ZHAO Feng, TONG Lihui, YANG Min, WANG Shanshan, LIU Nan, SUN Yong, ZHOU Deqing. Progress and prospects of infection, prevention and control of norovirus in oyster[J]. South China Fisheries Science, 2021, 17(4): 133-140. DOI: 10.12131/20210042
Citation: ZHAO Feng, TONG Lihui, YANG Min, WANG Shanshan, LIU Nan, SUN Yong, ZHOU Deqing. Progress and prospects of infection, prevention and control of norovirus in oyster[J]. South China Fisheries Science, 2021, 17(4): 133-140. DOI: 10.12131/20210042

Progress and prospects of infection, prevention and control of norovirus in oyster

More Information
  • Received Date: January 20, 2021
  • Revised Date: March 24, 2021
  • Accepted Date: April 06, 2021
  • Available Online: April 11, 2021
  • Norovirus (NoV) is the main pathogen of non-bacterial acute gastroenteritis. Oysters are important carriers for the spread of NoV, which can enrich NoV from contaminated seawater and environment through filter feeding. People tend to eat raw or lightly cooked oysters, which may cause NoV infections. About half of the foodborne diseases associated with oysters are caused by NoV. Reverse transcription fluorescent quantitative PCR (RT-qPCR) is the main method for detecting NoV, but it cannot distinguish infectious from non-infectious viruses effectively. Since NoV cannot be cultured in vitro, RT-qPCR has limitations in assessing the effectiveness of inactivation methods for NoV. Porcine gastric mucin (PGM), propidium monoazide (PMA) and other nucleic acid intercalators combined with RT-qPCR have shown potential applications in the detection of infectious NoV. High hydrostatic pressure treatment is an effective method to reduce norovirus in shellfish, and the pressure of over 400 MPa can inactivate NoV significantly. In this paper, we review the enrichment of NoV in oyster, the detection methods to distinguish infectious NoV and the inactivation of high hydrostatic pressure technology on NoV in Pacific oysters (Crassostrea gigas), pleated oysters (Alectryonella plicatulas) and Kumamoto oysters (C. sikamea), so as to provide references for the establishment of effective NoV risk warning and non-thermal inactivation technology in the future.
  • [1]
    苏来金. 诺如病毒在贝类中的分布及与牡蛎类组织血型抗原结合机制研究[D]. 上海: 上海海洋大学, 2019: 3-4.
    [2]
    WANG J, DENG Z J. Modeling and prediction of oyster norovirus outbreaks along Gulf of Mexico coast[J]. Environ Health Persp, 2016, 124(5): 627-633. doi: 10.1289/ehp.1509764
    [3]
    周德庆, 苏来金, 赵峰, 等. 诺如病毒在贝类中的富集特性与机制研究进展[J]. 病毒学报, 2015, 31(3): 313-317.
    [4]
    HASSAN E, BALDRIDGE M T. Norovirus encounters in the gut: multifaceted interactions and disease outcomes[J]. Mucosal Immunol, 2019, 12: 1259-1267. doi: 10.1038/s41385-019-0199-4
    [5]
    俞进存, 向以斌, 靳淼, 等. 2015~2018年玉溪市5岁以下儿童诺如病毒分子流行病学分析[J]. 病毒学报, 2020, 36(3): 110-118.
    [6]
    王美欢, 郭莉敏, 凌水权. 一起幼儿园诺如病毒感染性腹泻暴发调查[J]. 寄生虫病与感染性疾病, 2020(1): 41-44.
    [7]
    WESTRELL T, DUSCH V, ETHELBERG S, et al. Norovirus outbreaks linked to oyster consumption in the United Kingdom, Norway, France, Sweden and Denmark, 2010[J]. Eurosurveillance, 2010, 15(12): 19524.
    [8]
    BAKER K, MORRIS J, MCCARTHY N, et al. An outbreak of norovirus infection linked to oyster consumption at a UK restaurant, February 2010[J]. Public Health, 2011, 33(2): 205-211. doi: 10.1093/pubmed/fdq089
    [9]
    KRONEMAN A, VENNEMA H, HARRIS J, et al. Increase in norovirus activity reported in Europe[J]. Weekly Releases, 2006, 11(50): 3093.
