CHEN Xiaolei, LI Min, CHEN Zuozhi, ZHANG Jun, ZHANG Shuai, QI Zhanhui, XU Shannan. Preliminary metabacording dietary analysis of Diaphus splendidus in South China Sea[J]. South China Fisheries Science, 2022, 18(3): 22-29. DOI: 10.12131/20210199
Citation: CHEN Xiaolei, LI Min, CHEN Zuozhi, ZHANG Jun, ZHANG Shuai, QI Zhanhui, XU Shannan. Preliminary metabacording dietary analysis of Diaphus splendidus in South China Sea[J]. South China Fisheries Science, 2022, 18(3): 22-29. DOI: 10.12131/20210199

Preliminary metabacording dietary analysis of Diaphus splendidus in South China Sea

More Information
  • Received Date: July 18, 2021
  • Revised Date: September 21, 2021
  • Accepted Date: October 07, 2021
  • Available Online: October 17, 2021
  • Dietary analysis of fish is an important part of fish biology and ecology as well as the basis of fishery resources development. In this study, the gastric DNA of Diaphus splendidus was extracted, and the mitochondrial cytochrome c oxidase subunit I (COI) was amplified as a molecular marker. The food composition was identified by high-throughput sequencing. The results show that a total of 34 species belonged to 5 phyla, 7 classes, 11 orders, 18 families and 29 genera. The diet of D. splendidus mainly included Ostracoda, Copepoda, Amphipoda, Fish, Jellyfish, Euphausiacea, Gastropod and Polychaeta. Ostracoda, Copepoda and Amphipoda were the dominant groups in its food composition, which is basically consistent with the previous research based on traditional morphological identification, except for jellyfish that was identified only by this study. In conclusion, DNA metabarcoding method is suitable for the food analysis of D. splendidus in the South China Sea, and has higher identification potential than the food analysis based on morphology.
  • [1]
    HULLEY P A. Upper-slope distributions of oceanic lanternfishes (family: Myctophidae)[J]. Mar Biol, 1992, 114(3): 365-383. doi: 10.1007/BF00350027
    [2]
    HUDSON J M, STEINBERG D K, SUTTON T T, et al. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge[J]. Deep Sea Res I, 2014, 93(10): 104-116.
    [3]
    FRID A, MARLIAVE J. Predatory fishes affect trophic cascades and apparent competition in temperate reefs[J]. Biol Lett, 2010, 6(4): 533-536. doi: 10.1098/rsbl.2010.0034
    [4]
    MOKU M, KAWAGUCHI K, WATANABE H, et al. Feeding habits of three dominant myctophid fishes, Diaphus theta, Stenobrachius leucopsarus and S. nannochir, in the subarctic and transitional waters of the western north Pacific[J]. Mar Ecol Prog Ser, 2000, 207: 129-140. doi: 10.3354/meps207129
    [5]
    WATANABE H, KAWAGUCHI K. Decadal change in the diets of the surface migratory myctophid fish myctophum nitidulum in the kuroshio region of the western north Pacific: predation on sardine larvae by myctophids[J]. Jap Soc Fish Sci, 2003, 69(4): 716-721.
    [6]
    TAKAGI K, YATSU A, ITOH H, et al. Comparison of feeding habits of myctophid fishes and juvenile small epipelagic fishes in the western north Pacific[J]. Mar Biol, 2009, 156(4): 641-659. doi: 10.1007/s00227-008-1115-8
    [7]
    SHREEVE R S, COLLINS M A, TARLING G A, et al. Feeding ecology of myctophid fishes in the northern Scotia Sea[J]. Mar Ecol Prog Ser, 2009, 386: 221-236. doi: 10.3354/meps08064
    [8]
    PUSCH C, SCHNACK-SCHIEL S, MIZDALSKI E, et al. Feeding ecology of three myctophid species at the greatmeteor seamount (northeast Atlantic)[J]. Arch Fish Mar Res, 2004, 51(1-3): 251-271.
    [9]
    DALPADADO P, GJØSÆTER J. Feeding ecology of the lanternfish benthosema pterotum from the Indian Ocean[J]. Mar Biol, 1988, 99(4): 555-567. doi: 10.1007/BF00392563
    [10]
    JOHANNES K, RUTH B S, KNUD S. Aspects of horizontal distribution and diet of myctophid fish in the Arabian Sea with reference to the deep water oxygen deficiency[J]. Deep Sea Res II, 1993, 40(3): 783-800. doi: 10.1016/0967-0645(93)90058-U
    [11]
