CHENG Yimeng, SUN Huihui, LIU Qi, ZHAO Ling, CAO Rong. Identification of key amino acid sites for pH stability of GH46 family chitosanase[J]. South China Fisheries Science, 2022, 18(2): 48-56. DOI: 10.12131/20210290
Citation: CHENG Yimeng, SUN Huihui, LIU Qi, ZHAO Ling, CAO Rong. Identification of key amino acid sites for pH stability of GH46 family chitosanase[J]. South China Fisheries Science, 2022, 18(2): 48-56. DOI: 10.12131/20210290

Identification of key amino acid sites for pH stability of GH46 family chitosanase

More Information
  • Received Date: October 08, 2021
  • Revised Date: November 30, 2021
  • Accepted Date: December 14, 2021
  • Available Online: December 07, 2021
  • Chitooligosaccharides, which have a variety of biological activities, are the only known basic oligosaccharide widely used in food, agriculture and biomedicine. Chitosanases can cleave the β-1,4 glycosidic bonds in chitosan specifically to form chitooligosaccharides with different degrees of polymerization. Therefore, obtaining chitosanases with good stability is the key for the large-scale enzymatic preparation of chitooligosaccharides. In order to identify the amino acid sites affecting the pH stability of GH46 family chitosanases, the chitosanase from Bacillus sp. DAU101 (optimal pH 7.5) was selected as template and the chitosanase Csn-BAC from Bacillus sp. MD-5 as the research object. By combining homology modeling and sequence alignments, four candidate sites were selected, and the corresponding mutants were obtained (V1: P68A; V2: A137G; V3: A203M; V4: H234E). Compared with Csn-BAC, the thermal stabilities of four mutants showed varying degrees of reduction, while the pH stability was significantly improved. These results indicate that the selected amino acid sites have an obvious effect on pH tolerance, and this strategy is an effective way to modify the stability of chitosanase.
  • [1]
    BHUVANACHANDRA B, SIVARAMAKRISHNA D, ALIM S, et al. New class of chitosanase from Bacillus amyloliquefaciens for the generation of chitooligosaccharides[J]. J Agr Food Chem, 2021, 69(1): 78-87. doi: 10.1021/acs.jafc.0c05078
    [2]
    YANG G, SUN H, CAO R, et al. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5[J]. Int J Biol Macromol, 2020, 146: 518-523. doi: 10.1016/j.ijbiomac.2020.01.031
    [3]
    吴玉潇, 徐海涛, 高云华, 等. 壳寡糖的生物活性研究进展[J]. 明胶科学与技术, 2015, 35(3): 128-132. doi: 10.3969/j.issn.1004-9657.2015.03.004
    [4]
    ZOU P, YANG X, WANG J, et al. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides[J]. Food Chem, 2016, 190: 1174-1181. doi: 10.1016/j.foodchem.2015.06.076
    [5]
    YANG F, LUAN B, SUN Z, et al. Application of chitooligosaccharides as antioxidants in beer to improve the flavour stability by protecting against beer staling during storage[J]. Biotechnol Lett, 2017, 39(2): 305-310. doi: 10.1007/s10529-016-2248-3
    [6]
    MUANPRASAT C, CHATSUDTHIPONG V. Chitosan oligosaccharide: biological activities and potential therapeutic applications[J]. Pharmacol Ther, 2016, 170: 80-97.
    [7]
    潘珍, 程冬冬, 位晓娟, 等. 壳五糖对骨肉瘤细胞抗肿瘤作用的研究[J]. 国际骨科学杂志, 2020, 41(2): 114-120. doi: 10.3969/j.issn.1673-7083.2020.02.011
    [8]
    RAHMAN M H, HJELJORD L G, AAM B B, et al. Antifungal effect of chito-oligosaccharides with different degrees of polymerization[J]. Eur J Plant Pathol, 2015, 141: 147-158. doi: 10.1007/s10658-014-0533-3
    [9]
    MEI Y X, DAI X Y, YANG W, et al. Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum[J]. Int J Biol Macromol, 2015, 77: 330-335.
    [10]
    DAS S N, MADHUPRAKASH J, SARMA P V S R N, et al. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants[J]. Crit Rev Biotechnol, 2015, 35(1): 29-43. doi: 10.3109/07388551.2013.798255
    [11]
    KRITCHENKOV A S, KLETSKOV A V, EGOROV A R, et al. New water-soluble chitin derivative with high antibacterial properties for potential application in active food coatings[J]. Food Chem, 2021, 343: 128696. doi: 10.1016/j.foodchem.2020.128696
    [12]
    LIAQAT F, ELTEM R. Chitooligosaccharides and their biological activities: a comprehensive review[J]. Carbohydr Polym, 2018, 184: 243-259. doi: 10.1016/j.carbpol.2017.12.067
    [13]
    鲁晶娣. Bacillus nakamurai壳聚糖酶的酶学性质及其活性位点研究[D]. 柳州: 广西科技大学, 2019: 1-2.
    [14]
    李燕. 壳聚糖酶解及降解产物的分析与应用[D]. 天津: 天津科技大学, 2018: 1-4.
    [15]
    THADATHIL N, VELAPPAN S P. Recent developments in chitosanase research and its biotechnological applications: a review[J]. Food Chem, 2014, 150: 392-399. doi: 10.1016/j.foodchem.2013.10.083
    [16]
    SUN H, GAO L, XUE C, et al. Marine-polysaccharide degrading enzymes: status and prospects[J]. Compr Rev Food Sci F, 2020, 19: 2767-2796. doi: 10.1111/1541-4337.12630
    [17]
