ZHAO Feng, TONG Lihui, YANG Min, WANG Shanshan, LIU Nan, SUN Yong, ZHOU Deqing. Progress and prospects of infection, prevention and control of norovirus in oyster[J]. South China Fisheries Science, 2021, 17(4): 133-140. DOI: 10.12131/20210042
Citation: ZHAO Feng, TONG Lihui, YANG Min, WANG Shanshan, LIU Nan, SUN Yong, ZHOU Deqing. Progress and prospects of infection, prevention and control of norovirus in oyster[J]. South China Fisheries Science, 2021, 17(4): 133-140. DOI: 10.12131/20210042

Progress and prospects of infection, prevention and control of norovirus in oyster

More Information
  • Received Date: January 20, 2021
  • Revised Date: March 24, 2021
  • Accepted Date: April 06, 2021
  • Available Online: April 11, 2021
  • Norovirus (NoV) is the main pathogen of non-bacterial acute gastroenteritis. Oysters are important carriers for the spread of NoV, which can enrich NoV from contaminated seawater and environment through filter feeding. People tend to eat raw or lightly cooked oysters, which may cause NoV infections. About half of the foodborne diseases associated with oysters are caused by NoV. Reverse transcription fluorescent quantitative PCR (RT-qPCR) is the main method for detecting NoV, but it cannot distinguish infectious from non-infectious viruses effectively. Since NoV cannot be cultured in vitro, RT-qPCR has limitations in assessing the effectiveness of inactivation methods for NoV. Porcine gastric mucin (PGM), propidium monoazide (PMA) and other nucleic acid intercalators combined with RT-qPCR have shown potential applications in the detection of infectious NoV. High hydrostatic pressure treatment is an effective method to reduce norovirus in shellfish, and the pressure of over 400 MPa can inactivate NoV significantly. In this paper, we review the enrichment of NoV in oyster, the detection methods to distinguish infectious NoV and the inactivation of high hydrostatic pressure technology on NoV in Pacific oysters (Crassostrea gigas), pleated oysters (Alectryonella plicatulas) and Kumamoto oysters (C. sikamea), so as to provide references for the establishment of effective NoV risk warning and non-thermal inactivation technology in the future.
  • [1]
    苏来金. 诺如病毒在贝类中的分布及与牡蛎类组织血型抗原结合机制研究[D]. 上海: 上海海洋大学, 2019: 3-4.
    [2]
    WANG J, DENG Z J. Modeling and prediction of oyster norovirus outbreaks along Gulf of Mexico coast[J]. Environ Health Persp, 2016, 124(5): 627-633. doi: 10.1289/ehp.1509764
    [3]
    周德庆, 苏来金, 赵峰, 等. 诺如病毒在贝类中的富集特性与机制研究进展[J]. 病毒学报, 2015, 31(3): 313-317.
    [4]
    HASSAN E, BALDRIDGE M T. Norovirus encounters in the gut: multifaceted interactions and disease outcomes[J]. Mucosal Immunol, 2019, 12: 1259-1267. doi: 10.1038/s41385-019-0199-4
    [5]
    俞进存, 向以斌, 靳淼, 等. 2015~2018年玉溪市5岁以下儿童诺如病毒分子流行病学分析[J]. 病毒学报, 2020, 36(3): 110-118.
    [6]
    王美欢, 郭莉敏, 凌水权. 一起幼儿园诺如病毒感染性腹泻暴发调查[J]. 寄生虫病与感染性疾病, 2020(1): 41-44.
    [7]
    WESTRELL T, DUSCH V, ETHELBERG S, et al. Norovirus outbreaks linked to oyster consumption in the United Kingdom, Norway, France, Sweden and Denmark, 2010[J]. Eurosurveillance, 2010, 15(12): 19524.
