SI Mengru, LI Yundong, YANG Qibin, JIANG Song, YANG Lishi, HUANG Jianhua, JIANG Shigui, ZHOU Falin. Characterization and expression analysis of PP2C from Penaeus monodon under acute low salt and ammonia nitrogen stress[J]. South China Fisheries Science, 2022, 18(3): 76-85. DOI: 10.12131/20210193
Citation: SI Mengru, LI Yundong, YANG Qibin, JIANG Song, YANG Lishi, HUANG Jianhua, JIANG Shigui, ZHOU Falin. Characterization and expression analysis of PP2C from Penaeus monodon under acute low salt and ammonia nitrogen stress[J]. South China Fisheries Science, 2022, 18(3): 76-85. DOI: 10.12131/20210193

Characterization and expression analysis of PP2C from Penaeus monodon under acute low salt and ammonia nitrogen stress

More Information
  • Received Date: July 04, 2021
  • Revised Date: August 31, 2021
  • Accepted Date: October 08, 2021
  • Available Online: October 25, 2021
  • Protein phosphatase 2C family protein is a class of protein phosphatases that plays an important role in stress resistance. However, there are few studies in crustaceans. In this study, we cloned and obtained the full-length cDNA of protein phosphatase 2C (PmPP2C) with c-type domain in Penaeus monodon by rapid amplification of cDNA ends (RACE). The full length of ORF was 2 079 bp, encoding 692 amino acids. The real-time fluorescence quantitative results show that PmPP2C was expressed in all the tested tissues. The expression was the highest in hepatopancreas and gill tissues, followed by thoracic nerve, testis and muscle. The expression of PmPP2C in hepatopancreas and gill was first down-regulated and then up-regulated under 96 h acute low salt stress. The expression of PmPP2C in hepatopancreas and gill showed a downward-upward-downward trend under 96 h acute ammonia nitrogen stress. The results indicate that PmPP2C can be involved in the response of P. monodon to acute low salt and ammonia nitrogen stress, suggesting that it may play an important role in the immune defense against environmental stress.
  • [1]
    TONG Y, QUIRION R, SHEN S H. Cloning and characterization of a novel mammalian PP2C isozyme[J]. J Biol Chem, 1998, 273(52): 35282-35290. doi: 10.1074/jbc.273.52.35282
    [2]
    TAYEBEH O B, KEIVAN M A, REZVAN E. Wip1: a candidate phosphatase for cancer diagnosis and treatment[J]. DNA Repair, 2017, 54: 63-66. doi: 10.1016/j.dnarep.2017.03.004
    [3]
    LU X, AN H, JIN R, et al. PPM1A is a RelA phosphatase with tumor suppressor-like activity[J]. Oncogene, 2014, 33(22): 2918-2927. doi: 10.1038/onc.2013.246
    [4]
    LIU T, LIU Y, CAO J, et al. ILKAP binding to and dephosphorylating HIF-1α is essential for apoptosis induced by severe hypoxia[J]. Cell Physiol Biochem, 2018, 46(6): 2500-2507. doi: 10.1159/000489656
    [5]
    TANG Y T, PAN B, ZHOU X, et al. Wip1-dependent modulation of macrophage migration and phagocytosis[J]. Redox Biol, 2017, 13: 665-673. doi: 10.1016/j.redox.2017.08.006
    [6]
    MATHUR A, PANDEY V K, KAKKAR P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes[J]. J Endocrinol, 2017, 233(3): 185-198. doi: 10.1530/JOE-17-0081
    [7]
    AMARJEET S, AMITA P, ASHISH K. S, et al Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management[J]. Crit Rev Biotechnol, 2016, 36(6): 1023-1035. doi: 10.3109/07388551.2015.1083941
    [8]
    FAN K, CHEN Y, MAO Z, et al. Pervasive duplication, biased molecular evolution and comprehensive functional analysis of the PP2C family in Glycine max[J]. BMC Genomics, 2020, 21(1): 465-481. doi: 10.1186/s12864-020-06877-4
    [9]
    齐阳, 许维恒, 张俊平, 等. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践杂志, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
    [10]
    JAKKULA P, RAHILA Q, ATIF I, et al. Leishmania donovani PP2C: kinetics, structural attributes and in vitro immune response[J]. Mol Biochem Parasit, 2018, 223: 37-49. doi: 10.1016/j.molbiopara.2018.06.005
    [11]
    HAIDER M S, KURJOGI M M, KHALIL-UR-REHMAN M, et al. Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis[J]. Plant Physiol Biochem, 2017, 121: 187-195. doi: 10.1016/j.plaphy.2017.10.026
    [12]
    胡秋涛, 侯丹, 赵钟毓, 等. 毛竹PP2C基因家族鉴定与表达分析[J]. 农业生物技术学报, 2020, 28(10): 1776-1787.
    [13]
    范红弟, 李运东, 杨其彬, 等. 斑节对虾MKK7基因的克隆及在不同胁迫条件下的表达分析[J]. 中国水产科学, 2020, 27(7): 748-758.
    [14]
