), suitable for bioconversion of chitin waste [J].  Bioresour Technol,  2010,  101(11):  4096-4103.
    [15]
    AFOLAYAN I A, OYUN J F, EKUNDAYO E A, et al. Purification and characterization of a thermostable chitinase produced by a fungus isolated from fruit tree rhizosphere [J]. Asian J Biochem, 2020,  6(2):  46-56.
    [16]
    DEBADITYA B, ANAND N, RAJINDER K G. Bacterial chitinases: properties and potential[J]. Crit Rev Biotechnol,  2007,  27: 21-28.
    [17]
    王振东, 罗春艳, 杨晨, 等. 海洋细菌QDC01的鉴定及其几丁质酶基因的克隆与分析 [J].  农业生物技术学报,  2013,  21(6):  734-744.
    [18]
    陈立功, 吴家葳, 张冉, 等. 发光杆菌产几丁质酶的工艺优化 [J].  食品工业科技,  2021,  42(1):  110-114, 131.
    [19]
    张灿, 黄德智, 李丰硕, 等. 海洋产几丁质酶菌株的筛选及发酵条件优化 [J].  吉林农业大学学报,  2012,  34(2):  141-146.
    [20]
    闫子祥, 杨然, 李秀婷. 微生物表达系统研究进展 [J].  中国食品学报,  2013,  13(10):  126-135.
    [21]
    康倩, 向梦洁, 张大伟. 枯草芽孢杆菌在系统与合成生物技术中研究进展及工业应用 [J].  生物工程学报,  2021,  37(3):  923-938.
    [22]
    QU T L, ZHANG C Y, QIN Z, et al. A novel GH family 20 β-N-acetylhexosaminidase with both chitosanase and chitinase activity from Aspergillus oryzae [J].  Front Mol Biosci,  2021,  8: 684086.
    [23]
    LI Q, WANG F, ZHOU Y, et al. Putative exposed aromatic and hydroxyl residues on the surface of the N-terminal domains of chi1 from aeromonas caviae CB101 are essential for chitin binding and hydrolysis [J].  Appl Environ Microbiol, 2005,  71(11):  7559-7561.
    [24]
    THIMOTEO S S, GLOGAUER A, FAORO H, et al. A broad pH range and processive chitinase from a metagenome library [J].  Brazilian J Med Biol Res, 2017, 50(1):  1-13.
    [25]
    SYNSTAD B, VAAJE-KOLSTAD G, CEDERKVIST F H, et al. Expression and characterization of endochitinase C from Serratia marcescens BJL200 and its purification by a one-step general chitinase purification method [J].  Biosci Biotechnol Biochem,  2008,  72(3):  715-723.
    [26]
    LIU S J, SHAO S J, LI L L, et al. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis [J].  Carbohydr Res,  2015,  418:  50-56.
    [27]
    SAITO A, FUJII T, SHINYA T, et al. The msiK gene, encoding the ATP-hydrolysing component of N,N'-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in streptomyces coelicolorA3(2) [J].  Microbiology,  2008,  154(11):  3358-3365.
    [28]
    NIU X, LIU Z H, YUAN S. The modes of action of chiIII, a chitinase from mushroom Coprinopsis cinerea, shift with changes in the length of GlcNAc oligomers [J]. J Agric Food Chem,  2016,  64(37):  6958-6968.
    [29]
    许磊, 焦思明, 张文昌, 等. 微波强化壳聚糖固定相酸解研究 [J].  食品工业科技,  2021,  42(2):  6-11.
    [30]
    吴健锋, 张立彦. 高浓度壳聚糖溶液酶解条件优化 [J].  食品工业科技,  2018,  39(7):  126-131.
    [31]
    琚洋洋. 壳寡糖的制备、分离纯化及生物活性研究 [D]. 泉州: 华侨大学, 2016: 22-23.
    [32]
    朱玉霞, 李恒, 陈列欢, 等. 低聚合度壳寡糖制备及其组分的色谱行为分析 [J].  食品工艺科技,  2013,  34(15):  281-283, 288.
    [33]
    QIN C Q, DU Y M, XIAO L, et al. Enzymic preparation of water-soluble chitosan and their antitumor activity [J]. Int J Biol Macromol,  2002,  31(1):  111-117.
    [34]
    ZHOU J, WEN B, XIE H, et al. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics [J]. Food Funct,  2021,  12(3):  926-951.
    [35]
    ZHENG L Y, ZHU J F. Study on antimicrobial activity of chitosan with different molecular weights [J].  Carbohydr Polym,  2003, 54(4): 527-530.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return