YUAN Taiping, HU Yu, WANG Shaoming, LIAO Yuqi, TAO Qiyou, HUANG Xiaohua, LIU Haiyang, GUO Gengxi. Research on performance of cavitation jet equipment for deep-water cage cleaning[J]. South China Fisheries Science, 2021, 17(4): 109-117. DOI: 10.12131/20210027
Citation: YUAN Taiping, HU Yu, WANG Shaoming, LIAO Yuqi, TAO Qiyou, HUANG Xiaohua, LIU Haiyang, GUO Gengxi. Research on performance of cavitation jet equipment for deep-water cage cleaning[J]. South China Fisheries Science, 2021, 17(4): 109-117. DOI: 10.12131/20210027

Research on performance of cavitation jet equipment for deep-water cage cleaning

More Information
  • Received Date: January 13, 2021
  • Revised Date: April 28, 2021
  • Accepted Date: May 09, 2021
  • Available Online: May 13, 2021
  • To study the cleaning mechanism and influence factors affecting of fouling organisms attached to cage net, we applied numerical simulation method and prototype testing to investigate the biofouling removal rate of cleaning equipment with different inlet pressures and nozzle diameters, and then explored the biofouling removal mechanism of aquaculture net cage under the action of cavitation jet. The numerical simulation results show that the maximum gas volume fraction of nozzle showed an increasing trend when the nozzle diameter was 0.6−1.0 mm under rated flow, and the maximum gas volume fraction value of d=1.0 mm nozzle was 37.5%. The flow velocity of the jet 40 mm away from the nozzle outlet decreased by 85.57%−96.98%, and the velocity of the nozzle decreased significantly in submerged environment. Further water tank cleaning test results show that when the input pressure was 18.8 MPa and the diameter value of nozzle was 0.8 mm, the largest cleaning rate of aquaculture nets of the cleaning equipment was 79.76%. The shellfish fouling organisms mainly fell off in the form of shell breaking under the impact of cavitation jet of cleaning equipment. After the cleaning, most of the residues was the soft foot silk tray of shellfish with strong adsorption. The soil on the surface of the net was completely removed and presented the primary color of the breeding net.
  • [1]
    房熊. 一种新型水下网箱清洗机器人的设计探索[J]. 机电设备, 2020, 37(6): 57-60.
    [2]
    URAZMETOV O, CDEET M, TEUTSCH R, et al. Investigation of the flow phenomena in high-pressure water jet nozzles[J]. Chem Eng Res Des, 2021, 165: 320-332. doi: 10.1016/j.cherd.2020.10.030
    [3]
    刘冠灵, 卫泓宇, 李志鹏, 等. 履带式深海网箱清洗机器人的设计[J]. 机械制造, 2019, 57(4): 11-14. doi: 10.3969/j.issn.1000-4998.2019.04.004
    [4]
    彭安华, 刘成文, 陆波. 一种带有清洗装置和数据采集系统的深水网箱[J]. 南方农业, 2016, 10(3): 169-171. doi: 10.3969/j.issn.1673-890X.2016.03.101
    [5]
    WANG Z, DAI X, LIU F, et al. Microscopic study on the mechanisms for formation of the initial spray morphology[J]. Fuel, 2019, 235: 715-722. doi: 10.1016/j.fuel.2018.08.069
    [6]
    满晓东, 宋协法, 黄志涛, 等. 转盘式网箱清洗装置设计与模拟试验[J]. 渔业现代化, 2019, 46(6): 22-28.
    [7]
    Equipment Power. Yanmar net cleanerr[EB/OL]. [2021-01-03]. https://www.powerequipment.com.au/products/yanmar-net-cleaner/.
    [8]
