Xiaoyan XIE, Jintao WANG, Xinjun CHEN, Pimao CHEN. Study on relationship between albacore catch rate and water depth and temperature in South Indian Ocean[J]. South China Fisheries Science, 2021, 17(5): 86-92. DOI: 10.12131/20210018
Citation: Xiaoyan XIE, Jintao WANG, Xinjun CHEN, Pimao CHEN. Study on relationship between albacore catch rate and water depth and temperature in South Indian Ocean[J]. South China Fisheries Science, 2021, 17(5): 86-92. DOI: 10.12131/20210018

Study on relationship between albacore catch rate and water depth and temperature in South Indian Ocean

More Information
  • Received Date: January 12, 2021
  • Revised Date: March 30, 2021
  • Accepted Date: April 05, 2021
  • Available Online: April 22, 2021
  • Longline tuna fisheries in the Indian Ocean are commerically important for Chinese offshore fisheries. Water temperature at different depths can affect longline albacore catch rates. In this paper, the generalized additive model (GAM) was used to analyze the relationship between the the catch rate of albacore (Thunnus alalunga) and water temperature at different depths based on the fishery data and corresponding Argo buoy data during 2008−2017. The results show that the catch rate of albacore tuna catch rate was significantly affected by the sea surface temperature (0 m), water temperature at depth of 200 and 400 m. The optimal GAM model explained the variance of catch rate (Catch per unit effort) by 53.3%, and the determining coefficient of model was 0.527. The catch rates of albacore tuna had a nonlinear relationship with the temperature of the three selected water layers. High catch areas were concentrated at the surface layer of 17−30 ℃, 200 m deep sea area of 17−20 ℃, and 400 m deep sea area of 9−15 ℃, and their intersection areas. We have derived the relationship between the spatial distribution of albacore tuna catch rate in the South Indian Ocean and the temperature of three water depth sections for the first time, and the results provide technical support for guiding the rational production of albacore tuna in the Indian Ocean.
  • [1]
    马璐璐. 印度洋长鳍金枪鱼资源的时空分布和资源评估[D]. 上海: 上海海洋大学, 2017: 2.
    [2]
    马璐璐, 朱江峰, 耿喆, 等. 运用生物量动态模型评估印度洋长鳍金枪鱼资源[J]. 上海海洋大学学报, 2018, 27(2): 259-264.
    [3]
    张亚男, 官文江, 李阳东. 印度洋长鳍金枪鱼栖息地指数模型的构建与验证[J]. 上海海洋大学学报, 2020, 29(2): 268-279.
    [4]
    DHURMEEA Z, ZUDAIRE I, CHASSOT E, et al. Reproductive biology of albacore tuna (Thunnus alalunga) in the Western Indian Ocean[J]. PLoS One, 2016, 11(12): e168605.
    [5]
    张艳波. 东南太平洋长鳍金枪鱼垂直分布与栖息地指数研究[D]. 上海: 上海海洋大学, 2015: 26.
    [6]
    张嘉容, 杨晓明, 田思泉. 基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测[J]. 中国水产科学, 2020, 27(10): 1222-1233.
    [7]
    闫敏, 张衡, 樊伟, 等. 南太平洋长鳍金枪鱼渔场CPUE时空分布及其与关键海洋环境因子的关系[J]. 生态学杂志, 2015, 34(11): 3191-3197.
    [8]
    唐衍力, 徐湛. 中西太平洋长鳍金枪鱼 (Thunnus alalunga) 延绳钓渔场分布的时空变化[J]. 渔业科学进展, 2015, 36(3): 22-29. doi: 10.11758/yykxjz.20150304
    [9]
    DOMOKOS R, SEKI M P, POLOVINA J J, et al. Oceanographic investigation of the American Samoa albacore (Thunnus alalunga) habitat and longline fishing grounds[J]. Fish Oceanogr, 2007, 16(6): 555-572. doi: 10.1111/j.1365-2419.2007.00451.x
    [10]
    郭刚刚, 张胜茂, 樊伟, 等. 南太平洋长鳍金枪鱼垂直活动水层空间分析[J]. 南方水产科学, 2016, 12(5): 123-130. doi: 10.3969/j.issn.2095-0780.2016.05.016
