SHI Xiaofei, WANG Xiao, WANG Yixi, SHI Jiangao, ZHANG Jian. Feeding biology of yellowfin tuna (Thunnus albacares) in tropical central and western Pacific Ocean[J]. South China Fisheries Science, 2022, 18(1): 43-51. DOI: 10.12131/20210140
Citation: SHI Xiaofei, WANG Xiao, WANG Yixi, SHI Jiangao, ZHANG Jian. Feeding biology of yellowfin tuna (Thunnus albacares) in tropical central and western Pacific Ocean[J]. South China Fisheries Science, 2022, 18(1): 43-51. DOI: 10.12131/20210140

Feeding biology of yellowfin tuna (Thunnus albacares) in tropical central and western Pacific Ocean

More Information
  • Received Date: May 09, 2021
  • Revised Date: June 07, 2021
  • Accepted Date: July 11, 2021
  • Available Online: August 05, 2021
  • We had collected 919 individuals of yellowfin tuna (Thunnus albacares) in the tropical central and western Pacific Ocean (163°14'E−173°35'E, 2°03'S−11°17'S) from May 2018 to February 2019 by pelagic longline fishing trageting tunas to analyze their size frequency and sex ratio. The feeding biology of 551 individulas was also studied. The effects of fork length, fishing water depth and lunar phase on feeding biology were analyzed by analysis of variance (ANOVA) and generalized linear mixed model (GLMM). The results show that: 1) The fork length range was 87−163 cm, and the sex ratio (female to male) was 1: 1.32. 2) The hollow stomach rate accounted for 33.76%. For tunas with non-empty stomach, the frequency of presense of sardines, squid and miscellaneous fish in stomach contents were 52.60%, 35.34% and 33.70%, respectively. 3) The ANOVA results show that fork length and lunar phase had significant effects on the Shannon-Weiner diversity index (H') and Pielou evenness index (J'), while month and water depth did not. 4) The feeding intensity was mainly at Level 0−2, and the empty stomach rate increased as the fork length increased. The proportion of high feeding intensity (Level 2−4) increased gradually as water depth increased. 5) The result of GLMM fit shows that biological factors (fork length and gender), spatial and temporal factors (cosine of lunar phase and water depth) had significant effects on the feeding intensity of yellowfin tuna.
  • [1]
    Food and Agriculture Organization of the United Nations. FAOSTAT statistics database[R]. Rome: FAO, 2018: 284-290.
    [2]
    Western and Central Pacific Fisheries Commission. Tuna fishery yearbook[R]. The Federated States of Micronesia: WCPFC, 2019: 139-144.
    [3]
    HOUSSARD P, LORRAIN A, TREMBLAY-BOYER L. Trophic position increases with thermocline depth in yellowfin and bigeye tuna across the western and central Pacific Ocean[J]. Prog Oceanogr, 2017, 154: 49-63. doi: 10.1016/j.pocean.2017.04.008
    [4]
    ASHLEY A, WILLIAMS J, VALERIE ALLAIN A, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the south Pacific Ocean[J]. Deep Sea Res II, 2015, 113(2): 154-169.
    [5]
    BORGNE R L, ALLAIN V, GRIFFITHS S P, et al. Vulnerability of open ocean food webs in the tropical Pacific to climate change[M].New York: Academic Press, 2011: 10-30.
    [6]
    SCHAEFER K M, FULLER D W, BLOCK B A. Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial eastern Pacific Ocean, ascertained through archival tag data[J]. Rev Fish Biol Fish, 2009, 9(2): 121-144.
    [7]
    DORTEL E, PECQUERIE L, CHASSOT E. A dynamic energy budget simulation approach to investigate the eco-physiological factors behind the two-stanza growth of yellowfin tuna (Thunnus albacares)[J]. Ecol Model, 2020, 437: 10927-10934.
    [8]
    陈丽雯. 太平洋黄鳍金枪鱼繁殖生物学研究[D]. 上海: 上海海洋大学, 2016: 4-10.
    [9]
    陈丽雯, 戴小杰, 朱江峰, 等. 热带太平洋雌性黄鳍金枪鱼繁殖生物学研究[J]. 上海海洋大学学报, 2016, 25(2): 237-245.
    [10]
