YUAN Keting, REN Dajun, WAN Qiong, CHAI Beibei, KANG Aiqing, LEI Xiaohui, CHEN Bin, Chen Xiang. Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment[J]. South China Fisheries Science, 2022, 18(3): 139-146. DOI: 10.12131/20210187
Citation: YUAN Keting, REN Dajun, WAN Qiong, CHAI Beibei, KANG Aiqing, LEI Xiaohui, CHEN Bin, Chen Xiang. Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment[J]. South China Fisheries Science, 2022, 18(3): 139-146. DOI: 10.12131/20210187

Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment

More Information
  • Received Date: June 28, 2021
  • Revised Date: August 01, 2021
  • Accepted Date: September 13, 2021
  • Available Online: March 28, 2022
  • Microcystis aeruginosa can cause algal blooms, which has been a serious threat to the water environment. Microbial algae removal is a technology with good application prospects. In this study, we isolated a new algae-dissolving bacterium G2 from the reservoir substrate of Xi'an of Shaanxi Province, identified as Cellvibrio sp. according to 16S rDNA sequence analysis (GenBank accession No.: MW221316), and investigated the feasibility of G2's solubilizing M. aeruginosa. Results show that G2 solubilized algae by secreting extracellular substances indirectly, and it had the best removal effect on algae during the stabilization period. Increasing G2 dosing ratio (>10%) contributed to the effect of algae dissolution. G2 was sensitive to the change of temperature, and the algae removal rate reached (59.42±0.88)% and (63.10±1.42)% at 5 and 25 ℃, respectively. The removal efficiency was poor at temperatures higher than 75 ℃. The pH and light had no significant influences on the algae removal effect, and G2 had strong tolerance to acid and alkali (pH 3−11). In conclusion, G2 can inhibit the growth of M. aeruginosa efficiently, so it is a promising biocontrol agent to mitigate cyanobacterial blooms.
  • [1]
    XU D L, CAI Y, JIANG H, et al. Variations of food web structure and energy availability of shallow lake with long-term eutrophication: a case study from Lake Taihu, China[J]. Clean-Soil Air Water, 2016, 44(10): 1306-1314. doi: 10.1002/clen.201300837
    [2]
    朱广伟, 许海, 朱梦圆, 等. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 2019, 31(6): 1510-1524. doi: 10.18307/2019.0622
    [3]
    杨正健, 俞焰, 陈钊, 等. 三峡水库支流库湾水体富营养化及水华机理研究进展[J]. 武汉大学学报 (工学版), 2017, 50(4): 507-516.
    [4]
    MOHAMED M N, WELLEN C, PARSONS C T, et al. Understanding and managing the re-eutrophication of Lake Erie: knowledge gaps and research priorities[J]. Freshw Sci, 2019, 38(4): 675-691. doi: 10.1086/705915
    [5]
    中华人民共和国生态环境部. 2020中国环境生态环境质量简况[OL]. (2021-03-02). http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202103/t20210302_823100.html.
    [6]
    KHAIRY H, EL-SHEEKH M. Toxicological studies on microcystin produced by Microcystis aeruginosa: assessment and management[J]. Egypt J Bot, 2019, 59(3): 551-566.
    [7]
    DENG J M, QIN B Q, SARVALA J K, et al. Phytoplankton assemblages respond differently to climate warming and eutrophication: a case study from Pyhäjärvi and Taihu[J]. J Gt Lakes Res, 2016, 42(2): 386-396. doi: 10.1016/j.jglr.2015.12.008
    [8]
    STEFFEN M M, DAVIS T W, MCKAY R M L, et al. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH[J]. Environ Sci Technol, 2017, 51(12): 6745-6755. doi: 10.1021/acs.est.7b00856
    [9]
    FAN G D, LIU D M, ZHU G C, et al. Influence factors in kinetics during removal of harmful algae by ultrasonic irradiation process[J]. Desalin Water Treat, 2014, 52(37/38/39): 7317-7322.
    [10]
    LIN J L, HUA L C, HUNG S K, et al. Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation-flotation: effect of algogenic organic matter release on algal removal and trihalomethane formation[J]. J Environ Sci, 2018, 63(1): 147-155.
    [11]
    SAMARASINGHE N, FERNANDO S, LACEY R, et al. Algal cell rupture using high pressure homogenization as a prelude to oil extraction[J]. Renew Energ, 2012, 48: 300-308. doi: 10.1016/j.renene.2012.04.039
    [12]
    景二丹, 许小燕, 李丛宇, 等. 阳澄湖水源水中藻类的去除研究[J]. 中国给水排水, 2019, 35(13): 43-46.
