MIAO Junkui, ZHANG Yating, ZHANG Shengguo, ZHENG Zhihong, WANG Zhipeng, WANG Haiying. Comparative research of plant hormones and alginate oligosaccharides in seaweed extracts by different processing methods[J]. South China Fisheries Science, 2022, 18(2): 142-149. DOI: 10.12131/20210287
Citation: MIAO Junkui, ZHANG Yating, ZHANG Shengguo, ZHENG Zhihong, WANG Zhipeng, WANG Haiying. Comparative research of plant hormones and alginate oligosaccharides in seaweed extracts by different processing methods[J]. South China Fisheries Science, 2022, 18(2): 142-149. DOI: 10.12131/20210287

Comparative research of plant hormones and alginate oligosaccharides in seaweed extracts by different processing methods

More Information
  • Received Date: October 06, 2021
  • Revised Date: December 07, 2021
  • Available Online: February 19, 2022
  • In seaweed (Laminaria japonica) extraction processing, biological enzymolysis processing has been an ideal alternative to traditional chemical extraction method. In order to evaluate the extraction effects of three different processing methods, we treated the seaweed by chemical processing (CP), enzymolysis processing (EP) as well as combined enzymolysis and microbial fermentation processing (CEMP). Besides, we compared the contents of plant hormones and algiante oligosaccharides in addition to the molecular mass distribution in three kinds of seaweed extracts. We determined the alginate content, molecular mass of alginate oligosaccharide and plant hormones contents by m-hydroxydiphenyl method, HPLC and HPLC-MS, respectively. The results show that the CP method had the lowest extraction rate of alginate oligosaccharides (41.99%) with molecular mass of 200−400 D, while the EP method and CEMP method had relatively higher extraction rate of alginate oligosaccharides (90.75% and 82.21%) with molecular mass of 200−1 600 D. Indoleacetic acid (IAA) was the most abundant plant hormone among all the three extracts, ranging from 2.64 to 64.59 ng·g−1, followed by jasmonic acid (JA, 0.05−13.09 ng·g−1). The plant hormone content of the extract by CEMP method was higher than that of the other two extracts. Based on the comprehensive comparison of extraction rate of plant hormones and alginate oligosaccharides, the CEMP method is more suitable for the preparation of agricultural seaweed extract than the CP method and EP methods.
  • [1]
    马德源, 马云飞, 于金慧, 等. 海藻肥在现代农业生产中的研究进展[J]. 山东农业科学, 2020, 52(8): 145-151.
    [2]
    KHAN W, RAYIRATH U P, SUBRAMANIAN S, et al. Seaweed extracts as biostimulants of plant growth and development[J]. J Plant Growth Regul, 2009, 28(4): 386-399. doi: 10.1007/s00344-009-9103-x
    [3]
    SHARMA H S S, FLEMING C, SELBY C, et al. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses[J]. J Appl Phycol, 2014, 26(1): 465-490. doi: 10.1007/s10811-013-0101-9
    [4]
    王修康, 马金昭, 孙瑶, 等. 新型海藻肥对玉米生长发育及其产量的影响[J]. 云南农业大学学报(自然科学), 2021, 36(3): 524-531.
    [5]
    孙晓, 尹皓婵, 张占田, 等. 海带提取物对水稻产量及养分利用的影响[J]. 江苏农业科学, 2020, 48(16): 100-103.
    [6]
    段永华, 邓成忠, 左丽娟, 等. 海藻肥不同施用量对马铃薯产量和效益的影响[J]. 云南农业科技, 2021(1): 6-7. doi: 10.3969/j.issn.1000-0488.2021.01.003
    [7]
    刘金萍, 刘艳丽, 邵雨晴, 等. 海藻复合肥对夏玉米产量及养分吸收利用的影响[J]. 河南农业大学学报, 2021, 55(3): 429-434.
    [8]
    于会丽, 徐变变, 徐国益, 等. 海带提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量[J]. 植物营养与肥料学报, 2021, 27(9): 1656-1664. doi: 10.11674/zwyf.2021058
    [9]
    郭蓉, 龚一富, 姜洁, 等. 海藻生物肥对火龙果生长、产量和品质的影响[J]. 核农学报, 2018, 32(12): 2455-2461. doi: 10.11869/j.issn.100-8551.2018.12.2455
    [10]
    CHEN D, ZHOU W, YANG J, et al. Effects of seaweed extracts on the growth, physiological activity, cane yield and sucrose content of sugarcane in China[J]. Front Plant Sci, 2021, 12: 659130.
    [11]
    LAURA G C, FERNANDO S, GUSTAVO H, et al. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata)[J]. J Appl Phycol, 2017, 29(5): 2479-2488. doi: 10.1007/s10811-017-1082-x
    [12]
    刘海燕, 李岩, 陈建伟. 海藻多糖对玉米种子萌发及幼苗生理生化特性的影响[J]. 现代农业科技, 2019(18): 3-5. doi: 10.3969/j.issn.1007-5739.2019.18.002
    [13]
    崔维香. 海藻提取液对种子萌发、幼苗生长和果实品质的影响[D]. 舟山: 浙江海洋大学, 2017: 1-3.