    SUN H, MAO X, GUO N, et al. Discovery and characterization of a novel chitosanase from Paenibacillus dendritiformis by phylogeny-based enzymatic product specificity prediction[J]. J Agr Food Chem, 2018, 66: 4645-4651. doi: 10.1021/acs.jafc.7b06067
    [18]
    SUN H, YANG G, CAO R, et al. Expression and characterization of a novel glycoside hydrolase family 46 chitosanase identified from marine mud metagenome[J]. Int J Biol Macromol, 2020, 159: 904-910. doi: 10.1016/j.ijbiomac.2020.05.147
    [19]
    QIN Z, CHEN Q M, LIN S, et al. Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation[J]. Food Chem, 2018, 253(1): 139-147.
    [20]
    GUO N, SUN J, WANG W, et al. Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414[J]. Food Chem, 2019, 286: 696-702. doi: 10.1016/j.foodchem.2019.02.056
    [21]
    QU G, ZHAO J, ZHENG P, et al. Recent advances in directed evolution[J]. Chin J Biotech, 2018, 34(1): 1-11.
    [22]
    YANY Y, ZHENG Z, XIAO Y et al. Cloning and characterization of a cold-adapted chitosanase from marine bacterium Bacillus sp. BY01[J]. Molecules, 2019, 24(21): 3915. doi: 10.3390/molecules24213915
    [23]
    WANG Y, QIN Z, FAN L, et al. Structure-function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members[J]. Int J Biol Macromol, 2020, 165: 2038-2048. doi: 10.1016/j.ijbiomac.2020.10.066
    [24]
    LIU Y, LI Y, TONG S, et al. Expression of a Beauveria bassiana chitosanase (BbCSN-1) in Pichia pastoris and enzymatic analysis of the recombinant protein[J]. Protein Expres Purif, 2019, 166: 105519.
    [25]
    YOON H, KIM H, LIM Y, et al. Thermostable chitosanase from Bacillus sp. strain CK4: cloning and expression of the gene and characterization of the enzyme[J]. Appl Environ Microb, 2000, 66(9): 3727-3734. doi: 10.1128/AEM.66.9.3727-3734.2000
    [26]
    LEE Y S, YOO J S, CHUNG S Y, et al. Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101[J]. Appl Microbiol Biot, 2006, 73(1): 113-121. doi: 10.1007/s00253-006-0444-0
    [27]
    LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948. doi: 10.1093/bioinformatics/btm404
    [28]
    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2): 248-254.
    [29]
    LI Y, GOU Y, LIU Z, et al. Structure-based rational design of chitosanase CsnMY002 for high yields of chitobiose[J]. Colloid surfaces B, 2021, 202(8): 111692.
    [30]
    ZHANG J, CAO H, LI S, et al. Characterization of a new family 75 chitosanase from Aspergillus sp. W-2[J]. Int J Biol Macromol, 2015, 81: 362-369. doi: 10.1016/j.ijbiomac.2015.08.026
    [31]
    王琦, 崔阳, 刘进宝, 等. 壳聚糖酶的基因克隆表达及酶学性质研究[J]. 食品与生物技术学报, 2019, 38(1): 147-155. doi: 10.3969/j.issn.1673-1689.2019.01.022
    [32]
    王亚妮. GH46家族壳聚糖酶的结构解析与催化机理研究[D]. 上海: 华东理工大学, 2020: 14.
    [33]
    杨光, 盛军, 陈亚东, 等. 枯草芽孢杆菌壳聚糖酶基因在毕赤酵母中的表达及酶学性质[J]. 中国水产科学, 2017, 24(6): 1288-1297.
    [34]
    XING P, LIU D, YU W G, et al. Molecular characterization of an endo-type chitosanase from the fish pathogen Renibacterium sp. QD1[J]. J Mar Biol Assoc UK, 2014, 94(4): 681-686. doi: 10.1017/S0025315413001859
    [35]
    罗洒. 新型壳聚糖酶的高效表达及壳寡糖制备工艺研究[D]. 上海: 华东理工大学, 2019: 21.
    [36]
    GUPTA V, PRASANNA R, SRIVASTAVA A K, et al. Purification and characterization of a novel antifungal endo-type chitosanase from Anabaena fertilissima[J]. Ann Microbiol, 2012, 62(3): 1089-1098. doi: 10.1007/s13213-011-0350-2
    [37]
    CHEN X, ZHAi C, KANG L, et al. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatus in Pichia pastoris[J]. Biotechnol Lett, 2012, 34(4): 689-694. doi: 10.1007/s10529-011-0816-0
    [38]
    ZHOU Y, CHEN X, LI X, et al. Purification and characterization of a new cold-adapted and thermo-tolerant chitosanase from marine bacterium Pseudoalteromonas sp. SY39[J]. Molecules, 2019, 24(1): 183. doi: 10.3390/molecules24010183
    [39]
    MA C, LI X, YANG K, et al. Characterization of a new chitosanase from a marine Bacillus sp. and the anti-oxidant activity of its hydrolysate[J]. Mar Drugs, 2020, 18(2): 126. doi: 10.3390/md18020126
    [40]
    SUN H H, CAO R, LI L H, et al. Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis[J]. Process Biochem, 2018, 75: 146-151. doi: 10.1016/j.procbio.2018.09.021
    [41]
    鲁晶娣, 韦盘秋, 张兴猛, 等. 壳聚糖酶的研究进展[J]. 中国调味品, 2018, 43(12): 168-173. doi: 10.3969/j.issn.1000-9973.2018.12.033
    [42]
    LIANG T W, CHEN W T, LIN Z H, et al. An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation[J]. Int J Mol Sci, 2016, 17: 1302. doi: 10.3390/ijms17081302
    [43]
    马帅, 杨绍青, 刘翊昊, 等. 枯草芽孢杆菌壳聚糖酶在毕赤酵母中的高效表达及其酶解特性[J]. 食品科学, 2019, 40(14): 99-106. doi: 10.7506/spkx1002-6630-20180809-086
    [44]
    任晶, 赵华, 王虹, 等. 壳聚糖酶的分离纯化及其特性研究[J]. 天津科技大学学报, 2010, 25(6): 10-13. doi: 10.3969/j.issn.1672-6510.2010.06.003
    [45]
    AZEVEDO M, OLIVEIRA S T, SILVA C, et al. Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides[J]. Int J Biol Macromol, 2020, 165: 1482-1495. doi: 10.1016/j.ijbiomac.2020.09.221
  • Related Articles