    SAUNDERS R A, HILL S L, TARLING G A, et al. Myctophid fish (family myctophidae) are central consumers in the food web of the Scotia Sea (southern ocean)[J]. Front Mar Sci, 2019: 6. doi: 10.3389/fmars.2019.00530
    [12]
    PAKHOMOV E A, PERISSINOTTO R, MCQUAID C D. Prey composition and daily rations of myctophid fishes in the Southern Ocean[J]. Mar Ecol Prog Ser, 1996, 134(1/2/3): 1-14.
    [13]
    金海卫, 薛利建, 潘国良, 等. 东海和黄海南部七星底灯鱼摄食习性的研究[J]. 海洋渔业, 2011, 33(4): 368-377. doi: 10.3969/j.issn.1004-2490.2011.04.002
    [14]
    龚玉艳, 陈作志, 张俊, 等. 南海北部陆坡海域秋季金鼻眶灯鱼的摄食习性[J]. 南方水产科学, 2015, 11(5): 90-99. doi: 10.3969/j.issn.2095-0780.2015.05.011
    [15]
    龚玉艳, 杨玉滔, 孔啸兰, 等. 南海北部陆坡海域瓦氏眶灯鱼的渔业生物学特征[J]. 中国水产科学, 2018, 25(5): 1901-1101.
    [16]
    郑光美, 赵欣如, 宋杰, 等. 黄腹角雉的食性研究[J]. 生态学报, 1986, 4(3): 283-288.
    [17]
    武正军, 李义明, 王彦平. 洗胃法与剖胃法在四种蛙食性分析中的对比[J]. 动物学报, 2007, 4(2): 364-372. doi: 10.3969/j.issn.1674-5507.2007.02.022
    [18]
    POMPANON F, DEAGLE B E, SYMONDSON W O C, et al. Who is eating what: diet assessment using next generation sequencing[J]. Mol Ecol, 2012, 21(8): 1931-1950. doi: 10.1111/j.1365-294X.2011.05403.x
    [19]
    JI Y, ASHTON L, PEDLEY S M, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding[J]. Ecol Lett, 2013, 16(10): 1245-1257. doi: 10.1111/ele.12162
    [20]
    刘刚, 宁宇, 夏晓飞, 等. 高通量测序技术在野生动物食性分析中的应用[J]. 生态学报, 2018, 38(9): 3347-3356.
    [21]
    林先智, 胡思敏, 刘胜, 等. 传统测序与高通量测序在稚鱼食性分析中的比较[J]. 应用生态学报, 2018, 29(9): 3093-3101.
    [22]
    周天成, 胡思敏, 林先智, 等. 基于18S rDNA条形码技术的珊瑚礁区塔形马蹄螺(Tectus pyramis)食性分析[J]. 海洋科学, 2020, 44(2): 99-107. doi: 10.11759/hykx20190117002
    [23]
    孙鹏, 凌建忠, 张辉, 等. 基于高通量测序的象山港海域黑鲷 (Acanthopagrus schlegelii) 食性分析[J]. 生态学报, 2021, 41(3): 1221-1228.
    [24]
    徐盛楠, 孙婷婷, 张建设, 等. 基于高通量测序技术的两种水螅水母现场食物研究[J]. 应用海洋学学报, 2020, 39(1): 49-56.
    [25]
    WARD R D, ZEMLAK T S, INNES B H, et al. DNA barcoding Australia's fish species[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1462): 1847-1857. doi: 10.1098/rstb.2005.1716
    [26]
    杨江华. 太湖流域浮游动物物种多样性与环境污染群落生态效应研究[D]. 南京: 南京大学, 2017: 32-33.
    [27]
    LERAY M, YANG J Y, MEYER C P, et al. A new versatile primer set targeting a short fragment of the mitochondrial coi region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents[J]. Front Zool, 2013, 10(1). DOI: 10.1186/1742-9994-10-34.
    [28]
    EDGAR C E. Uparse: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10: 996-998. doi: 10.1038/nmeth.2604
    [29]
    PEAY K G, GARBELOTTO M, BRUNS T D. Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings[J]. J Ecol, 2009, 97(3): 537-547.
    [30]
    NIETO M P, CARBONE S S. Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruit bodies sampling[J]. Mycorrhiza, 2009, 19(2): 91-98. doi: 10.1007/s00572-008-0207-0
    [31]
    CLARKE L J, TREBILCO R, WALTERS A, et al. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen axis[J]. Deep-Sea Res II, 2020, 172: 104494.
    [32]
    孔啸兰, 江艳娥, 龚玉艳, 等. 南海中北部尾明角灯鱼渔业生物学特性的初步研究[J]. 南方水产科学, 2016, 12(4): 117-124. doi: 10.3969/j.issn.2095-0780.2016.04.015
    [33]
    龚玉艳, 杨玉滔, 范江涛, 等. 南海北部陆架斜坡海域夏季浮游动物群落的空间分布[J]. 南方水产科学, 2017, 13(5): 8-15. doi: 10.3969/j.issn.2095-0780.2017.05.002
    [34]
    WANG J T M, CHEN C T. A review of lanternfishes (families: Myctophidae and Neoscopelidae) and their distributions around Taiwan and the Tungsha Islands with notes on seventeen new records[J]. Zool Stud, 2001, 40(2): 103-126.
    [35]
    张俊, 江艳娥, 陈作志, 等. 南海中南部中层鱼资源声学积分值及时空分布初探[J]. 中国水产科学, 2017, 24(1): 120-135.
    [36]
    左涛, 王荣, 王克, 等. 夏季南黄海浮游动物的垂直分布与昼夜垂直移动[J]. 生态学报, 2004, 4(3): 524-530. doi: 10.3321/j.issn:1000-0933.2004.03.019
    [37]
    O'RORKE R, LAVERY S, JEFFS A. PCR enrichment techniques to identify the diet of predators[J]. Mol Ecol Resour, 2012, 12(1): 5-17. doi: 10.1111/j.1755-0998.2011.03091.x
    [38]
    VESTHEIM H, JARMAN S N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: A case study on prey DNA in antarctic krill stomachs[J]. Front Zool, 2008, 5: 12.
    [39]
    李晗溪, 黄雪娜, 李世国, 等. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. doi: 10.17520/biods.2018233
  • Related Articles

