ZHOU Wei, WU Hui, HUANG Jingjing, ZHAO Xixing, WANG Jingwen, WANG Jinguo. Effects of elevated CO2 and photoperiod on growth and physiological performance of seedlings of Ulva prolifera[J]. South China Fisheries Science, 2022, 18(5): 30-38. DOI: 10.12131/20210278
Citation: ZHOU Wei, WU Hui, HUANG Jingjing, ZHAO Xixing, WANG Jingwen, WANG Jinguo. Effects of elevated CO2 and photoperiod on growth and physiological performance of seedlings of Ulva prolifera[J]. South China Fisheries Science, 2022, 18(5): 30-38. DOI: 10.12131/20210278

Effects of elevated CO2 and photoperiod on growth and physiological performance of seedlings of Ulva prolifera

More Information
  • Received Date: September 25, 2021
  • Revised Date: December 23, 2021
  • Accepted Date: February 04, 2022
  • Available Online: February 20, 2022
  • Ulva prolifera seedlings, which are the main component of the natural "seed bank" of green tide algae, play an important role in the occurrence and development of green tide. In order to understand the causes of the early outbreak of the green tide of U. prolifera and provide basic data for its early warning and prevention, we studied the growth and physiological responses of seedlings after the seedlings being cultured at two different CO2 levels (LC: 400 μatm; HC: 1 000 μatm) in combination with three different photoperiods (LL: 10 L∶14 D; ML: 12 L∶12 D; HL: 14 L∶10 D). The relative growth rate of seedlings were significantly enhanced by elevated CO2 under three light-dark regimes (P<0.05). The seedlings showed an obvious higher growth rate and a lower dark respiration rate (Rd) by HL treatment than by ML treatment. The impact of elevated CO2 and illumination time on the photochemical performance was not obvious. Elevated CO2 and longer illumination time had negative effects on chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Car) content. The results suggest that the growth and physiological of seedlings are significantly influenced by elevated CO2 and photoperiod (P<0.05). HC and HL promoted the growth of its seedlings and increased the possibility of outbreak of green tide caused by U. prolifera. This study provides basic data for indepth understanding of the causes of green tide algae outbreak.
  • [1]
    ZHANG C, LU J, WU J, et al. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera[J]. Sci Total Environ, 2017, 609: 1322-1328. doi: 10.1016/j.scitotenv.2017.07.187
    [2]
    LIN A P, SHEN S D, WANG J W, et al. Reproduction diversity of Enteromorpha prolifera[J]. J Integr Plant Biol, 2008, 50(5): 622-629. doi: 10.1111/j.1744-7909.2008.00647.x
    [3]
    GAO S, CHEN X Y, YI Q Q, et al. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation[J]. PLOS ONE, 2010, 5(1): e8571. doi: 10.1371/journal.pone.0008571
    [4]
    TAYLOR R, FLETCHER R L, RAVEN J A. Preliminary studies on the growth of selected "green tide" algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate[J]. Bot Mar, 2001, 44(4): 327-336.
    [5]
    刘峰, 逄少军, 单体锋, 等. 一种新的海水中石莼属海藻显微阶段个体数定量方法及在黄海绿潮爆发过程中的应用[J]. 科学通报, 2010, 55(6): 468-473.
    [6]
    GAO G, BEARDALL J, BAO M L, et al. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza[J]. Biogeoences, 2018, 15(11): 3409-3420.
    [7]
    GATTUSO J P, MAGNAN A, BILLÉ R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015, 349(6243): 45-55.
    [8]
    ZEEBE R E, WOLF-GLADROW D. CO2 in seawater: equilibrium, kinetics, isotopes[J]. J Mar Syst, 2002, 36(3): 269-270.
    [9]
    CALDEIRA K, WICKETT M E. Oceanography: anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a
    [10]
    DRING M J. Photocontrol of development in algae[J]. Annu Rev Plant Biol, 1988, 39(1): 157-174. doi: 10.1146/annurev.pp.39.060188.001105
    [11]
    ROST B, RIEBESELL U, SULTEMEYER D. Carbon acquisition of marine phytoplankton: effect of photoperiod length[J]. Limnol Oceanogr, 2006, 51(1): 12-20. doi: 10.4319/lo.2006.51.1.0012
    [12]
    ROST B, RIEBESELL U, BURKHARDT S, et al. Carbon acquisition of bloom-forming marine phytoplankton[J]. Limnol Oceanogr, 2003, 48(1): 55-67. doi: 10.4319/lo.2003.48.1.0055
    [13]