    [13]
    MARŠÁLEK B, ZEZULKA Š, MARŠÁLKOVÁ E, et al. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria[J]. Chem Eng J, 2020, 382: 122383. doi: 10.1016/j.cej.2019.122383
    [14]
    WANG M, CHEN S B, ZHOU W G, et al. Algal cell lysis by bacteria: a review and comparison to conventional methods[J]. Algal Res, 2020, 46: 101794. doi: 10.1016/j.algal.2020.101794
    [15]
    LIU J Y, YANG C Y, CHI Y X, et al. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake[J]. J Basic Microbiol, 2019, 59(11): 1112-1124. doi: 10.1002/jobm.201900112
    [16]
    ZHU B W, HUANG L S, TAN H D, et al. Characterization of a new endo-type polyM-specific alginate lyase from Pseudomonas sp.[J]. Biotechnol Lett, 2015, 37(2): 409-415. doi: 10.1007/s10529-014-1685-0
    [17]
    SCHWENK D, NOHYNEK L, RISCHER H. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures[J]. MicrobiologyOpen, 2014, 3(3): 356-368. doi: 10.1002/mbo3.175
    [18]
    CHEN Z R, ZHENG W, YANG L X, et al. Lytic and chemotactic features of the plaque-forming bacterium KD531 on Phaeodactylum tricornutum[J]. Front Microbiol, 2017, 8: 2581. doi: 10.3389/fmicb.2017.02581
    [19]
    BARBEYRON T, ZONTA E, le PANSE S L, et al. Alteromonas fortis sp. nov., a non-flagellated bacterium specialized in the degradation of iota-carrageenan, and emended description of the genus Alteromonas[J]. Int J Syst Evol Microbiol, 2019, 69(8): 2514-2521. doi: 10.1099/ijsem.0.003533
    [20]
    SUN H Y, ZHANG Y, CHEN H R, et al. Isolation and characterization of the marine algicidal bacterium Pseudoalteromonas S1 against the harmful alga Akashiwo sanguinea[J]. Mar Biol, 2016, 163(3): 1-8.
    [21]
    SUN P F, ZHAO J Y, TANG J, et al. Algicidal activity recovery by a Li-doped up-conversion material converting visible light into UV[J]. Sci Total Environ, 2020, 720(1): 137596. doi: 10.1016/j.scitotenv.2020.137596
    [22]
    CHI W J, SEO J W, HONG S K. Characterization of two thermostable β-agarases from a newly isolated marine agarolytic bacterium, Vibrio sp. S1[J]. Biotechnol Bioprocess Eng, 2019, 24(5): 799-809. doi: 10.1007/s12257-019-0180-9
    [23]
    YU S, YUN E J, DONG H K, et al. Molecular and enzymatic verification of the dual agarolytic pathways in a marine bacterium, Vibrio sp. strain EJY3: molecular and enzymatic verification[J]. Appl Environ Microbiol, 2020, 86(6): e02724-19. doi: 10.1128/AEM.02724-19
    [24]
    LIN Z H, CHEN B B, ZHAO L. Fluorescence-based bioassays with dose-response curve and relative potency in measuring algicidal virulence of Bacillus sp. B1 exudates against Heterosigma akashiwo[J]. Sci Total Environ, 2020, 724: 137691. doi: 10.1016/j.scitotenv.2020.137691
    [25]
    国家环境保护总局. 水和废水监测分析方法第4版[M]. 北京: 中国环境科学出版社, 2002: 670-671.
    [26]
    IMAI I, ITO H, ODA T, et al. Isolation and characterization of algicidal bacteria and its effect on a musty odor-producing cyanobacterium Dolichospermum crassum in a reservoir[J]. Water Supply, 2017, 17(3): 792-798. doi: 10.2166/ws.2016.179
    [27]
    ZHANG S Y, FAN C, XIA Y S, et al. Characterization of a novel bacteriophage specific to Exiguobacterium indicum isolated from a plateau eutrophic lake[J]. J Basic Microbiol, 2019, 59(2): 206-214. doi: 10.1002/jobm.201800184
    [28]
    王琪, SIMON P, 刘锦钰, 等. 滇池中溶藻细菌的分离鉴定及其溶藻效应[J]. 微生物学通报, 2018, 45(12): 2614-2623.
    [29]
    LI Y, LEI X Q, ZHU H, et al. Chitinase producing bacteria with direct algicidal activity on marine diatoms[J]. Sci Rep, 2016, 6(1): 21984. doi: 10.1038/srep21984
    [30]
    NISHU S D, KANG Y, HAN I, et al. Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae[J]. PLOS ONE, 2019, 14(3): e0213370. doi: 10.1371/journal.pone.0213370
    [31]
    YOU D S, LEE Y W, CHOI D, et al. Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa [J]. Kor J Chem Eng, 34(1): 139-149.
    [32]
    石新国, 李悦, 郑文煌, 等. 一株中肋骨条藻特异溶藻菌的分离鉴定及溶藻特性[J]. 微生物学通报, 2020, 47(11): 3527-3538.