    [1]LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238
    [2]CUI Qiaoyan, LI Laihao, CHEN Tianyu, CHEN Shengjun, HUANG Hui, ZHAO Yongqiang, LI Chunsheng. Improvement of gel strength of fermented tilapia surimi by Lactiplantibacillus plantarum through inhibition of protein hydrolysis[J]. South China Fisheries Science, 2024, 20(4): 1-10. DOI: 10.12131/20240060
    [3]WANG Xin, LI Mengzhe, ZHANG Wei, KONG Yunfei, XIONG Zhiyu, SHI Tong, BAO Yulong, YUAN Li, ZHANG Shiyong, WANG Minghua, CHEN Xiaohui, GAO Ruichang. Evaluation of gel properties of heat-induced surimi of Ictalurus punctatus from four genealogies[J]. South China Fisheries Science, 2023, 19(3): 164-172. DOI: 10.12131/20220198
    [4]GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003
    [5]QI Bo, YANG Shaoling, WANG Yueqi, HU Xiao, YANG Xianqing, PAN Chuang, LI Laihao, WANG Lunan. Effect of carboxymethyl agar on gel properties of tilapia surimi[J]. South China Fisheries Science, 2022, 18(2): 83-89. DOI: 10.12131/20210311
    [6]LIU Fangfang, LIN Wanling, HAN Yingxue, LI Laihao, LI Chunsheng, YANG Xianqing, ZHOU Wenguo. Basic properties of surimi gel of five freshwater fish[J]. South China Fisheries Science, 2021, 17(2): 114-121. DOI: 10.12131/20200220
    [7]YIN Min, XIE Chongyou, PU Deyong, HUANG Jing, WANG Zhijian. Microstructure of oogenesis in Sinibrama taeniatus[J]. South China Fisheries Science, 2019, 15(2): 127-132. DOI: 10.12131/20180181
    [8]YU Shanshan, WANG Qinglin, DONG Yunwei. Effects of parent acclimation and heat-shock at gastrula on growth and development of sea cucumber larvae[J]. South China Fisheries Science, 2015, 11(4): 46-52. DOI: 10.3969/j.issn.2095-0780.2015.04.007
    [9]ZHANG Yuemei, BAO Yulong, LUO Yongkang, WANG Hang. Changes of biogenic amines and quality indicators of grass carp (Ctenpharyngodon idellus) during chilled storage and effect on biogenic amines during thermal processing[J]. South China Fisheries Science, 2013, 9(4): 56-61. DOI: 10.3969/j.issn.2095-0780.2013.04.010
    [10]HUANG Jiansheng, LU Weihua, ZOU Weili, WANG Yao. Determination of residual polychlorinated biphenyls (PCBs) in blubber of whale by gel permeation chromatography and gas chromatography/mass spectrometry[J]. South China Fisheries Science, 2009, 5(4): 9-12. DOI: 10.3969/j.issn.1673-2227.2009.04.002
  • Cited by