    FREE C M, THORSON J T, PINSKY M L, et al. Impacts of historical warming on marine fisheries production[J]. Science, 2019, 363(6430): 979-983. doi: 10.1126/science.aau1758
    [11]
    PLAGANYI E. Climate change impacts on fisheries[J]. Science, 2019, 363(6430): 930-931. doi: 10.1126/science.aaw5824
    [12]
    BARANGE M, BAHRI T, BEVERIDGE M C, et al. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options[R]. Rome: FAO, 2018: 41-55.
    [13]
    ERAUSKIN-EXTRAMIANA M, ARRIZABALAGA H, HOBDAY A J, et al. Large-scale distribution of tuna species in a warming ocean[J]. GCB Bioenergy, 2019, 25(6): 2043-2060.
    [14]
    HAZEN E L, JORGENSEN S, RYKACZEWSKI R R, et al. Predicted habitat shifts of Pacific top predators in a changing climate[J]. Nat Clim Change, 2013, 3(3): 234-238. doi: 10.1038/nclimate1686
    [15]
    沈卉卉. 金枪鱼渔业资源管理制度研究[D]. 上海: 上海海洋大学, 2019: 15-20.
    [16]
    RUBIO I, GANZEDO U, HOBDAY A J, et al. Southward re-distribution of tropical tuna fisheries activity can be explained by technological and management change[J]. Fish Fish, 2020, 21(3): 511-521. doi: 10.1111/faf.12443
    [17]
    李志, 王家启, 田思泉. 印度洋黄鳍金枪鱼渔业管理策略评价的初步研究[J]. 上海海洋大学学报, 2016, 25(2): 255-262.
    [18]
    宋琼雅. 含有序分类变量的验证性因子分析模型[D]. 广州: 中山大学, 2020: 5-15.
    [19]
    高静. 结构方程模型中关于有序分类数据的处理方法[J]. 理论新探, 2012, 18(7): 19-21.
    [20]
    唐峰华, 戴澍蔚, 樊伟, 等. 西北太平洋公海日本鲭胃含物及其摄食等级研究[J]. 中国农业科技导报, 2020, 22(1): 143-153.
    [21]
    WENG J S, LEE M A, LIU K M, et al. Feeding ecology of juvenile yellowfin tuna from waters southwest of Taiwan inferred from stomach contents and stable isotope analysis[J]. Mar Coast Fish, 2016, 7(1): 537-548.
    [22]
    李波, 阳秀芬, 王锦溪, 等. 南海大眼金枪鱼 (Thunnus obesus) 摄食生态研究[J]. 海洋与湖沼, 2019, 50(2): 336-346. doi: 10.11693/hyhz20180900215
    [23]
    NEUHAUSER M, RUXTON G D. Circular statistics in R[M]. Oxford: Oxford University Press, 2013: 160-166.
    [24]
    ZUUR A F, IENO E N. A protocol for conducting and presenting results of regression-type analyses[J]. Method Ecol Evol, 2016, 7(6): 636-645. doi: 10.1111/2041-210X.12577
    [25]
    LANDER J P. R语言: 实用数据分析和可视化技术[M]. 蒋家坤, 译. 北京: 机械工业出版社, 2015: 184-190.
    [26]
    黄洪基, 许柳雄, 周成. 东太平洋南北部海域大眼金枪鱼生物学特性对比研究[J]. 中国水产科学, 2021, 28(2): 222-230.
    [27]
    田思泉, 李欢欢. 中西印度洋的黄鳍金枪鱼繁殖生物学研究[J]. 上海海洋大学学报, 2015, 24(4): 594-602.
    [28]
    朱伟俊, 许柳雄. 北太平洋长鳍金枪鱼渔业生物学特性的初步研究[J]. 大连海洋大学学报, 2015, 30(5): 546-552.
    [29]
    杨秀英. 生态位的概念及其测度内容[J]. 科技风, 2020(20): 124-128.
    [30]
    朱国平, 许柳雄, 周应祺, 等. 印度洋中西部水域黄鳍金枪鱼的食性及其季节性变化[J]. 水产学报, 2008, 32(5): 725-732.
    [31]
    陶雅晋, 莫檬, 何雄波. 南海黄鳍金枪鱼摄食习性及其随生长发育的变化[J]. 渔业科学进展, 2017, 38(4): 1-10.
    [32]
    OLSON R J, YOUNG J W, MENARD F, et al. Bioenergetics, trophic ecology, and niche separation of tunas[J]. Adv Mar Biol, 2016, 74: 199-344.
    [33]
    白艳勤, 陈求稳, 许勇, 等. 光驱诱技术在鱼类保护中的应用[J]. 水生态学杂志, 2013, 34(4): 85-88. doi: 10.3969/j.issn.1674-3075.2013.04.018
    [34]
    陈峰, 郭爱, 朱文斌. 南太平洋所罗门群岛海域黄鳍金枪鱼繁殖生物学研究[J]. 热带海洋学报, 2014, 33(2): 45-51. doi: 10.3969/j.issn.1009-5470.2014.02.006
    [35]
    颜云榕. 北部湾主要鱼类摄食生态及食物关系的研究[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2010: 3-9.
    [36]
    张波. 应用稳定同位素技术研究崂山湾夏季鱼类群落的摄食生态[J]. 水产学报, 2006, 40(4): 585-594.
    [37]
    朱国平, 刘维, 戴小杰, 等. 热带太平洋中东部大眼金枪鱼摄食强度的时空变化[J]. 大连海洋大学学报, 2011, 26(1): 68-73. doi: 10.3969/j.issn.1000-9957.2011.01.013
    [38]
    杨胜龙, 史慧敏, 范秀梅, 等. 热带中西太平洋黄鳍金枪鱼栖息水层空间分析 [J]. 中国农业科技导报, 2021. DOI: 10.13304/j.nykjdb.2020.0514.
    [39]
    宋利明, 张智. 月相和延绳钓不同投绳时间对大眼金枪鱼和黄鳍金枪鱼渔获率的影响[J]. 大连海洋大学学报, 2010, 25(3): 214-218. doi: 10.3969/j.issn.1000-9957.2010.03.005
    [40]
    SANTOS M, GARCIA A. The influence of the moon phase on the CPUE for the Portuguese swordfish (Xiphias gladius L, 1758) fishery[J]. ICCAT Col Vol Sci Pap, 2005, 58(4): 1466-1469.
  • Related Articles