    [33]
    WANG Y F, COYNE K J. Immobilization of algicidal bacterium Shewanella sp. IRI-160 and its application to control harmful dinoflagellates[J]. Harmful Algae, 2020, 94: 101798. doi: 10.1016/j.hal.2020.101798
    [34]
    GUAN C W, GUO X Y, CAI G J, et al. Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species[J]. Biol Control, 2014, 76: 79-86. doi: 10.1016/j.biocontrol.2014.05.007
    [35]
    KONG Y, WANG Q, CHEN Y J, et al. Anticyanobacterial process and action mechanism of Streptomyces sp. HJC-D1 on Microcystis aeruginosa[J]. Environ Prog Sustain Energy, 2020, 39(4): 13392. doi: 10.1002/ep.13392
    [36]
    AL-HAKIMI A A, ALMINDEREJ F, NOMAN E. Optimizing of Microcystis aeruginosa inactivation in freshwater using algicidal Bacillus subtilis by central composite design[J]. Desalin Water Treat, 2020, 181: 228-38. doi: 10.5004/dwt.2020.25117
    [37]
    ZHANG B Z, CAI G J, WANG H T, et al. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa[J]. PLOS ONE, 2014, 9(3): e92907. doi: 10.1371/journal.pone.0092907
    [38]
    YU Y, ZENG Y, LI J, et al. An algicidal streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously[J]. Sci Total Environ, 2019, 650: 34-43. doi: 10.1016/j.scitotenv.2018.08.433
    [39]
    ZHANG C C, MASSEY I Y, LIU Y, et al. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa[J]. J Toxicol Env Health A, 2019, 82(15): 845-853. doi: 10.1080/15287394.2019.1660466
    [40]
    杨冰洁, 向文洲, 金雪洁, 等. 一株溶藻菌CBA02的分离鉴定及溶藻特性研究[J]. 生物技术通报, 2020, 36(11): 60-67.
  • Related Articles

    [1]CHEN Dongsheng, WANG Luo, XING Tengyu, CHEN Yuchen, CHEN Xinyao, DING Jun. Structural and functional characteristics of intestinal bacterial community associated with red spotting disease of Strongylocentroyus intermedius[J]. South China Fisheries Science, 2025, 21(1): 77-84. DOI: 10.12131/20240187
    [2]LI Xuguang, QI Zhanhui, LIN Lin, ZHANG Zhe, HUANG Honghui. Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing[J]. South China Fisheries Science, 2015, 11(6): 1-8. DOI: 10.3969/j.issn.2095-0780.2015.06.001
    [3]ZHANG Yan, WU Yanyan, LI Laihao, YANG Xianqing, SHAO Zhengyi. Identification of a symbiotic and epiphyte lactic acid bacterium strain from Pinctada fucata by 16S rDNA sequencing[J]. South China Fisheries Science, 2012, 8(6): 9-15. DOI: 10.3969/j.issn.2095-0780.2012.06.002
    [4]MAO Yangli, CAI Houcai, LI Chengjiu, GAO Tianxiang. Molecular phylogenetics of genus Mytilus based on COI and 16S rRNA sequences[J]. South China Fisheries Science, 2010, 6(5): 27-36. DOI: 10.3969/j.issn.1673-2227.2010.05.005
    [5]MA Guo-qiang, GAO Tian-xiang, SUN Dian-rong. Discussion of relationship between Collichthys lucidus and C. niveatus based on 16S rRNA and Cyt b gene sequences[J]. South China Fisheries Science, 2010, 6(2): 13-20. DOI: 10.3969/j.issn.1673-2227.2010.02.003
    [6]HUANG Guiju, YU Dahui, GUO Yihui, QU Nini. Phylogenetic relationship of pearl oysters in genus Pinctada based on partial mitochondrial 16S rRNA sequence[J]. South China Fisheries Science, 2009, 5(6): 47-53. DOI: 10.3969/j.issn.1673-2227.2009.06.009
    [7]BI Xiaoxiao, GAO Tianxiang, XIAO Yongshuang, LI Yongzhen. Sequence comparison of mtDNA 16S rRNA, COI and Cyt b gene fragments in four species of Gadidae fish[J]. South China Fisheries Science, 2009, 5(3): 46-52. DOI: 10.3969/j.issn.1673-2227.2009.03.008
    [8]LI Lihao, GUO Yihui, HUANG Guiju, JIANG Shigui, JIA Xiaoping, YU Dahui. Sequence analysis of mitochondrial 16S rRNA of three dolphin species, Tursiops truncatus, Sousa chinensis and Steno bredanensis[J]. South China Fisheries Science, 2007, 3(4): 38-45.
    [9]ZHOU Fa-lin, JIANG Shi-gui, JIANG Yong-jie, HUANG Jian-hua, MA Zhi-ming. Polymorphism of mtDNA 16S rRNA gene and control region sequence in Penaeus monodon of Sanya, Hainan[J]. South China Fisheries Science, 2006, 2(6): 13-18.
    [10]JIANG Shigui, ZHANG Dianchang, LU: Junlin, LI Jianzhu. Phylogenetic relationships of three species of Labeoninae based on sequences of mitochondrial 16S rRNA genes[J]. South China Fisheries Science, 2005, 1(1): 1-5.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (568) PDF downloads (43) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return