    OCEAN F S. Rov services [EB/OL]. [2020-08-11]. https://www.oceanfarmservices.com/services/rov.
    [9]
    庄集超, 庞洪臣, 刘子浪, 等. 一种新型深海网箱网衣清洗机器人设计[J]. 机器人技术, 2018, 45(1): 72-75.
    [10]
    张小明, 詹春毅. 水射流式水下洗网机清洗囊网的效率研究[J]. 机电工程技术, 2018, 47(4): 52-54. doi: 10.3969/j.issn.1009-9492.2018.04.017
    [11]
    张小明, 郭根喜, 陶启友, 等. 高压射流水下洗网机旋转的瞬态射流打击力研究[J]. 现代制造工程, 2011(5): 21-25. doi: 10.3969/j.issn.1671-3133.2011.05.007
    [12]
    张小明, 郭根喜, 陶启友, 等. 歧管式高压射流水下洗网机的设计[J]. 南方水产, 2010, 6(3): 46-51. doi: 10.3969/j.issn.1673-2227.2010.03.009
    [13]
    胡昱, 郭根喜, 黄小华, 等. 高压射流式水下洗网机喷嘴的设计[J]. 南方水产, 2008, 4(4): 16-20. doi: 10.3969/j.issn.2095-0780.2008.04.003
    [14]
    刘海霞, 李秀阁, 张桃, 等. 射流压力对淹没水射流冲击与空蚀效果的影响[J]. 表面技术, 2016, 45(12): 104-110.
    [15]
    HUTLI E, NEDELJKOVIC M, BONYAR A. Dynamic behaviour of cavitation clouds: visualization and statistical analysis[J]. J Braz Soc Mech Sci Engin, 2019, 41(7): 281. doi: 10.1007/s40430-019-1777-9
    [16]
    PAN Y, MA F, LIU B, et al. Cavitation intensity and erosion pattern of a self-excited cavitating jet[J]. J Materials Proc Technol, 2020, 282: 116668. doi: 10.1016/j.jmatprotec.2020.116668
    [17]
    宋协法, 宋业垚, 万荣. 养殖网箱清洗设备的实验研究[J]. 中国水产科学, 2004, 11(增刊): 78-82.
    [18]
    宋协法, 贾瑞, 马玉霞. 涡旋水流式网箱清洗设备的设计与实验[J]. 中国海洋大学学报 (自然科学版), 2006, 36(5): 733-738.
    [19]
    崔谟慎, 孙家骏. 高压水射流技术[M]. 北京: 煤炭工业出版社, 1993: 145-147.
    [20]
    郭根喜, 黄小华, 胡昱, 等. 深水网箱理论研究与实践[M]. 北京: 海洋出版社, 2013: 161-162.
    [21]
    BI C, ZHAO Y, HAI G, et al. Drag on and flow through the hydroid-fouled nets in currents[J]. Ocean Engin, 2018, 161: 195-204. doi: 10.1016/j.oceaneng.2018.05.005
    [22]
    袁太平, 胡昱, 王绍敏, 等. 喷嘴结构对网衣清洗装备水下空化特性的影响[J]. 水产学报, 2020, 45(2): 296-305.
    [23]
    袁太平, 胡昱, 王绍敏, 等. 养殖网箱网衣清洗设备喷嘴的设计及力学特性分析[J]. 渔业现代化, 2020, 47(2): 16-24. doi: 10.3969/j.issn.1007-9580.2020.02.003
    [24]
    LI D, LIU S, WEI Y, et al. Numerical investigation on transient internal cavitating flow and spray[J]. Fuel, 2018, 233: 778-795. doi: 10.1016/j.fuel.2018.06.103
    [25]
    SALVADOR G P, FRANKEL S. Numerical modeling of cavitation using FLUENT: validation and parametric studies[C]. 34th AIAA Fluid Dynamics Conference and Exhibit, Portland, Oregon, 2004: 2642.
    [26]
    PENG K, TIAN S, LI G, et al. Cavitation in water jet under high ambient pressure conditions[J]. Exp Therm Fluid Sci, 2017, 89: 9-18. doi: 10.1016/j.expthermflusci.2017.07.021
    [27]
    陈理. 空化射流喷嘴结构参数的优化[D]. 杭州: 浙江工业大学, 2017: 41-66.
    [28]
    舒爱艳, 石建高, 余雯雯, 等. 海水网箱网衣防污技术的研究进展[J]. 水产学报, 2020, 45(3): 472-485.
    [29]
    高焕, 王玉, 李光光, 等. 海水养殖设施防生物附着方法[J]. 水产养殖, 2018, 39(11): 33-34. doi: 10.3969/j.issn.1004-2091.2018.11.012
    [30]
    吴文红, 黄金臣, 苏文清, 等. 唐山市京唐港海域海水网箱附着生物调查报告[J]. 河北渔业, 2010(9): 35-38. doi: 10.3969/j.issn.1004-6755.2010.09.014
    [31]
    张伟, 李纯厚, 贾晓平, 等. 大亚湾混凝土鱼礁和铁质鱼礁附着生物群落结构的季节变化[J]. 南方水产科学, 2015, 11(1): 9-17. doi: 10.3969/j.issn.2095-0780.2015.01.002
    [32]
    曹善茂, 张丛尧, 张国范, 等. 海洋贝类养殖网笼污损生物类群的研究[J]. 大连水产学院学报, 1998, 13(4): 3-5.
    [33]
    陈欣欣, 王川, 施卫东, 等. 不同冲击角度下淹没冲击水射流的数值计算[J]. 排灌机械工程学报, 2020, 38(7): 658-662.
  • Related Articles