    [8]
    BAKER K, MORRIS J, MCCARTHY N, et al. An outbreak of norovirus infection linked to oyster consumption at a UK restaurant, February 2010[J]. Public Health, 2011, 33(2): 205-211. doi: 10.1093/pubmed/fdq089
    [9]
    KRONEMAN A, VENNEMA H, HARRIS J, et al. Increase in norovirus activity reported in Europe[J]. Weekly Releases, 2006, 11(50): 3093.
    [10]
    WANG X, WEI Z, GUO J, et al. Norovirus activity and genotypes in sporadic acute diarrhea in children in Shanghai during 2014–2018[J]. J Pediat Inf Dis Soc, 2019, 38(11): 1085. doi: 10.1097/INF.0000000000002456
    [11]
    DICAPRIO E, YE M, CHEN H, et al. Inactivation of human norovirus and Tulane virus by high pressure processing in simple mediums and strawberry puree[J]. Agroecol Sust Food, 2019, 3: 26.
    [12]
    KIM S Y, KO G. Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus[J]. Lett Appl Microbiol, 2012, 55(3): 182-188. doi: 10.1111/j.1472-765X.2012.03276.x
    [13]
    SARMENTO S K, GUERRA C R, MALTA F C, et al. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment[J]. Mar Poll Bull, 2020, 157: 111315. doi: 10.1016/j.marpolbul.2020.111315
    [14]
    RANDAZZO W, LÓPEZ-GÁLVEZ F, ALLENDE A, et al. Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water[J]. Int J Food Microbiol, 2016, 229: 1-6. doi: 10.1016/j.ijfoodmicro.2016.04.010
    [15]
    AHMED H, MAUNULA L, KORHONEN J. Reduction of norovirus in foods by nonthermal treatments: a review[J]. J Food Protect, 2020, 83(12): 2053-2073. doi: 10.4315/JFP-20-177
    [16]
    LIU D, ZHANG Z, HEWITT J, et al. Surveillance of human norovirus in oysters collected from production area in Shandong Province, China during 2017–2018[J]. Food Control, 2020, 121(10): 7649.
    [17]
    MEGHNATH K, HASSELBACK P, MCCORMICK R, et al. Outbreaks of norovirus and acute gastroenteritis associated with British Columbia oysters, 2016 –2017[J]. Food Environ Virol, 2019, 11(2): 138-148. doi: 10.1007/s12560-019-09374-4
    [18]
    UEKI Y, AMARASIRI M, KAMIO S, et al. Human norovirus disease burden of consuming Crassostrea gigas oysters: a case-study from Japan[J]. Food Control, 2021, 121: 107556. doi: 10.1016/j.foodcont.2020.107556
    [19]
    GUIX S, FUENTES C, PINTO R M, et al. Infectivity of norovirus GI and GII from bottled mineral water during a waterborne outbreak, Spain[J]. Emerg Infect Dis, 2020, 26(1): 134.
    [20]
    MCINTYRE L, GALANIS E, MATTISON K, et al. Multiple clusters of norovirus among shellfish consumers linked to symptomatic oyster harvesters[J]. J Food Protect, 2012, 75(9): 1715-1720. doi: 10.4315/0362-028X.JFP-12-113
    [21]
    GYAWALI P, FLETCHER G C, MCCOUBREY D J, et al. Norovirus in shellfish: an overview of post-harvest treatments and their challenges[J]. Food Control, 2019, 99: 171-179. doi: 10.1016/j.foodcont.2018.12.049
    [22]
    寇晓霞, 吴爱武, 范宏英. 广东省市售牡蛎中诺如病毒污染调查[J]. 现代预防医学, 2018, 45(24): 29-32.
    [23]
    吕素玲, 谭冬梅, 姚雪婷, 等. 广西养殖牡蛎中诺如病毒的污染状况及风险评估[J]. 中国食品卫生杂志, 2018, 30(5): 509-513.
    [24]
    马丽萍. 贝类中诺如病毒的风险评估及与组织血型抗原相关性[D]. 上海: 上海海洋大学, 2013: 38.