    GIORDANO M, BEARDALL J, RAVEN J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annu Rev Plant Biol, 2005, 56(1): 99-131. doi: 10.1146/annurev.arplant.56.032604.144052
    [14]
    YUE F R, GAO G, MA J, et al. Future CO2-induced seawater acidification mediates the physiological performance of a green alga Ulva linza in different photoperiods[J]. PeerJ, 2019, 7(1): 1-19.
    [15]
    GAO G, QU L M, XU T P, et al. Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress[J]. ICES J Mar Sci, 2019(7): 2437-2445.
    [16]
    BARAKAT K M, EL-SAYED H S, KHAIRY H M, et al. Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its associated microbiota to the ocean acidification[J]. Saudi J Biol Sci, 2021, 28(1045): 5106-5114.
    [17]
    CHEN B B, LIN L D, MA Z L, et al. Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions[J]. Aquacult Int, 2019, 27: 721-733. doi: 10.1007/s10499-019-00360-y
    [18]
    LI Y H, ZHONG J L, ZHENG M S, et al. Photoperiod mediates the effects of elevated CO2 on the growth and physiological performance in the green tide alga Ulva prolifera[J]. Mar Environ Res, 2018, 141: 24-29. doi: 10.1016/j.marenvres.2018.07.015
    [19]
    ZUCCHI M R, NECCHIJR O. Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture[J]. Phycol Res, 2001, 49(2): 103-114. doi: 10.1111/j.1440-1835.2001.tb00240.x
    [20]
    GREEN L A, NEEFUS C D. Effects of temperature, light level, and photoperiod on the physiology of Porphyra umbilicalis Kützing from the Northwest Atlantic, a candidate for aquaculture[J]. J Appl Phycol, 2016, 28: 1815-1826. doi: 10.1007/s10811-015-0702-6
    [21]
    CHU Y, LIU Y, LI J, et al. Effects of elevated pCO2 and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae, Phaeophyta)[J]. PeerJ, 2019, 7(4): e8040.
    [22]
    EILERS P, PEETERS J. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecol Model, 1988, 42(3/4): 199-215.
    [23]
    WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. J Plant Physiol, 1994, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2
    [24]
    KHOYI Z, SEYFABADI J, RAMEZANPOUR Z. Effects of light intensity and photoperiod on the growth rate, chlorophyll a and β-carotene of freshwater green micro alga Chlorella vulgaris[J]. Comp Biochem Phys A, 2009, 153(2): S215.
    [25]
    KENDIRLIOGLU G, AGIRMAN N, CETIN A K. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris[J]. Turk J Sci Technol, 2015, 10(2): 7-10.
    [26]
    GAO G, CLARE A S, ROSE C, et al. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios[J]. Mar Pollut Bull, 2017, 114(1): 439-447. doi: 10.1016/j.marpolbul.2016.10.003
    [27]
    YOUNG C S, GOBLER C J. Ocean acidification accelerates the growth of two bloom-forming macroalgae[J]. PLOS ONE, 2016, 11(5): e0155152. doi: 10.1371/journal.pone.0155152
    [28]
    张磊, 李航霄, 吴敏, 等. 不同温度下海水酸化对中肋骨条藻光合生理特性的影响[J]. 江苏海洋大学学报 (自然科学版), 2020, 29(1): 1-7.
    [29]
    GAO G, LIU Y M, LI X S, et al. Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera[J]. Environ Exp Bot, 2016, 135: 63-72.
    [30]
    GAO K S, XU J T, GAO G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nat Clim Change, 2012, 2(7): 519-523. doi: 10.1038/nclimate1507
    [31]
    RAVEN J A, JOHN B, PATRICIA S B. The possible evolution and future of CO2-concentrating mechanisms[J]. J Exp Bot, 2017, 68(14): 3701-3716. doi: 10.1093/jxb/erx110
    [32]
    GAO G, LIU Y M, LI X S, et al. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress[J]. PLOS ONE, 2016, 11(12): e0169040. doi: 10.1371/journal.pone.0169040
    [33]
    高坤山. 海洋酸化正负效应: 藻类的生理学响应[J]. 厦门大学学报(自然科学版), 2011, 50(2): 411-417.
    [34]
    ZOU D H. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaedphyta)[J]. Aquaculture, 2005, 250(3/4): 726-735.
    [35]
    WU Y P, GAO K S, RIEBESELL U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J]. Biogeosciences, 2010, 7(9): 2915-2923. doi: 10.5194/bg-7-2915-2010
    [36]
    JIN P, WANG T F, LIU N N, et al. Ocean acidification increases the accumulation of toxic phenolic compounds across trophiclevels[J]. Nat Commun, 2015, 6: 8714. doi: 10.1038/ncomms9714
  • Related Articles