    [1]CHEN Chen, HAO Shuxian, CEN Jianwei, HUANG Hui, ZHAO Yongqiang, WEI Ya, YANG Shaoling. Impact of low-temperature acclimation on antioxidant capacity and gilltissue structure of Micropterus salmoides[J]. South China Fisheries Science, 2025, 21(3): 169-179. DOI: 10.12131/20240297
    [2]HU Xiaona, WU Xingbing, ZHU Yongjiu, CHEN Siqi, SHI Zechao, ZHANG Yuansong, WANG Long, LI Xiaoli, LI Xuemei. Effects of stocking density on growth performance and physiological and biochemical parameters of Pelteobagrus vachelli juvenile[J]. South China Fisheries Science, 2025, 21(3): 141-148. DOI: 10.12131/20240266
    [3]QIAN Zhenjia, XU Jincheng, LIU Huang, CUI Mingchao, ZHANG Chenglin. Effects of flow velocity on growth performance and physiological and biochemical indexes of large yellow croaker (Larimichthys crocea) in welfare aquaculture[J]. South China Fisheries Science, 2025, 21(3): 53-63. DOI: 10.12131/20250036
    [4]JIANG Yongsheng, ZHOU Shanshan, ZHOU Yongdong, XU Kaida, ZHEN Xiaoman, JIAO Lishi, ZHANG Qiuhong, QU Yao. Effects of water temperature in transportation on mortality and physiological indicators of Sepiella japonica[J]. South China Fisheries Science, 2024, 20(4): 107-115. DOI: 10.12131/20240089
    [5]QIU Yuyan, ZHANG Zhiyong, CHEN Shuyin, NI Kewen, JIA Chaofeng, MENG Qian, ZHU Fei, ZHANG Zhiwei, TANG Xiaojian. Comparative study on feeding frequency of hybrid F2 of Acanthopagrus schlegelii ♀ × Pagrus major♂ and A. schlegelii[J]. South China Fisheries Science, 2022, 18(1): 59-67. DOI: 10.12131/20210081
    [6]OU Youjun, CHEN Shixi, WANG Pengfei, LI Jia'er, WEN Jiufu, WANG Wen, XIE Mujiao. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hyp-oxia stress[J]. South China Fisheries Science, 2017, 13(3): 120-124. DOI: 10.3969/j.issn.2095-0780.2017.03.016
    [7]OU Zekui, LIU Dongchao, XIE Enyi, FENG Nuanyi, HE Xiu. Biotoxcity of Hg2+, Cd2+ and Pb2+in germlings of Sargassum zhangii Tseng et Lu in seawater[J]. South China Fisheries Science, 2016, 12(5): 43-52. DOI: 10.3969/j.issn.2095-0780.2016.05.006
    [8]CHEN Yucui, CHEN Jinyun. Toxic effect of heavy metal ions of Cu2+, Cd2+ and Hg2+ on embryo development of zebrafish (Danio rerio)[J]. South China Fisheries Science, 2016, 12(3): 35-42. DOI: 10.3969/j.issn.2095-0780.2016.03.005
    [9]FU Guiquan, HAN Tingting, GONG Xiuyu, HUANG Honghui. Effect of Cu2+stress on growth and physiological biochemical of Sargassum hemiphyllum[J]. South China Fisheries Science, 2015, 11(4): 34-39. DOI: 10.3969/j.issn.2095-0780.2015.04.005
    [10]YUAN Fenghua, LIN Heizhe, LI Zhuojia, LU Xin, YANG Qibin. Effects of dietary Bacillus licheniformis on blood physiological-biochemical indices in cultured Lates calarifer[J]. South China Fisheries Science, 2009, 5(2): 45-50. DOI: 10.3969/j.issn.1673-2227.2009.02.008
  • Cited by

