ZHANG Kui. Fish stock assessment based on abundance index and resilience: a case study of largehead hairtail in Sea of Japan and East China Sea[J]. South China Fisheries Science, 2022, 18(4): 1-9. DOI: 10.12131/20210213
Citation: ZHANG Kui. Fish stock assessment based on abundance index and resilience: a case study of largehead hairtail in Sea of Japan and East China Sea[J]. South China Fisheries Science, 2022, 18(4): 1-9. DOI: 10.12131/20210213

Fish stock assessment based on abundance index and resilience: a case study of largehead hairtail in Sea of Japan and East China Sea

More Information
  • Received Date: August 04, 2021
  • Revised Date: September 14, 2021
  • Accepted Date: October 18, 2021
  • Available Online: May 07, 2022
  • In order to understand the exploitation status of largehead hairtail (Trichiurus japonicus) fisheries in the Sea of Japan and the East China Sea, we used a fishery assessment model based on abundance index (Abundance maximum sustainable yields, AMSY) to assess the two fisheries. The results show that during most of the 1990s and 2000s, the relative biomass levels (B/BMSY) of the largehead hairtail fisheries in the two seas were lower than 1, but the relative fishing mortality levels (F/FMSY) were higher than 1, which indicates an overfished state. The estimated parameters such as relative maximum sustainable yield (MSYq) and relative fishing mortality at MSY level (FMSY) of the AMSY model were more sensitive to different prior distribution ranges of intrinsic rate of increase (r), while the estimated biological reference points (BRPs), i.e., F/FMSY and B/BMSY were more sensitive to the lower limit of different prior distribution ranges of relative biomass level (Bt/k). AMSY can estimate the BRPs of the target fisheries under MSY framework using only catch per unit effort (CPUE) data, prior information of r and relative biomass level for a specific year. AMSY is appropriate for fishery stock assessment in the sea areas where lack statistical data of catches.
  • [1]
    PAULY D, ZELLER D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining[J]. Nat Commun, 2016, 7: 10244. doi: 10.1038/ncomms10244
    [2]
    KLEISNER K, ZELLER D, FROESE R, et al. Using global catch data for inferences on the world's marine fisheries[J]. Fish Fish, 2013, 14(3): 293-311. doi: 10.1111/j.1467-2979.2012.00469.x
    [3]
    MAUNDER M N, PUNT A E. A review of integrated analysis in fisheries stock assessment[J]. Fish Res, 2013, 142: 61-74. doi: 10.1016/j.fishres.2012.07.025
    [4]
    COSTELLO C, OVANDO D, HILBORN R, et al. Status and solutions for the world's unassessed fisheries[J]. Science, 2012, 338(6106): 517-520. doi: 10.1126/science.1223389
    [5]
    FROESE R, DEMIREL N, CORO G, et al. Estimating fisheries reference points from catch and resilience[J]. Fish Fish, 2017, 18: 506-526. doi: 10.1111/faf.12190
    [6]
    FROESE R, WINKER H, CORO G, et al. A new approach for estimating stock status from length frequency data[J]. ICES J Mar Sci, 2018, 75(6): 2004-2015. doi: 10.1093/icesjms/fsy078
    [7]
    FROESE R, WINKER H, CORO G, et al. Estimating stock status from relative abundance and resilience[J]. ICES J Mar Sci, 2020, 77(2): 527-538. doi: 10.1093/icesjms/fsz230
    [8]
    张魁, 廖宝超, 许友伟, 等. 基于渔业统计数据的南海区渔业资源可捕量评估[J]. 海洋学报, 2017, 39(8): 25-33.
    [9]
    ZHANG K, ZHANG J, XU Y, et al. Application of a catch-based method for stock assessment of three important fisheries in the East China Sea[J]. Acta Oceanol Sin, 2018, 37(2): 102-109. doi: 10.1007/s13131-018-1173-9
    [10]
    JI Y, LIU Q, LIAO B, et al. Estimating biological reference points for largehead hairtail (Trichiurus lepturus) fishery in the Yellow Sea and Bohai Sea[J]. Acta Oceanol Sin, 2019, 38(10): 20-26. doi: 10.1007/s13131-019-1343-4
    [11]
    WANG X, QIU Y, DU F, et al. Population parameters and dynamic pool models of commercial fishes in the Beibu Gulf, northern South China Sea[J]. Chin J Oceanol Limn, 2012, 30(1): 102-117.
    [12]
    王淼娣, 王雪辉, 孙典荣, 等. 基于长度贝叶斯生物量估算法评估北部湾大头白姑鱼资源状况[J]. 南方水产科学, 2021, 17(2): 20-27. doi: 10.12131/20200202
    [13]
    ZHANG L, REN Q, LIU M, et al. Fishery stock assessments in the Min River Estuary and Its adjacent waters in Southern China using the Length-Based Bayesian Estimation (LBB) method[J]. Front Mar Sci, 2020, 7: 507. doi: 10.3389/fmars.2020.00507
    [14]
    ZHANG K, ZHANG J, SHI D, et al. Assessment of coral reef fish stocks from the Nansha Islands, South China Sea, using length-based Bayesian biomass estimation[J]. Front Mar Sci, 2021, 7: 610707. doi: 10.3389/fmars.2020.610707
    [15]
    徐兆礼, 陈佳杰. 再议东黄渤海带鱼种群划分问题[J]. 中国水产科学, 2016, 23(5): 1185-1196.
    [16]
    李发凯. 东黄海带鱼资源变动的统计研究[D]. 舟山: 浙江海洋大学, 2016: 9-17.
    [17]
    王垚. 伏季休渔条件下东海带鱼资源评估[D]. 舟山: 浙江海洋学院, 2010: 14-19.
    [18]
    张魁, 陈作志. 应用贝叶斯状态空间建模对东海带鱼的资源评估[J]. 中国水产科学, 2015, 22(5): 1015-1026.
    [19]
    KAO W, TOMIYASU M, TAKAHASHI, R, et al. Spatial and temporal distribution of hairtail (Trichiurus japonicus) in the Bungo Channel, Japan[J]. J Mar Acous Soc Jpn, 2015, 42(4): 167-176. doi: 10.3135/jmasj.42.167
    [20]
    WANG Y, LIU Q. Applications of CEDA and ASPIC computer packages to the hairtail (Trichiurus japonicus) fishery in the East China Sea[J]. Chin J Oceanol Limnol, 2013, 31(1): 92-96. doi: 10.1007/s00343-013-2073-7
    [21]
    凌建忠, 李圣法, 严利平, 等. 基于Beverton-Holt 模型的东海带鱼资源利用与管理[J]. 应用生态学报, 2008, 19(1): 178-182.
    [22]
    王跃中, 贾晓平, 林昭进, 等. 东海带鱼渔获量对捕捞压力和气候变动的响应[J]. 水产学报, 2011, 35(12): 1881-1889.
    [23]
    张魁, 刘群, 廖宝超, 等. 渔业数据失真对两种非平衡剩余产量模型评估结果的影响比较[J]. 水产学报, 2018, 42(9): 1378-1389.
    [24]
    李纲, 陈新军, 官文江. 基于贝叶斯方法的东、黄海鲐资源评估及管理策略风险分析[J]. 水产学报, 2010, 34(5): 740-750.
    [25]
    SILLIMAN R P, GUTSELL J S. Experimental exploitation of fish populations[J]. Fish B-NOAA, 1958, 58: 214-252.
  • Related Articles