    LIU G, HU X, SUN B, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1[J]. Blood, 2013, 121(3): 519-529. doi: 10.1182/blood-2012-05-432674
    [15]
    BOLLMANN P, WERNER F, JARON M, et al. Initial characterization of stressed transgenic mice with cardiomyocyte-specific overexpression of protein phosphatase 2C[J]. Front Pharmacol, 2021, 11: 591773-591789. doi: 10.3389/fphar.2020.591773
    [16]
    杨其彬, 叶乐, 温为庚, 等. 盐度对斑节对虾蜕壳, 存活, 生长和饲料转化率的影响[J]. 南方水产, 2008, 4(1): 16-21. doi: 10.3969/j.issn.2095-0780.2008.01.003
    [17]
    JOSEPH A, PHILIP R. Immunocompetence of Penaeus monodon under acute salinity stress and pathogenicity of Vibrio harveyi with respect to ambient salinity[J]. Fish Shellfish Immunol, 2020, 106: 555-562. doi: 10.1016/j.fsi.2020.07.067
    [18]
    LI Y D, ZHOU F L, HUANG J H, et al. Transcriptome reveals involvement of immune defense, oxidative imbalance, and apoptosis in ammonia-stress response of the black tiger shrimp (Penaeus monodon)[J]. Fish Shellfish Immunol, 2018, 83: 162-170. doi: 10.1016/j.fsi.2018.09.026
    [19]
    陈劲松, 江世贵, 黄建华, 等. 斑节对虾天门冬氨酸转氨酶基因的克隆及氨氮胁迫条件下的表达分析[J]. 南方水产科学, 2017, 13(3): 73-82. doi: 10.3969/j.issn.2095-0780.2017.03.010
    [20]
    DOHONEY K M, GUILLERM C, WHITEFORD C, et al. Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage[J]. Oncogene, 2004, 23(1): 49-57. doi: 10.1038/sj.onc.1207005
    [21]
    LI D W C, LIU J P, SCHMID P C, et al. Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities[J]. Oncogene, 2006, 25(21): 3006-3022. doi: 10.1038/sj.onc.1209334
    [22]
    LI D W C, FASS U, HUIZAR I, et al. Okadaic acid-induced lens epithelial cell apoptosis requires inhibition of phosphatase-1 and is associated with induction of gene expression including p53 and bax[J]. Eur J Biochem, 1998, 257(2): 351-361. doi: 10.1046/j.1432-1327.1998.2570351.x
    [23]
    OLSEN J V, BLAGOEV B, GNAD F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks[J]. Cell, 2006, 127(3): 635-648. doi: 10.1016/j.cell.2006.09.026
    [24]
    ZHAI Y F, HE P, SHI D J, et al. iTRAQ-based proteomic analysis of the hepatopancreas from Litopenaeus vannamei after trans-vp28 gene Synechocystis sp. PCC6803 immunization[J]. Fish Shellfish Immunol, 2020, 104: 686-692. doi: 10.1016/j.fsi.2020.05.078
    [25]
    DAVIE E, FORTE G A, PETERSEN J. Nitrogen regulates AMPK to control TORC1 signaling[J]. Curr Biol, 2015, 25(4): 445-454. doi: 10.1016/j.cub.2014.12.034
    [26]
    PAN L Q, SI L J, LIU S N, et al. Levels of metabolic enzymes and nitrogenous compounds in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N[J]. J Ocean Univ China, 2018, 17(4): 957-966. doi: 10.1007/s11802-018-3574-y
    [27]
    LIU L, HU X, SONG J, et al. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought[J]. J Plant Physiol, 2009, 166(5): 531-542. doi: 10.1016/j.jplph.2008.07.008
    [28]
    UMEZAWA T, NAKASHIMA K, MIYAKAWA T, et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport[J]. Plant Cell Physiol, 2010, 51(11): 1821-1839. doi: 10.1093/pcp/pcq156
    [29]
    MCNAMARA J C, FARIA S C. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review[J]. J Comp Physiol B, 2012, 182(8): 997-1014. doi: 10.1007/s00360-012-0665-8
    [30]
    PENG T, WANG W N, GU M M, et al. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei[J]. Aquat Toxicol, 2015, 163: 89-96. doi: 10.1016/j.aquatox.2015.03.023
    [31]
    LOTZ J, ANTON L S, SOTO M. Effect of chronic Taura syndrome virus infection on salinity tolerance of Litopenaeus vannamei[J]. Dis Aquat Organ, 2005, 65(1): 75-78.
    [32]
    FAN H D, LI Y D, YANG Q B, et al. Isolation and characterization of a MAPKK gene from Penaeus monodon in response to bacterial infection and low-salinity challenge[J]. Aquac Rep, 2021, 20: 671-681.
    [33]
    姚万龙, 何玉英, 刘萍, 等. 中国明对虾MKK3基因cDNA克隆及其在氨氮胁迫下的表达[J]. 中国水产科学, 2016, 23(1): 34-43.
    [34]
    姚万龙, 何玉英, 刘萍, 等. 中国明对虾MKK4基因克隆及其在氨氮胁迫下的表达分析[J]. 水产学报, 2015, 39(6): 779-789.
    [35]
    YU Y H, LI J X, YU W, et al. GADD45α induction by nickel negatively regulates JNKs/p38 activation via promoting PP2Cα expression[J]. PLOS ONE, 2013, 8(3): 185-193.
    [36]
    LUO L Y, JIANG S S, HUANG D Q, et al. MLK3 phophorylates AMPK independently of LKB1[J]. PLOS ONE, 2015, 10(4): 927-935.
  • Related Articles