    [1]LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238
    [2]ZHENG Jichang, YAN Han, JIANG Yan, XU Yongjiang, CUI Aijun, MA Bin. Effects of flow velocity on swimming behavior of Lateolabrax maculatus juvenile with different population sizes[J]. South China Fisheries Science. DOI: 10.12131/20240260
    [3]ZHANG Fan, CUI Mingchao, LIU Huang, YAO Chunjing, ZHANG Chen. Experimental study of flow field characteristics in tanks with different diameter-to-depth ratios[J]. South China Fisheries Science. DOI: 10.12131/20240290
    [4]QIAN Cheng, ZHANG Jiapeng, TU Xueying, LIU Huang, QIAO Gan, LIU Shijing. Turbot fish egg recognition and counting method based on CBAM-UNet[J]. South China Fisheries Science, 2024, 20(6): 132-144. DOI: 10.12131/20240123
    [5]ZHENG Haohao, YANG Xiaoming, ZHU Jiangfeng. Environmental impact mechanism of skipjack tuna fishery in Western and Central Pacific Ocean based on Multi-scale Geographical Weighted Regression Model (MGWR)[J]. South China Fisheries Science, 2023, 19(5): 1-10. DOI: 10.12131/20230014
    [6]CAI Yancong, SUN Mingshuai, XU Youwei, CHEN Zuozhi. Spatial heterogeneity of relationship between distribution of Uroteuthis chinensis and marine environment in offshore waters of northern South China Sea[J]. South China Fisheries Science, 2023, 19(3): 1-10. DOI: 10.12131/20220288
    [7]QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153
    [8]ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044
    [9]GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
    [10]HAN Peiwu, LI Nan, FANG Zhou, CHEN Xinjun. Heterogeneity of mantle length-body mass relationship in different Ommastrephes bartramii populations based on linear mixed model[J]. South China Fisheries Science, 2020, 16(6): 12-20. DOI: 10.12131/20200117
  • Cited by

    Periodical cited type(6)

    1. 赵新宇,史宝,王成刚,程汉良,马晓东. 投喂频率对工厂化循环水养殖星康吉鳗生长、生理指标及其水质的影响. 渔业科学进展. 2024(02): 233-244 .
    2. 杨仕沛,黄伟滨,谢明胜,周孟龙,李彪,陆柏泉,黄婉婷,谭北平,章双,杨原志,董晓慧. 投喂频率对珍珠龙胆石斑鱼生长性能、免疫、血清及肝脏生化指标的影响. 动物营养学报. 2024(07): 4576-4587 .
    3. 平洪领,付铁中,张涛,史会来,林慧,杨淑越. 投喂频率对横带髭鲷(Hapalogenys mucronatus)幼鱼生长、体成分、消化系统酶活及组织结构的影响. 海洋与湖沼. 2024(06): 1550-1558 .
    4. 孙瑞健,仇玉燕,杨志强,徐大凤,肖李霞,秦亚丽,倪可雯,周堂建,陈淑吟. 不同投饵率对黑鲷及其杂交子二代幼鱼影响差异. 渔业研究. 2023(02): 110-118 .
    5. 倪可雯,孙瑞健,徐大凤,于雯雯,周堂建,陈淑吟. 不同水温对5个品系黑鲷抗氧化和免疫因子的影响. 水产养殖. 2023(04): 46-52+75 .
    6. 孙瑞健,仇玉燕,杨志强,倪可雯,徐大凤,于雯雯,刘艳丽,肖李霞,陈淑吟. 投喂频率对杂交鲷及黑鲷的体成分、血清生化及基因表达的影响. 水产养殖. 2022(11): 24-31 .

    Other cited types(4)

Catalog

    Article views (1114) PDF downloads (85) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return