    [25]
    MA L, SU L, LIU H, et al. Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: a transcriptomics study[J]. Fish Shellfish Immunol, 2017, 66: 26-34. doi: 10.1016/j.fsi.2017.04.023
    [26]
    Le GUYADER F S, KROL J, AMBERT-BALAY K, et al. Comprehensive analysis of a norovirus-associated gastroenteritis outbreak, from the environment to the consumer[J]. J Clin Microbiol, 2010, 48(3): 915-920. doi: 10.1128/JCM.01664-09
    [27]
    Le GUYADER F S, PARNAUDEAU S, SCHAEFFER J, et al. Detection and quantification of noroviruses in shellfish[J]. Appl Environ Microb, 2009, 75(3): 618-624. doi: 10.1128/AEM.01507-08
    [28]
    刘慧, 马丽萍, 赵峰, 等. 长牡蛎类 HBGAs 的提取与组织分布以及温度和盐度对其表达的影响[J]. 中国食品学报, 2019, 19(2): 236-243.
    [29]
    刘萌, 刘慧, 赵峰, 等. 溶氧量及 pH对太平洋牡蛎类 A 型组织血型抗原表达的影响研究[J]. 食品安全质量检测学报, 2019(8): 7.
    [30]
    MA L, LIU H, SU L, et al. Histo-blood group antigens in Crassostrea gigas and binding profiles with GII.4 Norovirus[J]. J Oceanol Limnol, 2018, 36(4): 1383-1391. doi: 10.1007/s00343-018-7024-x
    [31]
    QUANG LE H, SUFFREDINI E, TIEN PHAM D, et al. Development of a method for direct extraction of viral RNA from bivalve molluscs[J]. Lett Appl Microbiol, 2018, 67(5): 426-434. doi: 10.1111/lam.13065
    [32]
    ZHANG L, XUE L, GAO J, et al. Development of a high-efficient concentrated pretreatment method for noroviruses detection in independent oysters: an extension of the ISO/TS 15216-2: 2013 standard method[J]. Food Control, 2019, 111: 107032.
    [33]
    IMAMURA S, KANEZASHI H, GOSHIMA T, et al. Next-generation sequencing analysis of the diversity of human noroviruses in Japanese oysters[J]. Foodborne Pathog Dis, 2017, 14(8): 465-471. doi: 10.1089/fpd.2017.2289
    [34]
    STRUBBIA S, SCHAEFFER J, BESNARD A, et al. Metagenomic to evaluate norovirus genomic diversity in oysters: impact on hexamer selection and targeted capture-based enrichment[J]. Int J Food Microbiol, 2020, 323: 108588. doi: 10.1016/j.ijfoodmicro.2020.108588
    [35]
    NASHERI N, PETRONELLA N, RONHOLM J, et al. Characterization of the genomic diversity of norovirus in linked patients using a metagenomic deep sequencing approach[J]. Front Microbiol, 2017, 8: 73.
    [36]
    SURESH M, HARLOW J, NASHERI N. Evaluation of porcine gastric mucin assay for detection and quantification of human norovirus in fresh herbs and leafy vegetables[J]. Food Microbiol, 2019, 84: 103254. doi: 10.1016/j.fm.2019.103254
    [37]
    KINGSLEY D H, VINCENT E M, MEADE G K, et al. Inactivation of human norovirus using chemical sanitizers[J]. Int J Food Microbiol, 2014, 171: 94-99. doi: 10.1016/j.ijfoodmicro.2013.11.018
    [38]
    LEON J S, KINGSLEY D H, MONTES J S, et al. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing[J]. Appl Environ Microb, 2011, 77(15): 5476-5482. doi: 10.1128/AEM.02801-10
    [39]