    [1]PEI Ruonan, ZHAI Honglei, QI Bo, YANG Xianqing. Optimization of multi-enzymatic extraction of polysaccharide from Gelidium amansii by response surface methodology[J]. South China Fisheries Science, 2019, 15(6): 88-95. DOI: 10.12131/20190081
    [2]WANG Xiaohui, QI Bo, YANG Xianqing, YANG Shaoling, MA Haixia, DENG Jianchao. Optimization of enzymatic hydrolysis of protein in abandoned Porphyra haitanensis by response surface methodology and study on antioxidant activity of its hydrolysate[J]. South China Fisheries Science, 2019, 15(2): 93-101. DOI: 10.12131/20180099
    [3]YU Futian, CEN Jianwei, LI Laihao, YANG Xianqing, HANG Hui, HAO Shuxian, WEI Ya, ZHAO Yongqiang, LIN Zhi. Response surface methodology for optimization of sterilization effect on tilapia fillet with slightly acidic electrolyzed water[J]. South China Fisheries Science, 2019, 15(1): 77-84. DOI: 10.12131/20180164
    [4]ZHONG Zhihong, WANG Fei, CHEN Yonggui, DENG Hengwei, WANG Shifeng, SUN Yun, CHEN Xuefen, GUO Weiliang, ZHOU Yongcan. Synergism between Fructus mume and antibiotics against Vibrio harveyi based on response surface methodology[J]. South China Fisheries Science, 2018, 14(6): 81-88. DOI: 10.12131/20180056
    [5]LI Shasha, CAO Yucheng, HU Xiaojuan, LI Zhuojia, XU Yu, YANG Keng, XU Chuangwen, WEN Guoliang. Optimization for cultivation parameters of Bacillus sp. A4 using response surface methodology[J]. South China Fisheries Science, 2017, 13(5): 85-93. DOI: 10.3969/j.issn.2095-0780.2017.05.012
    [6]CHEN Kang, DAI Zhiyuan, SHEN Qing, HUANG Yaowen. Extraction of phospholipid from Euphausia superba by response surface method and determination of phospholipid molecular species[J]. South China Fisheries Science, 2017, 13(3): 104-112. DOI: 10.3969/j.issn.2095-0780.2017.03.014
    [7]ZHAO Donghao, WANG Xufeng, WANG Qiang, LI Zhiguang, HUANG Ke, LI Liudong. Influence of solvent on nitrofuran metabolites response by liquid chromatography-tandem mass spectrometry[J]. South China Fisheries Science, 2016, 12(6): 108-114. DOI: 10.3969/j.issn.2095-0780.2016.06.014
    [8]ZHAO Donghao, LI Zhiguang, WANG Xufeng, WANG Qiang, LI Yongxian, HUANG Ke, LI Liudong. Optimization of determination of nitrofuran metabolites in aquatic products by liquid chromatography tandem mass spectrometry[J]. South China Fisheries Science, 2015, 11(6): 58-64. DOI: 10.3969/j.issn.2095-0780.2015.06.008
    [9]WANG Zhongliang, HUANG Jiansheng, ZHANG Jiandong, CHEN Gang. Combined effect of light intensity and salinity on hatchability of Artemia cysts based on response surface methodology[J]. South China Fisheries Science, 2014, 10(3): 80-85. DOI: 10.3969/j.issn.2095-0780.2014.03.012
    [10]QI Bo, LI Laihao, YANG Xianqing, CHENG Shengjun, LIU Gang, LI Zhandong. Optimization technology of alkali processing of Eucheuma carrageenan by response surface methodology[J]. South China Fisheries Science, 2011, 7(6): 26-34. DOI: 10.3969/j.issn.2095-0780.2011.06.005
  • Cited by

    Periodical cited type(2)

    1. 吴燕燕,王悦齐,张涛,王迪,郑镇雄. 不同致死条件对冷鲜石斑鱼肉品质的影响. 上海海洋大学学报. 2023(02): 377-386 .
    2. 王雪松,谢晶. 竹荚鱼浸渍冻结液配方的优化与应用效果. 食品与发酵工业. 2021(19): 195-200 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return