Citation: | SUI Liuyang, HUANG Xiaohua, LIU Haiyang, HU Yu, YUAN Taiping, WANG Shaomin, TAO Qiyou. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science, 2021, 17(4): 98-108. DOI: 10.12131/20210049 |
[1] |
农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 21-22.
|
[2] |
LEE C, KIM Y, LEE G, et al. Dynamic simulation of a fish cage system subjected to currents and waves[J]. Ocean Engin, 2008, 35(14): 1521-1532.
|
[3] |
HUANG C C, PAN J. Mooring line fatigue: a risk analysis for an SPM cage system[J]. Aquacult Engin, 2010, 42(1): 8-16. doi: 10.1016/j.aquaeng.2009.09.002
|
[4] |
SHAINEE M, DECEW J, LEIRA B J, et al. Numerical simulation of a self-submersible SPM cage system in regular waves with following currents[J]. Aquacult Engin, 2013, 54: 29-37. doi: 10.1016/j.aquaeng.2012.10.007
|
[5] |
FREDRIKSSON D W, DECEW J, TSUKROV I, et al. Development of large fish farm numerical modeling techniques with in situ mooring tension comparisons[J]. Aquacult Engin, 2007, 36(2): 137-148. doi: 10.1016/j.aquaeng.2006.10.001
|
[6] |
ZHAO Y P, LI Y C, DONG G H, et al. Numerical simulation of hydrodynamic behaviors of gravity cage in current and waves[J]. Int J Offshore Polar Engin, 2009, 19(2): 97-107.
|
[7] |
ZHAO Y P, GUI F K, XU T J, et al. Numerical analysis of dynamic behavior of a box-shaped net cage in pure waves and current[J]. Appl Ocean Res, 2013, 39: 158-167. doi: 10.1016/j.apor.2012.12.002
|
[8] |
DECEW J, FREDRIKSSON D W, LADER P F, et al. Field measuremments of cage deformation using acoustic sensors[J]. Aquacult Engin, 2013, 57: 114-125. doi: 10.1016/j.aquaeng.2013.09.006
|
[9] |
DING D L, LIU W H, OU C H. Use of non-linear regression to evaluate drag force and volume coefficient of structure of square cage[J]. Fish Sci, 2007, 73(6): 1249-1256.
|
[10] |
XU T J, ZHAO Y P, DONG G H. Analysis of hydrodynamic behavior of a submersible net cage and mooring system in waves and current[J]. Appl Ocean Res, 2013, 42: 155-167. doi: 10.1016/j.apor.2013.05.007
|
[11] |
MOE H, FREDHEIM A, HOPPERSTAD O S. Structural analysis of aquaculture net cages in current[J]. J Fluid Struct, 2010, 26(3): 503-516. doi: 10.1016/j.jfluidstructs.2010.01.007
|
[12] |
LADER P F, ENERHAUG B. Experimental investigation of forces and geometry of a net cage in uniform flow[J]. IEEE J Oceanic Engin, 2005, 30(1): 79-84. doi: 10.1109/JOE.2004.841390
|
[13] |
STRAND I M, SØRENSEN A J, VOLENT Z, et al. Experimental study of current forces and deformations on a half ellipsoidal closed flexible fish cage[J]. J Fluid Struct, 2016, 65: 108-120. doi: 10.1016/j.jfluidstructs.2016.05.011
|
[14] |
崔勇, 关长涛, 黄滨, 等. 波浪作用下双层网底鲆鲽网箱水动力特性的数值模拟[J]. 渔业科学进展, 2019, 40(6): 18-24.