    [10]
    WANG X, WEI Z, GUO J, et al. Norovirus activity and genotypes in sporadic acute diarrhea in children in Shanghai during 2014–2018[J]. J Pediat Inf Dis Soc, 2019, 38(11): 1085. doi: 10.1097/INF.0000000000002456
    [11]
    DICAPRIO E, YE M, CHEN H, et al. Inactivation of human norovirus and Tulane virus by high pressure processing in simple mediums and strawberry puree[J]. Agroecol Sust Food, 2019, 3: 26.
    [12]
    KIM S Y, KO G. Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus[J]. Lett Appl Microbiol, 2012, 55(3): 182-188. doi: 10.1111/j.1472-765X.2012.03276.x
    [13]
    SARMENTO S K, GUERRA C R, MALTA F C, et al. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment[J]. Mar Poll Bull, 2020, 157: 111315. doi: 10.1016/j.marpolbul.2020.111315
    [14]
    RANDAZZO W, LÓPEZ-GÁLVEZ F, ALLENDE A, et al. Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water[J]. Int J Food Microbiol, 2016, 229: 1-6. doi: 10.1016/j.ijfoodmicro.2016.04.010
    [15]
    AHMED H, MAUNULA L, KORHONEN J. Reduction of norovirus in foods by nonthermal treatments: a review[J]. J Food Protect, 2020, 83(12): 2053-2073. doi: 10.4315/JFP-20-177
    [16]
    LIU D, ZHANG Z, HEWITT J, et al. Surveillance of human norovirus in oysters collected from production area in Shandong Province, China during 2017–2018[J]. Food Control, 2020, 121(10): 7649.
    [17]
    MEGHNATH K, HASSELBACK P, MCCORMICK R, et al. Outbreaks of norovirus and acute gastroenteritis associated with British Columbia oysters, 2016 –2017[J]. Food Environ Virol, 2019, 11(2): 138-148. doi: 10.1007/s12560-019-09374-4
    [18]
    UEKI Y, AMARASIRI M, KAMIO S, et al. Human norovirus disease burden of consuming Crassostrea gigas oysters: a case-study from Japan[J]. Food Control, 2021, 121: 107556. doi: 10.1016/j.foodcont.2020.107556
    [19]
    GUIX S, FUENTES C, PINTO R M, et al. Infectivity of norovirus GI and GII from bottled mineral water during a waterborne outbreak, Spain[J]. Emerg Infect Dis, 2020, 26(1): 134.
    [20]
    MCINTYRE L, GALANIS E, MATTISON K, et al. Multiple clusters of norovirus among shellfish consumers linked to symptomatic oyster harvesters[J]. J Food Protect, 2012, 75(9): 1715-1720. doi: 10.4315/0362-028X.JFP-12-113
    [21]
    GYAWALI P, FLETCHER G C, MCCOUBREY D J, et al. Norovirus in shellfish: an overview of post-harvest treatments and their challenges[J]. Food Control, 2019, 99: 171-179. doi: 10.1016/j.foodcont.2018.12.049
    [22]
    寇晓霞, 吴爱武, 范宏英. 广东省市售牡蛎中诺如病毒污染调查[J]. 现代预防医学, 2018, 45(24): 29-32.
    [23]
    吕素玲, 谭冬梅, 姚雪婷, 等. 广西养殖牡蛎中诺如病毒的污染状况及风险评估[J]. 中国食品卫生杂志, 2018, 30(5): 509-513.
    [24]
    马丽萍. 贝类中诺如病毒的风险评估及与组织血型抗原相关性[D]. 上海: 上海海洋大学, 2013: 38.
    [25]
    MA L, SU L, LIU H, et al. Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: a transcriptomics study[J]. Fish Shellfish Immunol, 2017, 66: 26-34. doi: 10.1016/j.fsi.2017.04.023
    [26]
    Le GUYADER F S, KROL J, AMBERT-BALAY K, et al. Comprehensive analysis of a norovirus-associated gastroenteritis outbreak, from the environment to the consumer[J]. J Clin Microbiol, 2010, 48(3): 915-920. doi: 10.1128/JCM.01664-09
    [27]
    Le GUYADER F S, PARNAUDEAU S, SCHAEFFER J, et al. Detection and quantification of noroviruses in shellfish[J]. Appl Environ Microb, 2009, 75(3): 618-624. doi: 10.1128/AEM.01507-08
    [28]
    刘慧, 马丽萍, 赵峰, 等. 长牡蛎类 HBGAs 的提取与组织分布以及温度和盐度对其表达的影响[J]. 中国食品学报, 2019, 19(2): 236-243.
