WANG Shaomin, YUAN Taiping, YANG Xieqiu, TAO Qiyou, SHEN Wei, HU Yu, HUANG Xiaohua. Frequency domain analysis of hydrodynamic characteristics of mariculture ship with truss and plate frame hybrid structure[J]. South China Fisheries Science, 2021, 17(4): 82-90. DOI: 10.12131/20210021
Citation: WANG Shaomin, YUAN Taiping, YANG Xieqiu, TAO Qiyou, SHEN Wei, HU Yu, HUANG Xiaohua. Frequency domain analysis of hydrodynamic characteristics of mariculture ship with truss and plate frame hybrid structure[J]. South China Fisheries Science, 2021, 17(4): 82-90. DOI: 10.12131/20210021

Frequency domain analysis of hydrodynamic characteristics of mariculture ship with truss and plate frame hybrid structure

More Information
  • Received Date: January 12, 2021
  • Revised Date: March 10, 2021
  • Accepted Date: March 24, 2021
  • Available Online: April 06, 2021
  • In order to study the hydrodynamic performance and motion amplitude response characteristics of the mariculture ship composed of truss structure and several floating bodies with plate and frame structures, we calculated the hydrodynamic characteristics of the ship in frequency domain based on the three-dimensional potential flow theory and Morison equation. Then we obtained and analyzed the hydrodynamic parameters and motion response of the mariculture ship. The results show that the additional mass and radiation damping of the mariculture ship were sensitive to the change of frequency, and the sensitivity was obviously different in the movement of the mariculture ship in different directions, and the additional mass and radiation damping of the three rotations were larger than those of the translations, which were both closely related to the structural shape of the mariculture ship. Under the action of incident waves in every direction, the first-order wave force of the mariculture ship increased at first and then decreased with the increase of frequency, and the first-order wave force curve tended to be stable in the high frequency section under the action of incident waves in different directions. However, there was a big difference in the middle and low section. Under the action of high-frequency and low-frequency excitation, the motion response of the mariculture ship was small, but the resonance occurred when it moved in the medium and short period regular waves. The surging and pitching were the main motion modes when ship was with follow wave or head wave condition, and roll and heave motions were the main motion modes in bean wave.
  • [1]
    贝尔纳·莫林. 海洋工程水动力学[M]. 刘水庚, 译. 北京: 国防工业出版社, 2012: 59-60.
    [2]
    CLAUSS G, STEMPINSKI F, DUDEK M, et al. Water depth influence on wave-structure-interaction[J]. Ocean Engin, 2009, 36(17): 1396-1403.
    [3]