|
[15] |
SU B, KELASIDI E, FRANK K, et al. An integrated approach for monitoring structural deformation of aquaculture net cages[J]. Ocean Engin, 2021, 219: 108424. doi: 10.1016/j.oceaneng.2020.108424
|
[16] |
刘海阳, 胡昱, 黄小华, 等. 深水网箱浮架结构的失效及疲劳性能分析[J]. 农业工程学报, 2020, 36(3): 46-54. doi: 10.11975/j.issn.1002-6819.2020.03.006
|
[17] |
CHEN Y Y, YANG B D, CHEN Y T. Applying a 3-D image measurement technique exploring the deformation of net cage under wave-current interaction[J]. Ocean Engin, 2019, 173: 823-834. doi: 10.1016/j.oceaneng.2019.01.017
|
[18] |
TANG M F, XU T J, DONG G H, et al. Numerical simulation of the effects of fish behavior on flow dynamics around net cage[J]. Appl Ocean Res, 2017, 64: 258-280. doi: 10.1016/j.apor.2017.03.006
|
[19] |
DONG G H, HAO S H, ZHAO Y P, et al. Elastic responses of a flotation ring in water waves[J]. J Fluid Struct, 2009, 26(1): 176-192.
|
[20] |
FREDRIKSSON D W, DECEW J, TSUKROV I. Development of structural modeling techniques for evaluating HDPE plastic net pens used in marine aquaculture[J]. Ocean Engin, 2007, 34(16): 2124-2137. doi: 10.1016/j.oceaneng.2007.04.007
|
[21] |
LI L, FU S X, XU Y W, et al. Dynamic responses of floating fish cage in waves and current[J]. Ocean Engin, 2013, 72: 297-303. doi: 10.1016/j.oceaneng.2013.07.004
|
[22] |
HUANG C C, TANG H J, LIU J Y. Effects of waves and currents on gravity-type cages in the open sea[J]. Aquacult Engin, 2008, 38(2): 105-116. doi: 10.1016/j.aquaeng.2008.01.003
|
[23] |
KRISTIANSEN T, FALTINSEN O M. Modelling of current loads on aquaculture net cages[J]. J Fluid Struct, 2012, 34: 218-235. doi: 10.1016/j.jfluidstructs.2012.04.001
|
[24] |
KRISTIANSEN T, FALTINSEN O M. Experimental and numerical study of an aquaculture net cage with floater in waves and current[J]. J Fluid Struct, 2015, 54: 1-26. doi: 10.1016/j.jfluidstructs.2014.08.015
|
[25] |
GOUDEY C A, LOVERICH G, KITE-POWELL H, et al. Mitigating the environmental effects of mariculture through single-point moorings (SPMs) and drifting cages[J]. ICES J Mar Sci, 2001, 58(2): 497-503. doi: 10.1006/jmsc.2000.1033
|
[26] |
DECEW J, TSUKROV I, RISSO A, et al. Modeling of dynamic behavior of a single-point moored submersible fish cage under currents[J]. Aquacult Engin, 2010, 43(2): 38-45. doi: 10.1016/j.aquaeng.2010.05.002
|
[27] |
王绍敏, 袁太平, 陶启友, 等. 往复流作用下深水网箱的单锚腿系泊系统设计及效用评估[J]. 海洋渔业, 2019, 41(6): 725-735. doi: 10.3969/j.issn.1004-2490.2019.06.009
|
[28] |
梁家铭, 庞亮, 董胜. 新型网箱浮架系统水动力分析及系泊方式研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(2): 119-126.
|
[29] |
Orcina Ltd. OrcaFlex manual Version 10.0a[M]. Cumbria: Ulverston, 2015: 187-189.
|
[30] |
杨然哲, 朱克强, 荆彪, 等. 沉降式网箱群动力学分析[J]. 水动力学研究与进A辑, 2015, 30(1): 83-91.
|
[31] |
HUANG X H, GUO G X, TAO Q Y, et al. Dynamic deformation of the floating collar of a net cage under the combined effect of waves and current[J]. Aquacult Engin, 2018, 83: 47-56. doi: 10.1016/j.aquaeng.2018.08.002
|
[32] |
薛守义. 弹塑性力学[M]. 北京: 中国建材工业出版社, 2005: 201-206.
