SUI Liuyang, HUANG Xiaohua, LIU Haiyang, HU Yu, YUAN Taiping, WANG Shaomin, TAO Qiyou. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science, 2021, 17(4): 98-108. DOI: 10.12131/20210049
Citation: SUI Liuyang, HUANG Xiaohua, LIU Haiyang, HU Yu, YUAN Taiping, WANG Shaomin, TAO Qiyou. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science, 2021, 17(4): 98-108. DOI: 10.12131/20210049

Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage

More Information
  • Received Date: January 27, 2021
  • Revised Date: March 16, 2021
  • Accepted Date: March 28, 2021
  • Available Online: April 06, 2021
  • We established a numerical model for calculating the dynamic characteristics of a triangular high-density polyethylene (HDPE) deep-water aquaculture cage in waves and current based on the Finite Element Method. To verify the accuracy of the numerical model, we carried out a series of physical model tests on the single-point mooring (SPM) cage under the conditions of pure wave and combined wave-current, in which the model scale was set at 1∶15. The relative error between the numerical and experimental results was within 10%. Afterwards, considering the sea state of the prototype cage, the calculated parameters for waves and currents were as follows: wave height 4–6 m, period 9 s, current velocity 0.5–1.5 m·s−1. We analyzed the deformation of the floating collar and the mooring force of the cage with single-point mooring (SPM) and multiple-point mooring (MPM). Besides, we discussed the effect of the mooring pattern on the motion characteristics of the cage. The results show that under the conditions of wave and current, the peak value of MPM force was higher than that of SPM force, and the difference became greater with the increase of velocity and wave height. Under the condition of severe waves and strong currents, the MPM system could reduce the deformation of the floating collar. However, the mooring pattern had little influence on the heave of the cage collar. For the MPM system, the x-axis displacement of the collar was greater than that of the SPM system, in which the difference was 25.64%. During a wave period, the xz plane profiles of the net deformation under sea conditions were almost the same for the two different mooring systems.
  • [1]
    农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 21-22.
    [2]
    LEE C, KIM Y, LEE G, et al. Dynamic simulation of a fish cage system subjected to currents and waves[J]. Ocean Engin, 2008, 35(14): 1521-1532.
    [3]
    HUANG C C, PAN J. Mooring line fatigue: a risk analysis for an SPM cage system[J]. Aquacult Engin, 2010, 42(1): 8-16. doi: 10.1016/j.aquaeng.2009.09.002
    [4]
    SHAINEE M, DECEW J, LEIRA B J, et al. Numerical simulation of a self-submersible SPM cage system in regular waves with following currents[J]. Aquacult Engin, 2013, 54: 29-37. doi: 10.1016/j.aquaeng.2012.10.007
    [5]
    FREDRIKSSON D W, DECEW J, TSUKROV I, et al. Development of large fish farm numerical modeling techniques with in situ mooring tension comparisons[J]. Aquacult Engin, 2007, 36(2): 137-148. doi: 10.1016/j.aquaeng.2006.10.001
    [6]
    ZHAO Y P, LI Y C, DONG G H, et al. Numerical simulation of hydrodynamic behaviors of gravity cage in current and waves[J]. Int J Offshore Polar Engin, 2009, 19(2): 97-107.
    [7]
    ZHAO Y P, GUI F K, XU T J, et al. Numerical analysis of dynamic behavior of a box-shaped net cage in pure waves and current[J]. Appl Ocean Res, 2013, 39: 158-167. doi: 10.1016/j.apor.2012.12.002
    [8]
    DECEW J, FREDRIKSSON D W, LADER P F, et al. Field measuremments of cage deformation using acoustic sensors[J]. Aquacult Engin, 2013, 57: 114-125. doi: 10.1016/j.aquaeng.2013.09.006
    [9]
    DING D L, LIU W H, OU C H. Use of non-linear regression to evaluate drag force and volume coefficient of structure of square cage[J]. Fish Sci, 2007, 73(6): 1249-1256.
    [10]