    [29]
    刘萌, 刘慧, 赵峰, 等. 溶氧量及 pH对太平洋牡蛎类 A 型组织血型抗原表达的影响研究[J]. 食品安全质量检测学报, 2019(8): 7.
    [30]
    MA L, LIU H, SU L, et al. Histo-blood group antigens in Crassostrea gigas and binding profiles with GII.4 Norovirus[J]. J Oceanol Limnol, 2018, 36(4): 1383-1391. doi: 10.1007/s00343-018-7024-x
    [31]
    QUANG LE H, SUFFREDINI E, TIEN PHAM D, et al. Development of a method for direct extraction of viral RNA from bivalve molluscs[J]. Lett Appl Microbiol, 2018, 67(5): 426-434. doi: 10.1111/lam.13065
    [32]
    ZHANG L, XUE L, GAO J, et al. Development of a high-efficient concentrated pretreatment method for noroviruses detection in independent oysters: an extension of the ISO/TS 15216-2: 2013 standard method[J]. Food Control, 2019, 111: 107032.
    [33]
    IMAMURA S, KANEZASHI H, GOSHIMA T, et al. Next-generation sequencing analysis of the diversity of human noroviruses in Japanese oysters[J]. Foodborne Pathog Dis, 2017, 14(8): 465-471. doi: 10.1089/fpd.2017.2289
    [34]
    STRUBBIA S, SCHAEFFER J, BESNARD A, et al. Metagenomic to evaluate norovirus genomic diversity in oysters: impact on hexamer selection and targeted capture-based enrichment[J]. Int J Food Microbiol, 2020, 323: 108588. doi: 10.1016/j.ijfoodmicro.2020.108588
    [35]
    NASHERI N, PETRONELLA N, RONHOLM J, et al. Characterization of the genomic diversity of norovirus in linked patients using a metagenomic deep sequencing approach[J]. Front Microbiol, 2017, 8: 73.
    [36]
    SURESH M, HARLOW J, NASHERI N. Evaluation of porcine gastric mucin assay for detection and quantification of human norovirus in fresh herbs and leafy vegetables[J]. Food Microbiol, 2019, 84: 103254. doi: 10.1016/j.fm.2019.103254
    [37]
    KINGSLEY D H, VINCENT E M, MEADE G K, et al. Inactivation of human norovirus using chemical sanitizers[J]. Int J Food Microbiol, 2014, 171: 94-99. doi: 10.1016/j.ijfoodmicro.2013.11.018
    [38]
    LEON J S, KINGSLEY D H, MONTES J S, et al. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing[J]. Appl Environ Microb, 2011, 77(15): 5476-5482. doi: 10.1128/AEM.02801-10
    [39]
    YE M, LINGHAM T, HUANG Y, et al. Effects of high-hydrostatic pressure on inactivation of human norovirus and physical and sensory characteristics of oysters[J]. J Food Sci, 2015, 80(6): 1330-1335. doi: 10.1111/1750-3841.12899
    [40]
    MONTEIRO S, SANTOS R. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: implications for public health risk assessment[J]. J Appl Microbiol, 2018, 124(4): 965-976. doi: 10.1111/jam.13568
    [41]
    YE M, LI X, KINGSLEY D H, et al. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure[J]. Appl Environ Microb, 2014, 80(7): 2248-2253. doi: 10.1128/AEM.04260-13
    [42]
    ALFANO-SOBSEY E, SWEAT D, HALL A, et al. Norovirus outbreak associated with undercooked oysters and secondary household transmission[J]. Epidemiol Infect, 2012, 140(2): 276-282. doi: 10.1017/S0950268811000665
    [43]
    MCLEOD C, POLO D, Le SAUX J C, et al. Depuration and relaying: a review on potential removal of norovirus from oysters[J]. Compr Rev Food Sci F, 2017, 16(4): 692-706. doi: 10.1111/1541-4337.12271
    [44]
    DROUAZ N, SCHAEFFER J, FARKAS T, et al. Tulane virus as a potential surrogate to mimic norovirus behavior in oysters[J]. Appl Environ Microb, 2015, 81(15): 5249-5256. doi: 10.1128/AEM.01067-15
    [45]
    UEKI Y, SHOJI M, SUTO A, et al. Persistence of caliciviruses in artificially contaminated oysters during depuration[J]. Appl Environ Microb, 2007, 73(17): 5698-5701. doi: 10.1128/AEM.00290-07
    [46]
    CHOI C, KINGSLEY D H. Temperature-dependent persistence of human norovirus within oysters (Crassostrea virginica)[J]. Food Environ Virol, 2016, 8(2): 141-147. doi: 10.1007/s12560-016-9234-8
    [47]
    李汴生, 黄雅婷, 阮征. 非热杀菌技术在生食水产品中的应用研究进展[J]. 水产学报, 2020, 44(10): 1-18.