    Periodical cited type(4)

    1. 景晓萱,艾晓寒,阮港,潘炜,毕永红,李渊. 汞对单细胞蓝藻——集胞藻的光合系统的毒性效应. 生态毒理学报. 2024(06): 283-291 .
    2. 张鹏,刘玮,王铁杆,钟晨辉,陶月良. 无机砷短期胁迫对铜藻幼苗氧化损伤、抗氧化酶及抗氧化物的影响. 生态环境学报. 2021(05): 1034-1041 .
    3. 彭方,胡超. 钝顶螺旋藻耐Cd性能及其生理响应. 湖北工程学院学报. 2021(06): 37-41 .
    4. 江莹莹,金鹏,曾晓鹏,卫燕云,夏建荣. 海洋酸化影响重金属Cd对石莼的生理学毒性. 广州大学学报(自然科学版). 2019(06): 80-87 .

    Other cited types(7)

Catalog

    Recommendations
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effects of acute hypoxia stress on respiratory metabolism and related gene expression of juvenilebabylonia areolate
    REN Xiaoyao et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effect of high temperature stress on intestinal tissues morphology and transcriptome ofprocambarus clarkii
    BAO Zhiming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Analysis of changes in intestinal structure and microbial composition inelentheronema tetradactylumjuvenile at different days of age
    FENG Yuantai et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Physiological effects of cadmium stress ontapes dorsatus
    He Yuning et al., NATURAL SCIENCE OF HAINAN UNVERSITY, 2023
    Physiological responses ofsedum alfrediihance to low temperature stress and analysis of transcriptome and metabolome
    NIE Yang-yang et al., JOURNAL OF SOUTHERN AGRICULTURE, 2025
    Pharmacological regulation of endoplasmic reticulum structure and calcium dynamics: importance for diseases
    Parkkinen, Ilmari et al., PHARMACOLOGICAL REVIEWS, 2023
    Biological effects of human exposure to environmental cadmium
    Peana, Massimiliano et al., BIOMOLECULES, 2023
    Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal panoptosis by modulating microglial polarization
    PHYTOMEDICINE
    Knocking-down annexin a3 suppresses inflammation, oxidative stress, apoptosis, and endoplasmic reticulum stress to attenuate sepsis-induced acute kidney injury in hk2 cells
    CYTOJOURNAL, 2024
    Powered by
    Article views (692) PDF downloads (63) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return