|
[1] | LIAO Zujun, WANG Xuefeng, ZHOU Yanbo, ZHANG Lei, LYU Shaoliang, WU Qia'er, DONG Jianyu, MA Shengwei. Analysis of effects of environmental factors on Sthenoteuthis oualaniensis based on structural equation model[J]. South China Fisheries Science, 2024, 20(2): 11-18. DOI: 10.12131/20230127 |
[2] | ZHAO Lianling, LIU Huaxue, RAO Yiyong, LIAO Xiuli, DAI Ming, HUANG Honghui. Seawater quality assessment method based on improved grey relational degree clustering: a case study of Daya Bay[J]. South China Fisheries Science, 2024, 20(1): 141-150. DOI: 10.12131/20230031 |
[3] | YANG Wenchao, HUANG Daojian, CHEN Jixin, CHEN Xiaoyan, WANG Yushan, SUN Limei. Tempo-spatial distribution and ecological risk assessment of heavy metals in surface sediments of Daya Bay during 2010−2018[J]. South China Fisheries Science, 2020, 16(4): 39-46. DOI: 10.12131/20200035 |
[4] | YU Jing, HU Qiwei, YUAN Huarong, CHEN Pimao. Effect assessment of summer fishing moratorium in Daya Bay based on remote sensing data[J]. South China Fisheries Science, 2018, 14(3): 1-9. DOI: 10.3969/j.issn.2095−0780.2018.03.001 |
[5] | MO Baolin, QIN Chuanxin, CHEN Pimao, DIAO Yingjiao, YUAN Huarong, LI Xiaoguo, TONG Fei, FENG Xue. Preliminary analysis of structure and function of Daya Bay ecosystem based on Ecopath model[J]. South China Fisheries Science, 2017, 13(3): 9-19. DOI: 10.3969/j.issn.2095-0780.2017.03.002 |
[6] | TANG Fenghua, CUI Xuesen, YANG Shenglong, ZHOU Weifeng, CHENG Tianfei, WU Zuli, ZHANG Heng. GIS analysis on effect of temporal and spatial patterns of marine environment on purse seine fishery in the western and central Pacific[J]. South China Fisheries Science, 2014, 10(2): 18-26. DOI: 10.3969/j.issn.2095-0780.2014.02.003 |
[7] | WANG Zenghuan, KE Changliang, WANG Xunuo, LI Liudong. Marine environmental quality assessment of shellfish culture in Liusha Bay[J]. South China Fisheries Science, 2011, 7(3): 24-30. DOI: 10.3969/j.issn.2095-0780.2011.03.005 |
[8] | CUI He, LIU Qun, WANG Yanjun. Application of a continuous Fox-form production model in fishery stock assessment[J]. South China Fisheries Science, 2008, 4(2): 34-42. |
[9] | LI Zhan-dong, LIN Qin. The application of BP artificial neural networks on assessment of seawater quality at Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(4): 47-54. |
[10] | WANG Xue-hui, DU Fei-yan, QIU Yong-song, LI Chun-hou, HUANG Hong-hui, SUN Dian-rong, JIA Xiao-ping. Study on the ecosystem model of Daya Bay I. A preliminary approach on energy flow model[J]. South China Fisheries Science, 2005, 1(3): 1-8. |
1. |
陈苏南,孔雪,宋满宗,蔡月凤,智颖,申欣. 低温暴露对菲律宾蛤仔免疫指标和基因表达的影响. 大连海洋大学学报. 2025(01): 12-24 .
![]() | |
2. |
杨栋,韩雨婷,高葛琪,王杰,牛东红. 不同低盐驯化方式对缢蛏行为及生理的影响. 上海海洋大学学报. 2024(05): 1120-1131 .
![]() | |
3. |
张文馨,潘霞,沈锡权,徐永健. 盐度胁迫对幼体大海马基因转录表达的影响. 水生生物学报. 2021(05): 995-1004 .