    [48]
    GAYÁN E, GOVERS S K, AERTSEN A J B C. Impact of high hydrostatic pressure on bacterial proteostasis[J]. Biophys Chem, 2017, 231: 3-9. doi: 10.1016/j.bpc.2017.03.005
    [49]
    SIDO R F, HUANG R, LIU C, et al. High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa[J]. Int J Food Microbiol, 2017, 242: 1-6. doi: 10.1016/j.ijfoodmicro.2016.11.003
    [50]
    LOU F, NEETOO H, CHEN H, et al. High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods[J]. Annu Rev Food Sci T, 2015, 6: 389-409. doi: 10.1146/annurev-food-072514-104609
    [51]
    KINGSLEY D H. High pressure processing of bivalve shellfish and HPP's use as a virus intervention[J]. Foods, 2014, 3(2): 336-350. doi: 10.3390/foods3020336
    [52]
    BONFIM R C, OLIVEIRA F A D, GODOY R L D O, et al. A review on high hydrostatic pressure for bivalve mollusk processing: relevant aspects concerning safety and quality[J]. Food Sci Technol, 2019, 39(3): 515-523. doi: 10.1590/fst.26918
    [53]
    RENDUELES E, OMER M K, ALVSEIKE O, et al. Microbiological food safety assessment of high hydrostatic pressure processing: a review[J]. LWT-Food Sci Technol, 2011, 44(5): 1251-1260. doi: 10.1016/j.lwt.2010.11.001
    [54]
    HEINZ V, BUCKOW U R. Food preservation by high pressure[J]. J Consum Prot Food S, 2010, 5(1): 73-81. doi: 10.1007/s00003-009-0311-x
    [55]
    KOVAČ K, DIEZ-VALCARCE M, HERNANDEZ M, et al. High hydrostatic pressure as emergent technology for the elimination of foodborne viruses[J]. Trends Food Sci Tech, 2010, 21(11): 558-568. doi: 10.1016/j.jpgs.2010.08.002
    [56]
    VÁZQUEZ M, TORRES J A, GALLARDO J M, et al. Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): effect of a high hydrostatic pressure pre-treatment[J]. Innov Food Sci Emerg, 2013, 18: 24-30. doi: 10.1016/j.ifset.2012.12.005
    [57]
    NARWANKAR S P, FLIMLIN G E, SCHAFFNER D W, et al. Microbial safety and consumer acceptability of high-pressure processed hard clams (Mercenaria mercenaria)[J]. J Food Sci, 2011, 76(6): 375-380. doi: 10.1111/j.1750-3841.2011.02258.x
    [58]
    KINGSLEY D H. High pressure processing and its application to the challenge of virus-contaminated foods[J]. Food Environ Virol, 2013, 5(1): 1-12. doi: 10.1007/s12560-012-9094-9
    [59]
    LI X, CHEN H, KINGSLEY D H. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses[J]. Int J Food Microbiol, 2013, 167(2): 138-143. doi: 10.1016/j.ijfoodmicro.2013.08.020
    [60]
    KINGSLEY D H, HOLLIMAN D R, CALCI K R, et al. Inactivation of a norovirus by high-pressure processing[J]. Appl Environ Microb, 2007, 73(2): 581-585. doi: 10.1128/AEM.02117-06
    [61]
    KINGSLEY D H, CALCI K, HOLLIMAN S, et al. High pressure inactivation of HAV within oysters: comparison of shucked oysters with whole-in-shell meats[J]. Food Environ Virol, 2009, 1(3/4): 137. doi: 10.1007/s12560-009-9018-5
    [62]
    TAKAHASHI M, OKAKURA Y, TAKAHASHI H, et al. Evaluation of inactivation of murine norovirus in inoculated shell oysters by high hydrostatic pressure treatment[J]. J Food Protect, 2019, 82(12): 2169-2173. doi: 10.4315/0362-028X.JFP-19-186