    [14]
    YAO Y, WANG X, CHEN B, et al. Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.)[J]. ACS Omega, 2020, 5(8): 4242-4249. doi: 10.1021/acsomega.9b04155
    [15]
    ZHANG Y, YIN H, ZHAO X, et al. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling[J]. Carbohydr Polym, 2014, 113: 446-454. doi: 10.1016/j.carbpol.2014.06.079
    [16]
    XU X, IWAMOTO Y, KITAMURA Y, et al. Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants[J]. Biosci Biotech Bioch, 2003, 67(9): 2022-2025. doi: 10.1271/bbb.67.2022
    [17]
    WANG Z P, WANG P K, MA Y, et al. Laminaria japonica hydrolysate promotes fucoxanthin accumulation in Phaeodactylum tricornutum[J]. Bioresour Technol, 2022, 344: 126117.
    [18]
    RAYIRATH P, BENKEL B, MARK HODGES D, et al. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana[J]. Planta, 2009, 230(1): 135-147. doi: 10.1007/s00425-009-0920-8
    [19]
    ALI N, FARRELL A, RAMSUBHAG A, et al. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions[J]. J Appl Phycol, 2016, 28(2): 1353-1362. doi: 10.1007/s10811-015-0608-3
    [20]
    ESSERTI S, SMAILI A, RIFAI L A, et al. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato[J]. J Appl Phycol, 2017, 29(2): 1081-1093. doi: 10.1007/s10811-016-0996-z
    [21]
    管宇翔, 韩西红, 张琳, 等. 海藻肥对黄瓜抗旱性的影响及机理研究试验[J]. 种子科技, 2020, 38(21): 3-5. doi: 10.3969/j.issn.1005-2690.2020.21.003
    [22]
    崔丹丹, 杨锦, 耿银银, 等. 海藻肥对菜心抗旱性的影响及其机理探究[J]. 植物营养与肥料学报, 2021, 27(7): 1185-1197. doi: 10.11674/zwyf.20567
    [23]
    DO R R V, FARIAS D S A L, ALVES D S A, et al. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L. ) seaweed extract[J]. Plant Physiol Bioch, 2021, 158: 228-243. doi: 10.1016/j.plaphy.2020.11.008
    [24]
    杨春妹, 杨锦, 崔丹丹, 等. 海带酶解和菌解工艺优化及其降解产物对菜心抗逆性的影响[J]. 植物营养与肥料学报, 2021, 27(8): 1432-1444.
    [25]
    FORNES F, SÁNCHEZ-PERALES M, GUARDIOLA J L. Effect of a seaweed extract on the productivity of 'de nules' clementine mandarin and navelina orange[J]. Bot Mar, 2002, 45(5): 486-489.
    [26]
    DEPUYDT S, HARDTKE C S. Hormone signalling crosstalk in plant growth regulation[J]. Curr biol, 2011, 21(9): 365-373. doi: 10.1016/j.cub.2011.03.013
    [27]
    LI M, MOU H, KONG Q, et al. Bacteriostatic effect of lipopeptides from Bacillus subtilis N-2 on Pseudomonas putida using soybean meal by solid-state fermentation[J]. MLST, 2020, 2(2): 172-180.
    [28]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 23.
    [29]
    BIXLER H J, PORSE H, OLIVEIRA E, et al. A decade of change in the seaweed hydrocolloids industry[J]. J Appl Phycol, 2011, 23(3): 321-335. doi: 10.1007/s10811-010-9529-3
    [30]
    张兰婷, 韩立民. 我国海藻产业发展面临的问题及政策建议[J]. 中国渔业经济, 2017, 35(6): 89-95. doi: 10.3969/j.issn.1009-590X.2017.06.012
    [31]
    CRAIGIE J S, OLIVEIRA E, CABELLO-PASINI A, et al. Seaweed extract stimuli in plant science and agriculture[J]. J Appl Phycol, 2011, 23(3): 371-393. doi: 10.1007/s10811-010-9560-4
    [32]
    FALKEBORG M, CHEONG L Z, GIANFICO C, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation[J]. Food Chem, 2014, 164: 185-194. doi: 10.1016/j.foodchem.2014.05.053
    [33]
    GAO J, LIN L, SUN B, et al. Comparison study on polysaccharide fractions from Laminaria japonica: structural characterization and bile acid binding capacity[J]. J Agric Food Chem, 2017, 65(44): 9790-9798. doi: 10.1021/acs.jafc.7b04033
    [34]
    KIM H S, LEE C, LEE E Y. Alginate lyase: structure, property, and application[J]. Biotechnol Bioproc E, 2011, 16(5): 843-851. doi: 10.1007/s12257-011-0352-8
    [35]
    ZHU B, YIN H. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications[J]. Bioengineered, 2015, 6(3): 125-131. doi: 10.1080/21655979.2015.1030543
    [36]
    AZIZI N, NAJAFPOUR G, YOUNESI H. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator[J]. Int J Biol Macromol, 2017, 101: 1029-1040. doi: 10.1016/j.ijbiomac.2017.03.184
    [37]
    LIU L, WANG Z, ZHENG Z, et al. Secretory expression of an alkaline alginate lyase with heat recovery property in Yarrowia lipolytica[J]. Front Plant Sci, 2021, 12: 710533.