    [1]LI Beixing, LI Aoxue, DONG Jianyu, LYU Shaoliang, WANG Xuefeng. Intertidal macrozoobenthic community structure and its disturbed state in Zhanjiang Bay[J]. South China Fisheries Science, 2023, 19(2): 12-20. DOI: 10.12131/20220199
    [2]GENG Ping, ZHANG Kui, CHEN Zuozhi, XU Youwei, SUN Mingshuai. Interannual change in biological traits and exploitation rate of Decapterus maruadsi in Beibu Gulf[J]. South China Fisheries Science, 2018, 14(6): 1-9. DOI: 10.12131/20180106
    [3]SU Wen, HAN Weidong, XIE Enyi, WANG Hui, XU Risheng. Study on conservation of Bostrychus sinensis in buried pipe system of mangrove area in Zhanjiang[J]. South China Fisheries Science, 2018, 14(4): 66-71. DOI: 10.3969/j.issn.2095-0780.2018.04.008
    [4]LI Ting, ZHU Changbo, LI Junwei, CHEN Suwen, XIE Xiaoyong, LIU Yong. Water quality assessment for Hailing Bay estuary, China[J]. South China Fisheries Science, 2018, 14(3): 49-57. DOI: 10.3969/j.issn.2095-0780.2018.03.006
    [5]SU Li, HUANG Zirong, CHEN Zuozhi. Characteristics of phytoplankton community in Shuidong Bay in spring and autumn[J]. South China Fisheries Science, 2015, 11(4): 27-33. DOI: 10.3969/j.issn.2095-0780.2015.04.004
    [6]SUN Dianrong, LI Yuan, WANG Xuehui, WANG Yuezhong, WU Qia′er. Biological characteristics and stock changes of Loligo edulis in Beibu Gulf, South China Sea[J]. South China Fisheries Science, 2011, 7(2): 8-13. DOI: 10.3969/j.issn.2095-0780.2011.02.002
    [7]ZHANG Peng, YANG Lin, ZHANG Xufeng, TANG Yongguang. The present status and prospect on exploitotion of tuna and squid fishery resources in South China Sea[J]. South China Fisheries Science, 2010, 6(1): 68-74. DOI: 10.3969/j.issn.1673-2227.2010.01.012
    [8]LI Xu-jie, REN Yi-ping, XU Bin-duo, MA Guang-wen. The growth characteristics of Penaeus japonicus in the Guzhenkou Bay of Qingdao[J]. South China Fisheries Science, 2008, 4(4): 26-29.
    [9]LU Zhenbin, CAI Qinghai, ZHANG Xuemin. Estimation of the aquaculture pollution to water body in Tongan Bay[J]. South China Fisheries Science, 2007, 3(1): 54-61.
    [10]HUANG Zirong, ZHANG Hanhua, ZHONG Zhihui, ZHU Changbo, PENG Kunlun. Species composition and stock density of necton in the adjacent waters of Zhanjiang port[J]. South China Fisheries Science, 2006, 2(5): 51-55.
  • Cited by

    Periodical cited type(1)

    1. 阙祥尧,张桂芳,余建芳,吴子君,曹海鹏,安建,刘嵘. 黄尾鲴冬片高效生态培育试验. 江西水产科技. 2023(01): 7-9 .

    Other cited types(4)

Catalog

    Article views (644) PDF downloads (49) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return