    [63]
    KIM S H, SHAHBAZ H M, PARK D, et al. A combined treatment of UV-assisted TiO2 photocatalysis and high hydrostatic pressure to inactivate internalized murine norovirus[J]. Innov Food Sci Emerg, 2017, 39: 188-196. doi: 10.1016/j.ifset.2016.11.015
  • Related Articles

    [1]QIN Jinhua, ZHU Changbo, ZHANG Bo, LI Ting, SU Jiaqi, CHEN Suwen, LI Junwei. Effects of pond-paddy field aquaponics on water quality and growth of Macrobrachium rosenbergii[J]. South China Fisheries Science, 2020, 16(3): 10-17. DOI: 10.12131/20190205
    [2]ZHANG Kai, LI Zhifei, XIE Jun, YU Deguang, WANG Guangjun, GONG Wangbao, YU Ermeng, TIAN Jingjing. Effect of eco-substrates on water quality and energy budget of largemouth bass (Micropterus salmoides) aquaculture system[J]. South China Fisheries Science, 2018, 14(5): 53-59. DOI: 10.3969/j.issn.2095-0780.2018.05.007
    [3]LI Ting, ZHU Changbo, LI Junwei, CHEN Suwen, XIE Xiaoyong, LIU Yong. Water quality assessment for Hailing Bay estuary, China[J]. South China Fisheries Science, 2018, 14(3): 49-57. DOI: 10.3969/j.issn.2095-0780.2018.03.006
    [4]WU Yuhui, WANG Qing, WEI Nan, LIU Zhiwei, OU Linjian, YANG Yufeng. Comparison of phytoplankton community structure and water quality in different modes of abalone mariculture[J]. South China Fisheries Science, 2017, 13(6): 73-81. DOI: 10.3969/j.issn.2095-0780.2017.06.009
    [5]ZHANG Jiarun, JIANG Shigui, LIN Heizhao, HUANG Zhong, NIU Jin, HUANG Jianhua, WANG Yun. Effects of different brands of feeds on growth of black tiger shrimp (Penaeus monodon) and water quality[J]. South China Fisheries Science, 2013, 9(6): 20-26. DOI: 10.3969/j.issn.2095-0780.2013.06.004
    [6]WANG Zhenhua, LIU Huang, SU Mo, WU Fan. Nitrogen budget changes of tilapia (Oreochromis niloticus) during growth[J]. South China Fisheries Science, 2013, 9(3): 85-89. DOI: 10.3969/j.issn.2095-0780.2013.03.014
    [7]LI Yiwen, LI Zhuojia, CAO Yucheng, WEN Guoliang, LIU Xiaozhu. Diurnal variation of water quality factors in late period of intensive seawater shrimp culture[J]. South China Fisheries Science, 2010, 6(6): 26-31. DOI: 10.3969/j.issn.1673-2227.2010.06.005
    [8]LI Jinliang, CHEN Xuefen, LAI Qiuming, LU Chunyu, CHEN Jinling, SU Shuye. Study on nitrogen and phosphorus budgets and production performance in higher-place pond of Litopenaeus vannamei[J]. South China Fisheries Science, 2010, 6(5): 13-20. DOI: 10.3969/j.issn.1673-2227.2010.05.003
    [9]SU Yuepeng, MA Shen, TIAN Xiangli, DONG Shuanglin. An experimental study on nitrogen, phosphorus and carbon budgets in intensive pond of shrimp Fenneropenaeus chinensis[J]. South China Fisheries Science, 2009, 5(6): 54-58. DOI: 10.3969/j.issn.1673-2227.2009.06.010
    [10]YE Le, LIN Hei-zhe, LI Zhuo-jia, WU Kai-chang, WEN Guo-liang, MA Zhi-ming, ZHU Chang-fu. The effect of feeding frequency on growth of Litopenaeus vannamei (Boone) and water quality[J]. South China Fisheries Science, 2005, 1(4): 55-59.