    Periodical cited type(11)

    1. 张婷娟,吴风超,周纷. 市售生姜油对白鲢鱼糜凝胶品质特性的影响. 食品科技. 2025(01): 146-153 .
    2. 金铮,于婉莹,赵文宇,刘宇轩,祁立波,白帆,董秀萍. 鲟鱼重组鱼排3D打印特性的研究. 食品与发酵工业. 2024(03): 241-249 .
    3. 步营,程亚佳,厉寒,朱文慧,励建荣,李学鹏,季广仁. 发芽糙米匀浆对带鱼鱼糜凝胶特性的影响. 农业工程学报. 2024(18): 292-301 .
    4. 林雅文,刘佳晨,李艾靑,高月,励建荣,李学鹏. 不同干燥方法对南美白对虾理化特性和微观结构的影响. 食品科学. 2023(19): 74-81 .
    5. 邹怡茜,陈海强,潘卓官,肖苏尧,周爱梅. 超高压耦合热处理对鳙鱼鱼糜凝胶特性和水分迁移的影响. 现代食品科技. 2022(12): 272-280 .
    6. 宋春勇,洪鹏志,周春霞,陈艾霖,冯瑞. 大豆油和预乳化大豆油对金线鱼鱼糜凝胶品质的影响. 食品科学. 2021(08): 90-97 .
    7. 梁雯雯,杨天,郑志红,郭建,陈胜军,汪秋宽,丛海花. 升温方式对二段加热鲢鱼糜水分分布和品质的影响. 大连海洋大学学报. 2021(04): 646-652 .
    8. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    9. 郑静静,林琳,张艳凌,陆剑锋,姜绍通. 不同解冻方式对熟制小龙虾理化特性的比较分析. 现代食品科技. 2020(09): 188-194+108 .
    10. 李钊,李宁宁,刘玉,赵圣明,康壮丽,朱明明,计红芳,何鸿举,马汉军. 超高压对肌原纤维蛋白结构及其凝胶特性影响的研究进展. 食品与发酵工业. 2020(21): 304-309 .
    11. 王菲,隋好林. 不同水产养殖区福寿鱼的鱼糜凝胶品质研究. 江西水产科技. 2019(06): 10-14 .

    Other cited types(14)

Catalog

    Article views (523) PDF downloads (33) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return