![]() | |
4. |
张玉晗,谢晶. 包装充氧量对无水活运花鲈鳃组织结构及相关酶活性的影响. 食品科学. 2020(15): 269-274 .
![]() | |
5. |
李笑,曲艺,张倩倩,张天宇,曹瑞文,赵建民. 海水酸化和热应激对日本鼓虾氧化应激和能量代谢的影响. 海洋与湖沼. 2020(06): 1412-1421 .
![]() | |
6. |
王尧,曹善茂. 盐度对岩扇贝Na~+/K~+-ATP酶活性的影响. 科技风. 2019(07): 241-243+245 .
![]() | |
7. |
胡琼,李胜忠,曹景成,初洪伟. 葡萄糖、丙三醇和盐对厚唇裂腹鱼精子活力的调控研究. 南方水产科学. 2019(02): 38-46 .
![]() | |
8. |
陈丽梅,刘利华,胡宏辉,秦艺铭,周文礼,孙敬锋,郭永军. 温度突变对毛蚶不同组织抗氧化酶活性的影响. 水产科学. 2019(04): 435-442 .
![]() | |
9. |
朱克诚,刘宝锁,曹明,郭华阳,张楠,张殿昌. 华贵栉孔扇贝MEF2Cs基因克隆及表达特征分析. 淡水渔业. 2018(02): 32-38 .
![]() | |
10. |
林岗,饶小珍,吴静,岑万. 低盐胁迫对华贵栉孔扇贝抗氧化酶、Na~+/K~+-ATPase活力的影响. 福建师范大学学报(自然科学版). 2018(01): 71-78 .
![]() | |
11. |
李亚男,张海滨. 海洋无脊椎动物抗氧化酶研究进展. 海洋通报. 2018(03): 241-253 .
![]() | |
12. |
吕旭宁,王晓芹,吴亚林,姜娓娓,房景辉,方建光,王军威,张义涛,蒋增杰. 温度对凸壳肌蛤能量收支的影响. 渔业科学进展. 2018(04): 119-125 .
![]() | |
13. |
王芸,李正,段亚飞,王珺,黄忠,林黑着. 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响. 南方水产科学. 2018(01): 9-19 .
![]() | |
14. |
杜俊鹏,王昭萍,于瑞海,马培振,张哲,李玲蔚,李鹏飞. 盐度对香港巨牡蛎♀×葡萄牙牡蛎♂杂交子代早期杂种优势的影响. 中国海洋大学学报(自然科学版). 2018(01): 31-39 .
![]() | |
15. |
李晓雨,田燚,王伟,李延涛,刘钢,郭然,丛佳. 低盐胁迫对白条双锯鱼相关生理指标的影响. 大连海洋大学学报. 2018(05): 614-619 .
![]() | |
16. |
罗伟,许艳,刘晓娟,王春芳. 水温对草鱼血清活性氧含量及抗氧化防御系统的影响. 淡水渔业. 2017(04): 3-7 .
![]() | |
17. |
刘甜雨,王清,陈慕雁. 热刺激对栉孔扇贝免疫功能和热休克蛋白表达的影响. 中国海洋大学学报(自然科学版). 2017(08): 31-43 .
![]() | |
18. |
方春华,乔琨,刘智禹,陈丽娇. 海洋生物中抗氧化酶的研究进展. 渔业研究. 2016(04): 331-342 .
![]() | |
19. |
吕小康,刘峰,楼宝,刘阳阳,徐冬冬,陈睿毅,詹炜,王立改,毛国民,马涛. 水温和饥饿对鮸鱼肝脏抗氧化酶的影响. 浙江海洋学院学报(自然科学版). 2016(05): 384-389 .
![]() | |
20. |
谭杰,陈振江,刘付少梅,唐啸尘,刘志刚. 温度和盐度对大珠母贝稚贝存活和生长的互作效应. 广东海洋大学学报. 2016(06): 44-51 .
![]() |