    [1]JIANG Yongsheng, ZHOU Shanshan, ZHOU Yongdong, XU Kaida, ZHEN Xiaoman, JIAO Lishi, ZHANG Qiuhong, QU Yao. Effects of water temperature in transportation on mortality and physiological indicators of Sepiella japonica[J]. South China Fisheries Science, 2024, 20(4): 107-115. DOI: 10.12131/20240089
    [2]LI Haohua, LIAO Tao, BAI Chan, QIU Liang, ZU Xiaoyan, LI Hailan, CHEN Liping, XIONG Guangquan, WANG Juguang. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus[J]. South China Fisheries Science, 2024, 20(2): 160-171. DOI: 10.12131/20230154
    [3]WANG Chaoqi, XU Bingjie, WU Tao, YANG Ling, LIU Yiming, PAN Ying. Comparative study on breeding density of Lutraria sieboldii in nursery culture and adult culture in Beibu Gulf beaches of Guangxi Province, China[J]. South China Fisheries Science, 2023, 19(4): 105-115. DOI: 10.12131/20230046
    [4]CHEN Xu, ZHAO Wang, CHEN Mingqiang, TAN Chunming, YU Gang. Effects of salinity stress on oxygen consumption rate, ammonia excretion rate and immune-related enzyme activities of Strombus luhuanus[J]. South China Fisheries Science, 2022, 18(5): 160-165. DOI: 10.12131/20210346
    [5]CHEN Xiaojiang, XIONG Liling, WU Jiangu, QI Lu, WANG Quan. Effects of anesthetic MS-222 and eugenol on oxygen consumption rate and ammonia excretion rate of Sinogastromyzon szechuanensis[J]. South China Fisheries Science, 2020, 16(4): 69-74. DOI: 10.12131/20190261
    [6]CAO Xiaocong, HUANG Xiaolin, SUN Xinyi, LIN Heizhao, SHU Hu, YANG Yukai, HUANG Zhong. Anaesthesia effects of eugenol on juvenile Siganus oramin[J]. South China Fisheries Science, 2019, 15(3): 50-56. DOI: 10.12131/20180232
    [7]LI Dandan, CHEN Pimao, ZHU Aiyi, YUAN Huarong, CHEN Wenjing, LONG Xinling, WANG Wenjie. Recovery level of metabolic enzymes in juvenile black sea bream (Sparus macrocephlus) after exhaustive exercise[J]. South China Fisheries Science, 2018, 14(6): 59-65. DOI: 10.12131/20180064
    [8]LI Dandan, CHEN Pimao, ZHU Aiyi, YUAN Huarong, FENG Xue, WANG Wenjie, CHEN Wenjing, LONG Xinling. Effect of transport density on survival rate of black seabream sealed in oxygenated plastic bag during stock enhancement[J]. South China Fisheries Science, 2018, 14(5): 36-44. DOI: 10.3969/j.issn.2095-0780.2018.05.005
    [9]YANG Qibin, YE Le, WEN Weigeng, WANG Yu, JIANG Shigui. Effect of salinity on molting, survival, growth and feed conversion rate of juvenile Penaeus monodon[J]. South China Fisheries Science, 2008, 4(1): 16-21.
    [10]TANG Xianming, SUI Zhao, TIAN Jingbo, WANG Guofu. Effects of salinity on metabolic rate of juvenile turbot (Scophamus maximus)[J]. South China Fisheries Science, 2006, 2(4): 54-58.
  • Cited by