    [1]ZHONG Zhanyou, DENG Hong, KOU Chunni, CHEN Weitao, WU Zhi, LI Yuefei, XIA Yuguo, LI Huifeng, LI Jie, ZHU Shuli. Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology[J]. South China Fisheries Science, 2025, 21(2): 47-58. DOI: 10.12131/20240173
    [2]CHEN Weitao, DUAN Xinbin, GAO Lei, LI Xinhui, YANG Jiping, WANG Dengqiang. Genetic structure analysis of Ochetobius elongatus between Yangtze River and Pearl River using multiple loci[J]. South China Fisheries Science, 2022, 18(6): 19-25. DOI: 10.12131/20220007
    [3]WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019
    [4]XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131
    [5]ZHU Shuli, LI Yuefei, WU Zhi, LI Jie, XIA Yuguo, YANG Jiping, LI Xinhui. Research on catchable size and resource protection of Squaliobarbus curriculus in Xijiang River Fengkai section based on length-frequency data[J]. South China Fisheries Science, 2020, 16(4): 1-7. DOI: 10.12131/20190231
    [6]ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042
    [7]KUANG Tianxu, SHUAI Fangmin, CHEN Weitao, LI Xinhui. Genetic diversity and population structure of Carassius auratus in Xijiang River[J]. South China Fisheries Science, 2018, 14(5): 29-35. DOI: 10.3969/j.issn.2095-0780.2018.05.004
    [8]YANG Xishu, ZHANG Qun, YÜ Fanyang, LV Jinlei, DI Xiaodan, SHAO Junwei, HUANG Zhenyu, LU Lifeng. MtDNA ND2 sequence-based genetic analysis of Anabas testudineus from South China and Lancang/Mekong River[J]. South China Fisheries Science, 2017, 13(3): 43-50. DOI: 10.3969/j.issn.2095-0780.2017.03.006
    [9]WU Zhi, TAN Xichang, LI Xinhui, TANG Yong. Acoustic monitoring on fish resources in Xijiang section of Pearl River during first closed fishing season[J]. South China Fisheries Science, 2014, 10(3): 24-28. DOI: 10.3969/j.issn.2095-0780.2014.03.004
    [10]ZHU Shuli, LI Xinhui, LI Yuefei, WANG Chao, YANG Jiping, LI Lin. Age and growth of Spualiobarbus curriculus from Zhaoqing Guangdong Section of Xijiang River[J]. South China Fisheries Science, 2013, 9(2): 27-31. DOI: 10.3969/j.issn.2095-0780.2013.02.005
  • Cited by

    Periodical cited type(9)

    1. 邓洪,钟占友,寇春妮,朱书礼,李跃飞,夏雨果,武智,李捷,陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史. 生物多样性. 2025(01): 97-106 .
    2. 詹华伟,叶树政,陈锭娴,王凯丰,刘兰苑,龚剑,韩崇,李强. 基于线粒体Cytb序列的广东地区大刺鳅群体遗传多样性分析. 湖南农业科学. 2024(03): 1-6 .
    3. 刘童,王英俊,吴莹莹,邹琰,吕芳,吴海一,李建民,宋爱环. 魁蚶3个群体及杂交子代遗传多样性分析. 水产科学. 2024(04): 561-570 .
    4. 邓树庆,蔡杏伟,王韩,符成慧,张清凤,申志新,李高俊,李芳远. 保亭近腹吸鳅遗传多样性及保护建议. 热带生物学报. 2024(04): 419-426 .
    5. 王吉祥,刘凯,王永杰,刘彦斌,刘嘉成,王彩雯,肖伟,连总强,王玉涛. 黄河宁夏段黄河鮈群体的遗传多样性与系统发育分析. 基因组学与应用生物学. 2024(07): 1248-1259 .
    6. 卞玉玲,刘士力,刘一诺,贾永义,李飞,迟美丽,郑建波,程顺,顾志敏. 湖州河川沙塘鳢群体线粒体DNA cyt b基因序列的遗传多样性分析. 水产学杂志. 2023(01): 22-28+35 .
    7. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体nad1基因的大理州亚洲带绦虫遗传多样性分析. 热带医学杂志. 2023(03): 301-304 .
    8. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体12S rRNA基因对大理州亚洲带绦虫遗传多样性的分析. 中国人兽共患病学报. 2023(08): 784-788 .
    9. 范嗣刚,黄皓,王鹏飞,闫路路,赵超,张博,邱丽华. 基于cox1序列的中国6个花鲈野生群体遗传多样性. 广东海洋大学学报. 2022(03): 11-17 .

    Other cited types(6)

Catalog

    Article views (622) PDF downloads (50) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return