    [38]
    GUPTA V, KUMAR M, BRAHMBHATT H, et al. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method[J]. Plant Physiol Bioch, 2011, 49(11): 1259-1263. doi: 10.1016/j.plaphy.2011.08.004
    [39]
    刘雪梅, 赵鹏, 徐继林, 等. LC-MS同时测定大型海藻中9个植物激素[J]. 药物分析杂志, 2012, 32(10): 1747-1752.
    [40]
    FILISETTI-COZZI T M, CARPITA N C. Measurement of uronic acids without interference from neutral sugars[J]. Anal Biochem, 1991, 197(1): 157-162. doi: 10.1016/0003-2697(91)90372-Z
    [41]
    STIRK W A, NOVÁK O, STRNAD M, et al. Cytokinins in macroalgae[J]. Plant Growth Regul, 2003, 41(1): 13-24. doi: 10.1023/A:1027376507197
    [42]
    STIRK W A, TARKOWSKÁ D, TUREČOVÁ V, et al. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima[J]. J Appl Phycol, 2014, 26(1): 561-567. doi: 10.1007/s10811-013-0062-z
    [43]
    SUBRAMANIAN S, SANGHA J S, GRAY B A, et al. Extracts of the marine brown macroalga, Ascophyllum nodosum, induce jasmonic acid dependent systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 and Sclerotinia sclerotiorum[J]. Eur J Pathol, 2011, 131(2): 237-248. doi: 10.1007/s10658-011-9802-6
    [44]
    JAYARAJ J, WAN A, RAHMAN M, et al. Seaweed extract reduces foliar fungal diseases on carrot[J]. Crop Prot, 2008, 27(10): 1360-1366. doi: 10.1016/j.cropro.2008.05.005
    [45]
    马晓颖, 杨镇, 宋艳雨. 等. 高效毛细管电泳-二极管阵列检测法测定微生物代谢产物中的植物激素含量[J]. 江苏农业科学, 2017, 45(8): 169-172.
    [46]
    BALDERAS-RUÍZ K A, BUSTOS P, SANTAMARIA R I, et al. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion[J]. AMB Expr, 2020, 10(1): 163-172. doi: 10.1186/s13568-020-01101-8
    [47]
    WARGACKI A, LEONARD E, LAKSHMANASWAMY A, et al. An engineered microbial platform for direct biofuel production from brown macroalgae[J]. Science, 2012, 335(6066): 308-313. doi: 10.1126/science.1214547
    [48]
    LI S, WANG Z, WANG L, et al. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica[J]. Bioresour Technol, 2019, 281: 84-89. doi: 10.1016/j.biortech.2019.02.056
    [49]
    HUANG L, ZHOU J, LI X, et al. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20[J]. J Ind Microbiol Biotechnol, 2013, 40(1): 113-122. doi: 10.1007/s10295-012-1210-1
    [50]
    INOUE A, TAKADONO K, NISHIYAMA R, et al. Characterization of an alginate lyase, FlAlyA, from Flavobacterium sp. strain UMI-01 and its expression in Escherichia coli[J]. Mar Drugs, 2014, 12(8): 4693-4712. doi: 10.3390/md12084693
    [51]
    PENG Q, ZHANG M, GAO L, et al. Effects of alginate oligosaccharides with different molecular weights and guluronic to mannuronic acid ratios on glyceollin induction and accumulation in soybeans[J]. J Food Sci Technol, 2018, 55(5): 1850-1858. doi: 10.1007/s13197-018-3101-6
    [52]
    CHANDÍA N P, MATSUHIRO B, MEJÍAS E, et al. Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction[J]. J Appl Phycol, 2004, 16(2): 127-133. doi: 10.1023/B:JAPH.0000044778.44193.a8
    [53]
    BAKAEVA M D, CHETVERIKOV S P, KORSHUNOVA T Y, et al. The new bacterial strain Paenibacillus sp. IB-1: a producer of exopolysaccharide and biologically active substances with phytohormonal and antifungal activities[J]. Prikl Biokhim Mikrobiol, 2017, 53(2): 201-208.

Catalog

    Article views (674) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return