    YE M, LINGHAM T, HUANG Y, et al. Effects of high-hydrostatic pressure on inactivation of human norovirus and physical and sensory characteristics of oysters[J]. J Food Sci, 2015, 80(6): 1330-1335. doi: 10.1111/1750-3841.12899
    [40]
    MONTEIRO S, SANTOS R. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: implications for public health risk assessment[J]. J Appl Microbiol, 2018, 124(4): 965-976. doi: 10.1111/jam.13568
    [41]
    YE M, LI X, KINGSLEY D H, et al. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure[J]. Appl Environ Microb, 2014, 80(7): 2248-2253. doi: 10.1128/AEM.04260-13
    [42]
    ALFANO-SOBSEY E, SWEAT D, HALL A, et al. Norovirus outbreak associated with undercooked oysters and secondary household transmission[J]. Epidemiol Infect, 2012, 140(2): 276-282. doi: 10.1017/S0950268811000665
    [43]
    MCLEOD C, POLO D, Le SAUX J C, et al. Depuration and relaying: a review on potential removal of norovirus from oysters[J]. Compr Rev Food Sci F, 2017, 16(4): 692-706. doi: 10.1111/1541-4337.12271
    [44]
    DROUAZ N, SCHAEFFER J, FARKAS T, et al. Tulane virus as a potential surrogate to mimic norovirus behavior in oysters[J]. Appl Environ Microb, 2015, 81(15): 5249-5256. doi: 10.1128/AEM.01067-15
    [45]
    UEKI Y, SHOJI M, SUTO A, et al. Persistence of caliciviruses in artificially contaminated oysters during depuration[J]. Appl Environ Microb, 2007, 73(17): 5698-5701. doi: 10.1128/AEM.00290-07
    [46]
    CHOI C, KINGSLEY D H. Temperature-dependent persistence of human norovirus within oysters (Crassostrea virginica)[J]. Food Environ Virol, 2016, 8(2): 141-147. doi: 10.1007/s12560-016-9234-8
    [47]
    李汴生, 黄雅婷, 阮征. 非热杀菌技术在生食水产品中的应用研究进展[J]. 水产学报, 2020, 44(10): 1-18.
    [48]
    GAYÁN E, GOVERS S K, AERTSEN A J B C. Impact of high hydrostatic pressure on bacterial proteostasis[J]. Biophys Chem, 2017, 231: 3-9. doi: 10.1016/j.bpc.2017.03.005
    [49]
    SIDO R F, HUANG R, LIU C, et al. High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa[J]. Int J Food Microbiol, 2017, 242: 1-6. doi: 10.1016/j.ijfoodmicro.2016.11.003
    [50]
    LOU F, NEETOO H, CHEN H, et al. High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods[J]. Annu Rev Food Sci T, 2015, 6: 389-409. doi: 10.1146/annurev-food-072514-104609
    [51]
    KINGSLEY D H. High pressure processing of bivalve shellfish and HPP's use as a virus intervention[J]. Foods, 2014, 3(2): 336-350. doi: 10.3390/foods3020336
    [52]
    BONFIM R C, OLIVEIRA F A D, GODOY R L D O, et al. A review on high hydrostatic pressure for bivalve mollusk processing: relevant aspects concerning safety and quality[J]. Food Sci Technol, 2019, 39(3): 515-523. doi: 10.1590/fst.26918
    [53]
    RENDUELES E, OMER M K, ALVSEIKE O, et al. Microbiological food safety assessment of high hydrostatic pressure processing: a review[J]. LWT-Food Sci Technol, 2011, 44(5): 1251-1260. doi: 10.1016/j.lwt.2010.11.001
    [54]