    Periodical cited type(11)

    1. 王大伟,邢盈,蒋成宇,胡淼,赵金良. 放养密度对鳜幼鱼HPI轴激素、应激酶活力及呼吸频率的影响. 淡水渔业. 2025(02): 26-32 .
    2. 何静怡,魏涯,岑剑伟,郝淑贤,陈胜军,黄卉,赵永强,王悦齐,杨少玲,林织. 基于梯度降温的草鱼暂养及有水保活运输技术. 食品科学. 2024(04): 271-278 .
    3. 何静怡,郑伟,黄卉,岑剑伟,赵永强,王田,魏涯,郝淑贤,杨少玲,陈琛. 不同温度、盐度条件对草鱼暂养及应激保活的影响. 大连海洋大学学报. 2024(04): 597-605 .
    4. 梁雪莹,郑晓婷,陈秋羽,谢静怡,董宏标,李勇,杨金龙,陈成勋,张家松. 模拟运输胁迫对牛蛙幼蛙生理机能的影响. 广东海洋大学学报. 2024(06): 118-126 .
    5. 刘浩,李洁,李亚军,康鹏天,张国维,邵东宏,王建福. 水体中泥沙含量对虹鳟生存、生理和体表微生物的影响. 中国水产科学. 2024(11): 1365-1374 .
    6. 唐忠林,张佳佳,周国勤,陈树桥,徐钢春,徐跑,强俊,王佩佩. 丁香酚对“优鲈3号”幼鱼运输水质及其血液、肌肉生理指标的影响. 水产科技情报. 2023(01): 44-52 .
    7. 王文雯,杨静茹,付正祎,于刚,马振华. 运输时间对高体鰤幼鱼应激、代谢、抗氧化和免疫的影响. 中国渔业质量与标准. 2023(02): 25-36 .
    8. 李哲,周珊珊,王好学,王嘉浩,陈璐,徐开达. 运输振荡对条石鲷幼鱼生理应激和水体总氨氮含量的影响. 水产科技情报. 2023(05): 327-332 .
    9. 范宏博,胡丁月,徐莉,孙浩,刘峰,刘春娥,张小栓. 运输密度和时间对单环刺螠保活运输品质的影响. 农业工程. 2023(10): 72-77 .
    10. 虞为,陈雪晴,杨育凯,张燕娃,黄小林,黄忠,李涛,马振华,吴洽儿,于刚,周传朋,林黑着. 饲料中添加雨生红球藻对尖吻鲈生长性能、抗氧化能力及免疫状态的影响. 南方水产科学. 2022(05): 46-54 . 本站查看
    11. 陈旭,赵旺,陈明强,谭春明,于刚. 盐度胁迫对红娇凤凰螺耗氧率、排氨率以及免疫相关酶活性的影响. 南方水产科学. 2022(05): 160-165 . 本站查看

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return