    XU T J, ZHAO Y P, DONG G H. Analysis of hydrodynamic behavior of a submersible net cage and mooring system in waves and current[J]. Appl Ocean Res, 2013, 42: 155-167. doi: 10.1016/j.apor.2013.05.007
    [11]
    MOE H, FREDHEIM A, HOPPERSTAD O S. Structural analysis of aquaculture net cages in current[J]. J Fluid Struct, 2010, 26(3): 503-516. doi: 10.1016/j.jfluidstructs.2010.01.007
    [12]
    LADER P F, ENERHAUG B. Experimental investigation of forces and geometry of a net cage in uniform flow[J]. IEEE J Oceanic Engin, 2005, 30(1): 79-84. doi: 10.1109/JOE.2004.841390
    [13]
    STRAND I M, SØRENSEN A J, VOLENT Z, et al. Experimental study of current forces and deformations on a half ellipsoidal closed flexible fish cage[J]. J Fluid Struct, 2016, 65: 108-120. doi: 10.1016/j.jfluidstructs.2016.05.011
    [14]
    崔勇, 关长涛, 黄滨, 等. 波浪作用下双层网底鲆鲽网箱水动力特性的数值模拟[J]. 渔业科学进展, 2019, 40(6): 18-24.
    [15]
    SU B, KELASIDI E, FRANK K, et al. An integrated approach for monitoring structural deformation of aquaculture net cages[J]. Ocean Engin, 2021, 219: 108424. doi: 10.1016/j.oceaneng.2020.108424
    [16]
    刘海阳, 胡昱, 黄小华, 等. 深水网箱浮架结构的失效及疲劳性能分析[J]. 农业工程学报, 2020, 36(3): 46-54. doi: 10.11975/j.issn.1002-6819.2020.03.006
    [17]
    CHEN Y Y, YANG B D, CHEN Y T. Applying a 3-D image measurement technique exploring the deformation of net cage under wave-current interaction[J]. Ocean Engin, 2019, 173: 823-834. doi: 10.1016/j.oceaneng.2019.01.017
    [18]
    TANG M F, XU T J, DONG G H, et al. Numerical simulation of the effects of fish behavior on flow dynamics around net cage[J]. Appl Ocean Res, 2017, 64: 258-280. doi: 10.1016/j.apor.2017.03.006
    [19]
    DONG G H, HAO S H, ZHAO Y P, et al. Elastic responses of a flotation ring in water waves[J]. J Fluid Struct, 2009, 26(1): 176-192.
    [20]
    FREDRIKSSON D W, DECEW J, TSUKROV I. Development of structural modeling techniques for evaluating HDPE plastic net pens used in marine aquaculture[J]. Ocean Engin, 2007, 34(16): 2124-2137. doi: 10.1016/j.oceaneng.2007.04.007
    [21]
    LI L, FU S X, XU Y W, et al. Dynamic responses of floating fish cage in waves and current[J]. Ocean Engin, 2013, 72: 297-303. doi: 10.1016/j.oceaneng.2013.07.004
    [22]
    HUANG C C, TANG H J, LIU J Y. Effects of waves and currents on gravity-type cages in the open sea[J]. Aquacult Engin, 2008, 38(2): 105-116. doi: 10.1016/j.aquaeng.2008.01.003
    [23]
    KRISTIANSEN T, FALTINSEN O M. Modelling of current loads on aquaculture net cages[J]. J Fluid Struct, 2012, 34: 218-235. doi: 10.1016/j.jfluidstructs.2012.04.001
    [24]
    KRISTIANSEN T, FALTINSEN O M. Experimental and numerical study of an aquaculture net cage with floater in waves and current[J]. J Fluid Struct, 2015, 54: 1-26. doi: 10.1016/j.jfluidstructs.2014.08.015
    [25]
    GOUDEY C A, LOVERICH G, KITE-POWELL H, et al. Mitigating the environmental effects of mariculture through single-point moorings (SPMs) and drifting cages[J]. ICES J Mar Sci, 2001, 58(2): 497-503. doi: 10.1006/jmsc.2000.1033
    [26]
    DECEW J, TSUKROV I, RISSO A, et al. Modeling of dynamic behavior of a single-point moored submersible fish cage under currents[J]. Aquacult Engin, 2010, 43(2): 38-45. doi: 10.1016/j.aquaeng.2010.05.002
    [27]
    王绍敏, 袁太平, 陶启友, 等. 往复流作用下深水网箱的单锚腿系泊系统设计及效用评估[J]. 海洋渔业, 2019, 41(6): 725-735. doi: 10.3969/j.issn.1004-2490.2019.06.009
    [28]
    梁家铭, 庞亮, 董胜. 新型网箱浮架系统水动力分析及系泊方式研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(2): 119-126.
    [29]
    Orcina Ltd. OrcaFlex manual Version 10.0a[M]. Cumbria: Ulverston, 2015: 187-189.
    [30]
    杨然哲, 朱克强, 荆彪, 等. 沉降式网箱群动力学分析[J]. 水动力学研究与进A辑, 2015, 30(1): 83-91.
    [31]
    HUANG X H, GUO G X, TAO Q Y, et al. Dynamic deformation of the floating collar of a net cage under the combined effect of waves and current[J]. Aquacult Engin, 2018, 83: 47-56. doi: 10.1016/j.aquaeng.2018.08.002
    [32]
    薛守义. 弹塑性力学[M]. 北京: 中国建材工业出版社, 2005: 201-206.
  • Related Articles