    霍发力. 水深对半潜式平台水动力性能及波浪载荷的影响[J]. 船舶工程, 2014, 36(6): 100-104.
    [4]
    李良碧, 曹剑锋, 顾海英, 等. 基于直接计算方法的海上超大型浮式结构物单模块强度分析[J]. 船舶工程, 2015, 37(11): 67-71.
    [5]
    吴东伟, 顾学康, 祁恩荣. 半潜式平台全寿命期极值载荷的确定[J]. 舰船科学技术, 2011, 33(4): 39-47.
    [6]
    杨鹏. 半潜平台结构疲劳可靠性评估方法研究[D]. 北京: 中国舰船研究院, 2012: 7.
    [7]
    宋长智. 半潜平台结构强度及全寿命强度可靠性研究[D]. 大连: 大连理工大学, 2013: 10-15.
    [8]
    宋宪仓. 深水半潜式平台疲劳损伤评估技术研究[D]. 青岛: 中国海洋大学, 2015: 15-20.
    [9]
    NALLAYARASU S, PRASAD P S. Hydrodynamic response of spar and semi-submersible interlinked by a rigid yoke-Part I: regular waves[J]. Ships Offshore Struc, 2012, 7(3): 297-309. doi: 10.1080/17445302.2011.552208
    [10]
    NALLAYARASU S, PRASAD P S. Hydrodynamic response of spar and semi-submersible interlinked by a rigid yoke-Part II: random waves[J]. Ships Offshore Struc, 2012, 7(2): 133-141. doi: 10.1080/17445302.2011.552209
    [11]
    王科, 贺大川, 张志强. 半潜式钻井平台波浪散射力与运动响应分析[J]. 船舶力学, 2013, 17(5): 478-487.
    [12]
    田超, 丁军, 杨鹏. 岛礁波浪环境下浮式结构物的动响应预报[J]. 船舶力学, 2014, 18(11): 1284-1291.
    [13]
    马汝建. 任意结构形状的大型海洋结构物的附加质量[J]. 中国海洋平台, 1995(2): 27-30.
    [14]
    朱林生, 戴遗山. 无限深水域中浮体附加质量和阻尼系数的高频和低频渐近特性[J]. 水动力学研究与进展(A辑), 1993(4): 419-425.
    [15]
    石强, 尤云祥, 缪国平. 两层流体中矩形箱浮体的附加质量和阻尼系数[J]. 海洋工程, 2007, 25(2): 33-42.
    [16]
    张周康, 洪亮. 斜浪下多浮体结构物运动响应的仿真分析[J]. 兵器装备工程学报, 2018, 39(3): 182-186. doi: 10.11809/bqzbgcxb2018.03.038
    [17]
    LI Z W, ZHANG Z W, TIAN C, et al. A study on connector loads of very large floating structures near islands and reefs[J]. 船舶力学, 2017, 21(3): 329-338.
    [18]
    CHEN M S, ZOU M Y, ZHU L. Frequency-domain response analysis of adjacent multiple floaters with flexible connections[J]. 船舶力学, 2018, 22(9): 1164-1180.
    [19]
    王绍敏, 刘海阳, 郭根喜, 等. 基于动特性分析法的海上养殖平台多点系泊系统设计[J]. 农业工程学报, 2017, 33(5): 217-223.
    [20]
    NEWMAN J N. Efficient hydrodynamic analysis of very large floating structures[J]. Mar Struc, 2005, 18(2): 169-180. doi: 10.1016/j.marstruc.2005.07.003
    [21]
    杨鹏, 顾学康. 超大型浮体模块水弹性响应和结构强度分析[J]. 船舶力学. 2015, 19(5): 553-565.
    [22]
    陶旭, 李英. 基于SESAM的半潜式平台水动力响应分析[J]. 海洋技术学报, 2015, 34(6): 91-95.
    [23]
    苗玉基, 程小明, 吴小峰, 等. 两模块半潜平台波浪漂移力的频域分析[J]. 船舶力学, 2018, 22(10): 1213-1223.
    [24]
    孙雷, 罗贤成, 姜胜超, 等. 极限波浪作用下半潜式平台水动力特性[J]. 中国海洋平台, 2018, 33(6): 65-76.
    [25]
    史俊奇, 肖龙飞, 杨立军, 等. 立柱附体对半潜式平台水动力性能的影响[J]. 船舶力学. 2018, 22(10): 1205-1212.
    [26]
    NEWMAN J N. Marine hydrodynamics[M]. Cambridge: The MIT Press, 1977: 102-131.
    [27]
    戴遗山, 段文洋. 船舶在波浪中运动的势流理论[M]. 北京: 国防工业出版社, 2008: 63-90.
    [28]
    罗红星, 孙江龙, 涂海文, 等. 南极磷虾船水动力性能研究[J]. 中国水运(下半月), 2016, 16(11): 37-39.
    [29]
    王涵. 小水深半潜型风电浮式基础的耦合动力分析与试验研究[D]. 天津: 天津大学, 2013: 26.
    [30]
    刘灶, 陈超核. 风浪流作用下半潜平台水动力及其锚泊系统响应分析[J]. 船海工程, 2018, 47(1): 75-79.

Catalog

    Article views (758) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return