    HEINZ V, BUCKOW U R. Food preservation by high pressure[J]. J Consum Prot Food S, 2010, 5(1): 73-81. doi: 10.1007/s00003-009-0311-x
    [55]
    KOVAČ K, DIEZ-VALCARCE M, HERNANDEZ M, et al. High hydrostatic pressure as emergent technology for the elimination of foodborne viruses[J]. Trends Food Sci Tech, 2010, 21(11): 558-568. doi: 10.1016/j.jpgs.2010.08.002
    [56]
    VÁZQUEZ M, TORRES J A, GALLARDO J M, et al. Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): effect of a high hydrostatic pressure pre-treatment[J]. Innov Food Sci Emerg, 2013, 18: 24-30. doi: 10.1016/j.ifset.2012.12.005
    [57]
    NARWANKAR S P, FLIMLIN G E, SCHAFFNER D W, et al. Microbial safety and consumer acceptability of high-pressure processed hard clams (Mercenaria mercenaria)[J]. J Food Sci, 2011, 76(6): 375-380. doi: 10.1111/j.1750-3841.2011.02258.x
    [58]
    KINGSLEY D H. High pressure processing and its application to the challenge of virus-contaminated foods[J]. Food Environ Virol, 2013, 5(1): 1-12. doi: 10.1007/s12560-012-9094-9
    [59]
    LI X, CHEN H, KINGSLEY D H. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses[J]. Int J Food Microbiol, 2013, 167(2): 138-143. doi: 10.1016/j.ijfoodmicro.2013.08.020
    [60]
    KINGSLEY D H, HOLLIMAN D R, CALCI K R, et al. Inactivation of a norovirus by high-pressure processing[J]. Appl Environ Microb, 2007, 73(2): 581-585. doi: 10.1128/AEM.02117-06
    [61]
    KINGSLEY D H, CALCI K, HOLLIMAN S, et al. High pressure inactivation of HAV within oysters: comparison of shucked oysters with whole-in-shell meats[J]. Food Environ Virol, 2009, 1(3/4): 137. doi: 10.1007/s12560-009-9018-5
    [62]
    TAKAHASHI M, OKAKURA Y, TAKAHASHI H, et al. Evaluation of inactivation of murine norovirus in inoculated shell oysters by high hydrostatic pressure treatment[J]. J Food Protect, 2019, 82(12): 2169-2173. doi: 10.4315/0362-028X.JFP-19-186
    [63]
    KIM S H, SHAHBAZ H M, PARK D, et al. A combined treatment of UV-assisted TiO2 photocatalysis and high hydrostatic pressure to inactivate internalized murine norovirus[J]. Innov Food Sci Emerg, 2017, 39: 188-196. doi: 10.1016/j.ifset.2016.11.015
  • Related Articles

    [1]WEI Zhengkun, DONG Hongbiao, ZHAO Wen, CHEN Fei, ZHANG Chuanxiang, CHEN Jian, GONG Baohua, ZHU Changbo, ZHANG Jiasong. Anesthetic effect and tissue oxidative injury for Litopenaeus vannamei by two anesthetics[J]. South China Fisheries Science, 2023, 19(1): 136-146. DOI: 10.12131/20220070
    [2]ZHAO Xiaoyu, SU Haochang, XU Yu, XU Wujie, HU Xiaojuan, WEN Guoliang, CAO Yucheng, YU Zhaolong. Removal of sulphonamide resistance sul1 gene in water source and pond water by fishery oxidants in aquaculture[J]. South China Fisheries Science, 2021, 17(3): 46-53. DOI: 10.12131/20200231
    [3]ZHANG Linbao, CHEN Haigang, TIAN Fei, SUN Wei, ZHANG Zhe, CAI Wengui. Gender differences in neurotoxicity and oxidative damage of triazophos on Perna viridis[J]. South China Fisheries Science, 2020, 16(6): 75-80. DOI: 10.12131/20200097