    [1]LI Jiangtao, ZHANG Yanqiu, ZHANG Hong, LIU Chun, QIU Xiaolong, CHEN Ming, FANG Junchao, QIU Xiaotong, LIN Li, LYU Xiaojing. Effects of density stress on swimming behavior and muscle energy metabolism of Micropterus salmoides[J]. South China Fisheries Science, 2024, 20(2): 102-110. DOI: 10.12131/20230176
    [2]BAO Junjie, WANG Yongjie, CHEN Honglian, SUN Wen, ZHANG Jing, ZHOU Beibei. Untargeted metabolomics analysis of metabolic differences of crayfish (Procambarus clarkii)  meat with different diets[J]. South China Fisheries Science, 2023, 19(5): 104-112. DOI: 10.12131/20230055
    [3]CHEN Zhizhao, ZHU Tao, LEI Caixia, JIANG Peng, DU Jinxing, ZHU Junjie, SONG Hongmei, LI Shengjie. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates[J]. South China Fisheries Science, 2023, 19(5): 75-85. DOI: 10.12131/20230020
    [4]LIU Jiaxing, GUO Huayang, ZHU Kecheng, LIU Baosuo, ZHANG Nan, XIAN Lin, ZHANG Dianchang. Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2023, 19(4): 116-125. DOI: 10.12131/20230030
    [5]CHEN Li, XU Jiaxin, LI Liujia, ZHAO Chengfa, LONG Xiaowen. Effects of dietary fishmeal replacement by Periplaneta americana meal on biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss[J]. South China Fisheries Science, 2023, 19(4): 86-97. DOI: 10.12131/20220208
    [6]LIU Guangxin, DONG Yanjun, ZHAO Lijuan, DENG Yiqin, CHENG Changhong, MA Hongling, JIANG Jianjun, FENG Juan, GUO Zhixun, LIN Li. Sequencing of whole genome of Bacillus velezensis LG37 and screening of inorganic nitrogen metabolism candidate genes[J]. South China Fisheries Science, 2022, 18(3): 57-67. DOI: 10.12131/20210149
    [7]ZHANG Guilin, ZHANG Yating, JIANG Hong, LIU Zhen, MAO Xiangzhao. Metabolic engineering synthesis of neoxanthin, a key precursor of fucoxanthin[J]. South China Fisheries Science, 2022, 18(2): 57-65. DOI: 10.12131/20210316
    [8]SUN Caiyun, DONG Hongbiao, WANG Wenhao, LI Yong, GU Qunhong, DUAN Yafei, ZHANG Jiasong, XU Xiaodong. Effects of glycerol monolaurate on lipid metabolism of Lateolabrax maculatus[J]. South China Fisheries Science, 2021, 17(1): 67-75. DOI: 10.12131/20200130
    [9]CHEN Zicong, CHEN Pimao, YUAN Huarong, FENG Xue, TONG Fei, ZHANG Haoming. Study on respiratory metabolism changes of juvenile Penaeus monodon following strenuous activity[J]. South China Fisheries Science, 2020, 16(4): 75-83. DOI: 10.12131/20200017
    [10]LIU Yong, SHI Kuntao, ZHANG Shaohua, YUAN Yongdang. Advancement of respiratory metabolism study in bivalve mollusus[J]. South China Fisheries Science, 2007, 3(4): 65-69.
  • Cited by

    Periodical cited type(20)