  • Cited by

    Periodical cited type(8)

    1. 欧利国,蓝振峰,刘必林,陈新军,陈勇. 基于计算机视觉的鱼类形态轮廓特征自动提取. 水产学报. 2024(12): 63-73 .
    2. 李伟畅,朱国平,王雪辉,林龙山,李渊,杜飞雁. 南海中南部金带细鲹与长体圆鲹矢耳石外型比较分析. 生物学杂志. 2023(05): 54-60 .
    3. 庄文鑫,吴荔生,刘巧红,柳淑芳,丁少雄. 基于地标点法的3种眶灯鱼耳石形态种间差异性. 海洋学报. 2023(09): 119-127 .
    4. 欧利国,顾心雨,王冰妍,刘必林. 6种大型海洋掠食性鱼类胃含物角质颚分类研究. 渔业科学进展. 2022(04): 105-115 .
    5. 欧利国,力清影,刘必林. 中国南海东沙群岛海域7种鲹科鱼类矢耳石形态特征. 上海海洋大学学报. 2021(01): 155-162 .
    6. 刘梦娜,王雪辉,刘玉,邱永松,何映霖,贝伟烈,朱江峰,杜飞雁. 汕头—台湾浅滩渔场中国枪乌贼形态学初步分析. 应用海洋学学报. 2021(02): 208-219 .
    7. 欧利国,王冰妍,刘必林,陈新军,陈勇,吴峰,刘攀. 基于计算机视觉的3种金枪鱼属鱼类形态指标自动测量研究. 海洋学报. 2021(11): 105-115 .
    8. 欧利国,刘必林. 基于地标点法的4种鲹科鱼类矢耳石形态分类. 大连海洋大学学报. 2020(01): 114-120 .

    Other cited types(8)

Catalog

    Recommendations
    Lh原油和0# 柴油乳化液对凡纳滨对虾肝胰腺抗氧化酶活性及相关功能基因表达的影响
    沈楚焰 et al., 南方水产科学, 2025
    3种常见消毒药物对纤毛虫种群动力学的影响
    张欣悦 et al., 南方水产科学, 2024
    黄颡鱼源迟缓爱德华氏菌的分离鉴定及其药物敏感性研究
    高宣 et al., 南方水产科学, 2024
    恩诺沙星及其代谢物环丙沙星在方斑东风螺体内药代动力学及残留消除规律研究
    邓东 et al., 南方水产科学, 2024
    基于溶藻弧菌感染的虾苗细菌性玻化症(bvs)及其防控中药筛选和药效学评价
    ZHAO Weizhi et al., PROGRESS IN FISHERY SCIENCES, 2024
    丁苯酞注射液联合血塞通注射液治疗急性脑梗死的mri 灌注成像影像学评价
    咸耀林 et al., 神经药理学报, 2024
    Exploring cr(vi)-induced blood-brain barrier injury and neurotoxicity in zebrafish and snakehead fish, and inhibiting toxic effects of astaxanthin
    Li, Mu-Yang et al., ENVIRONMENTAL POLLUTION, 2024
    Tafenoquine-atovaquone combination achieves radical cure and confers sterile immunity in experimental models of human babesiosis
    Vydyam, Pratap et al., JOURNAL OF INFECTIOUS DISEASES, 2024
    Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal panoptosis by modulating microglial polarization
    PHYTOMEDICINE
    Investigating the herb-drug interaction between danhong injection and dapagliflozin in rats
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024
    Powered by
    Article views (948) PDF downloads (81) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return