    [4]WANG Haifeng, CHENG Yongxu, LI Jinghao, XI Yewen, LI Jiayao. Effects of desiccation and resubmersion on oxidative stress response of crayfish (Procambarus clarkii)[J]. South China Fisheries Science, 2019, 15(5): 69-76. DOI: 10.12131/20190059
    [5]ZHANG Bo, MENG Zihao, LIU Baosuo, LI Haimei, SU Jiaqi, HUANG Guiju, WU Kaichang, YU Dahui. Effect of nucleus-inserting surgery damage on anti-oxidation and immunity of pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2017, 13(5): 72-77. DOI: 10.3969/j.issn.2095-0780.2017.05.010
    [6]OU Youjun, CHEN Shixi, WANG Pengfei, LI Jia'er, WEN Jiufu, WANG Wen, XIE Mujiao. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hyp-oxia stress[J]. South China Fisheries Science, 2017, 13(3): 120-124. DOI: 10.3969/j.issn.2095-0780.2017.03.016
    [7]LIU Xujia, HUANG Guoqiang, PENG Yinhui. Effect of different dissolved oxygen levels on growth, energy metabolism and oxidative stress of Mugil cephalus[J]. South China Fisheries Science, 2015, 11(4): 88-94. DOI: 10.3969/j.issn.2095-0780.2015.04.013
    [8]DOU Yong, QIAO Xiuting, CHEN Limei, ZHOU Wenli. Study on oxidative stress and damage of Cyclina sinensis exposed to naphthalene[J]. South China Fisheries Science, 2014, 10(4): 39-44. DOI: 10.3969/j.issn.2095-0780.2014.04.007
    [9]ZHANG Ting, LUO Yuliang. Effect of Fenpropathrin on Na+-K+-ATPase and histomorphology of Cyprinus carpio gills[J]. South China Fisheries Science, 2013, 9(6): 41-46. DOI: 10.3969/j.issn.2095-0780.2013.06.007
    [10]YANG Tao, CHEN Haigang, CAI Wengui, QIN Jiefang, JIA Xiaoping. Oxidative stress and damage of Perna viridis by exposure to phenanthrene and benzo (b) fluoranthene[J]. South China Fisheries Science, 2011, 7(4): 24-29. DOI: 10.3969/j.issn.2095-0780.2011.04.004
  • Cited by

    Periodical cited type(9)

    1. 张潇潇,杨少森,邹翠云,张勇,黄锦雄,甘松永,秦真东,黄玮坪,陈永南,吴锦辉,林蠡. 蓝圆鲹的胚胎及胚后发育特征观察. 水产学报. 2025(01): 105-115 .
    2. 杨瑞兰,刘彦斌,赵红雪,刘凯,杨立强,肖伟,赛清云,田永华,赖章龙,阮超岭,柳婷,刘哲,连总强. 大鼻吻鮈胚胎发育特征和初孵仔鱼形态观察. 甘肃农业大学学报. 2024(01): 49-58 .
    3. 王岳松,徐林,杨洋,程睿,王崇,何大江,黎国樑,马海涛,毕建启,陈锋,万正平,张志明. 长鳍光唇鱼(Acrossocheilus longipinnis)人工繁殖和早期发育研究. 南方水产科学. 2024(02): 63-72 . 本站查看
    4. 李文康,骆小年,段友健,李姣,吴晨. 鸭绿沙塘鳢仔稚鱼发育观察及饥饿不可逆点的确定. 大连海洋大学学报. 2023(01): 32-42 .
    5. 石叶忠,朱双全,潘月,申屠琰,冯彬彬,程鑫,张克鑫,朱卫东,夏荣兴,张玉明,竺俊全. 宽鳍鱲仔稚鱼发育. 浙江海洋大学学报(自然科学版). 2023(02): 136-142 .
    6. 王新月,訾方泽,葛建民,陈生熬,姚娜,肖青,艾尼瓦尔·依布拉音. 盐碱胁迫下扁吻鱼幼鱼耐受性分析. 新疆农业科学. 2023(06): 1540-1547 .
    7. 陈思奇,朱永久,吴兴兵,杨德国,李晓莉. 大鳍鳠胚胎及仔稚鱼发育观察. 南方水产科学. 2023(06): 60-70 . 本站查看
    8. 邢雨忻,骆小年,李姣,段友健,季辰跃,常建太. 马口鱼仔稚鱼发育观察及饥饿不可逆点的确定. 大连海洋大学学报. 2023(06): 972-979 .
    9. 王程欣,陈生熬,王新月,訾方泽,林旭元,魏齐. 新疆特克斯河斑重唇鱼胚胎发育和胚后发育观察. 动物学杂志. 2022(05): 668-677 .

    Other cited types(4)

Catalog

    Article views (928) PDF downloads (79) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return