    1. 田思泉,柳晓雪,花传祥,王寅,杜涣洋. 南海渔业资源状况及其管理挑战. 上海海洋大学学报. 2024(03): 786-798 .
    2. 刘子凯,许友伟,蔡研聪,孙铭帅,张魁,陈作志. 基于长度数据的南海北部深水金线鱼资源评估. 南方水产科学. 2024(04): 24-33 . 本站查看
    3. 张曼,王雪辉,王淼娣,杜飞雁,孙典荣,王亮根,王跃中,许柳雄,邱永松. 基于长度贝叶斯生物量估算法的北部湾带鱼资源评估. 海洋学报. 2022(01): 11-21 .
    4. 李亚男,杨炳忠,张鹏,李杰,王腾,晏磊. 南海北部拖网对蓝圆鲹的选择性研究. 南方水产科学. 2022(03): 170-176 . 本站查看
    5. 史登福,张魁,蔡研聪,许友伟,孙铭帅,徐姗楠,朱江峰,陈作志. 数据有限条件下珠江口棘头梅童鱼资源状况评估. 海洋渔业. 2022(04): 435-445 .
    6. 崔明远,田思泉,麻秋云,范青松. 基于单位补充量模型的浙江南部海域蓝圆鲹资源评价. 水产科学. 2022(05): 727-737 .
    7. 王薇,陈国宝,牛麓连. 不同捕捞方式下南海北部海域鲹类渔场的时空分布. 广东海洋大学学报. 2022(06): 74-80 .
    8. 粟丽,陈作志,张魁,许友伟,邱永松. 基于底拖网调查数据的渔业资源质量状况评价体系构建——以北部湾为例. 广东海洋大学学报. 2021(01): 10-16 .
    9. 邓裕坚,易木荣,李波,刘思杓,邱康文,沈春燕,何雄波,颜云榕. 北部湾春季多齿蛇鲻生物学特征及其年际变化. 渔业科学进展. 2021(02): 36-44 .
    10. 何雄波,李波,王锦溪,易木荣,康斌,颜云榕. 不同时期北部湾日本带鱼营养生态位差异. 应用生态学报. 2021(02): 683-690 .
    11. 王开立,陈作志,许友伟,孙铭帅,王欢欢,蔡研聪,张魁,徐姗楠. 南海北部近海蓝圆鲹渔业生物学特征研究. 海洋渔业. 2021(01): 12-21 .
    12. 吴新燕,梁宏伟,罗相忠,沙航,邹桂伟. 不同月龄长丰鲢形态性状对体质量的影响. 南方水产科学. 2021(03): 62-69 . 本站查看
    13. 史登福,许友伟,孙铭帅,黄梓荣,陈作志,张魁. 广东海洋渔业资源可捕量评估. 海洋渔业. 2021(05): 521-531 .
    14. 熊朋莉,陈作志,侯刚,张帅,邱永松,范江涛,徐姗楠. 珠江河口棘头梅童鱼生物学特征的年代际变化. 南方水产科学. 2021(06): 31-38 . 本站查看
    15. 朱书礼,李跃飞,武智,李捷,夏雨果,杨计平,李新辉. 基于体长频率数据的西江封开段赤眼鳟可捕规格与资源保护研究. 南方水产科学. 2020(04): 1-7 . 本站查看
    16. 洪小帆,张俊,江艳娥,蔡研聪,杨玉滔,王欢欢,李纲,陈作志. 南海西沙群岛琛航岛犬牙锥齿鲷生物学特征. 生态学杂志. 2020(10): 3320-3331 .
    17. 史登福,张魁,蔡研聪,耿平,许友伟,孙铭帅,陈作志. 南海北部带鱼群体结构及生长、死亡和性成熟参数估计. 南方水产科学. 2020(05): 51-59 . 本站查看
    18. 崔明远,陈伟峰,戴黎斌,麻秋云. 浙江南部海域蓝圆鲹生长异质性及死亡特征. 中国水产科学. 2020(12): 1427-1437 .
    19. 李忠炉,张文旋,何雄波,颜云榕. 南海北部湾秋季蓝圆鲹与竹筴鱼的摄食生态及食物竞争. 广东海洋大学学报. 2019(03): 79-86 .
    20. 王言丰,余景,陈丕茂,于杰,刘祝楠. 北部湾灯光罩网渔场时空分布与海洋环境关系分析. 热带海洋学报. 2019(05): 68-76 .

    Other cited types(13)

Catalog

    Article views (669) PDF downloads (73) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return