    [11]
    杨胜龙, 张忭忭, 唐宝军, 等. 基于GAM模型分析水温垂直结构对热带大西洋大眼金枪鱼渔获率的影响[J]. 中国水产科学, 2017, 24(4): 875-883.
    [12]
    张嘉容, 杨晓明, 戴小杰, 等. 南太平洋长鳍金枪鱼延绳钓渔获率与环境因子的关系研究[J]. 南方水产科学, 2020, 16(1): 69-77.
    [13]
    WANG J, CHEN X, STAPLES K W, et al. The skipjack tuna fishery in the west-central Pacific Ocean: applying neural networks to detect habitat preferences[J]. Fish Sci, 2018, 84(2): 309-321. doi: 10.1007/s12562-017-1161-6
    [14]
    GUISAN A, EDWARDS T C, HASTIE T. Generalized linear and generalized additive models in studies of species distributions: setting the scene[J]. Ecol Model, 2002, 157(2): 89-100.
    [15]
    武胜男, 陈新军, 刘祝楠. 基于GAM的西北太平洋日本鲭资源丰度预测模型建立[J]. 海洋学报 (中文版), 2019, 41(8): 36-42.
    [16]
    张云雷, 徐宾铎, 张崇良, 等. 基于Tweedie-GAM模型研究海州湾小黄鱼资源丰度与栖息环境的关系[J]. 海洋学报, 2019, 41(12): 78-89.
    [17]
    王晓晴, 林宇, 吴锦仁. 东南印度洋长鳍金枪鱼延绳钓渔场探捕浅析[J]. 渔业信息与战略, 2020, 35(3): 198-207.
    [18]
    陈雪忠, 樊伟, 崔雪森, 等. 基于随机森林的印度洋长鳍金枪鱼渔场预报[J]. 海洋学报 (中文版), 2013, 35(1): 158-164.
    [19]
    郭爱, 陈新军. ENSO与中西太平洋金枪鱼围网资源丰度及其渔场变动的关系[J]. 海洋渔业, 2005(4): 338-342. doi: 10.3969/j.issn.1004-2490.2005.04.015
    [20]
    陈新军, 郑波. 中西太平洋金枪鱼围网渔业鲣鱼资源的时空分布[J]. 海洋学研究, 2007(2): 13-22. doi: 10.3969/j.issn.1001-909X.2007.02.002
    [21]
    史珩瑜, 张祖强, 任宏利. 近百年来ENSO强度的变化特征[J]. 气候变化研究进展, 2017, 13(1): 1-10. doi: 10.12006/j.issn.1673-1719.2016.117
    [22]
    孙诗. 南印度洋长鳍金枪鱼黄鳍金枪鱼生物学特性及金枪鱼延绳钓捕捞技术初步分析[D]. 舟山: 浙江海洋大学, 2019: 54.
    [23]
    范永超, 陈新军, 汪金涛. 基于多因子栖息地指数模型的南太平洋长鳍金枪鱼渔场预报[J]. 海洋湖沼通报, 2015(2): 36-44.
    [24]
    刘洪生, 蒋汉凌, 戴小杰. 中西太平洋长鳍金枪鱼渔场与海温的关系[J]. 上海海洋大学学报, 2014, 23(4): 602-607.
    [25]
    范江涛, 陈新军, 钱卫国, 等. 瓦努阿图周边海域长鳍金枪鱼渔场分布及其与表温关系[J]. 海洋湖沼通报, 2011(1): 71-78. doi: 10.3969/j.issn.1003-6482.2011.01.010
    [26]
    MACDONALD J I, FARLEY J H, CLEAR N P, et al. Insights into mixing and movement of South Pacific albacore Thunnus alalunga derived from trace elements in otoliths[J]. Fish Res, 2013, 148: 56-63. doi: 10.1016/j.fishres.2013.08.004
    [27]
    SAITO S. Studies on fishing of albacore, Thunnus alalunga (Bonnaterre) by experimental deep-sea tuna long-line[J]. Mem Fac Fish Hokkaido Univ, 1973, 21(2): 107-184.
    [28]
    陈雪忠, 杨胜龙, 张禹, 等. 热带印度洋大眼金枪鱼垂直分布空间分析[J]. 中国水产科学, 2013, 20(3): 660-671.
    [29]
    储宇航, 戴小杰, 田思泉, 等. 南太平洋长鳍金枪鱼栖息水层深度的时间变化与空间分布[J]. 海洋通报, 2016, 35(2): 216-224. doi: 10.11840/j.issn.1001-6392.2016.02.013
    [30]
    曹晓怡, 周为峰, 樊伟, 等. 大眼金枪鱼渔场与环境关系的研究进展[J]. 海洋渔业, 2008(2): 176-182. doi: 10.3969/j.issn.1004-2490.2008.02.012
    [31]
    翟天晨, 戴小杰, 朱江峰. 东太平洋长鳍金枪鱼个体大小与钓获深度的关系[J]. 海洋渔业, 2015, 37(1): 10-16. doi: 10.3969/j.issn.1004-2490.2015.01.002
    [32]
    宋婷婷, 樊伟, 伍玉梅. 卫星遥感海面高度数据在渔场分析中的应用综述[J]. 海洋通报, 2013, 32(4): 474-480. doi: 10.11840/j.issn.1001-6392.2013.04.017
  • Related Articles

    [1]DAI Yulai, WANG Yuxi, XU Baoqing, DAI Yangxin, LIN Qicun, CAI Lijuan. Study on acute toxicity and histopathology of copper sulfate, trichlorfon and povidone-iodine to GIFT tilapia (Oreochromis niloticus)[J]. South China Fisheries Science, 2023, 19(6): 116-126. DOI: 10.12131/20230093
    [2]HUANG Nanjian, CHEN Haigang, ZHANG Linbao, MA Shengwei, ZHANG Zhe, CAI Wengui, JIA Xiaoping. Acute toxicity of South China Sea LH crude oil and NO.0 diesel to three mariculture and multiplication organisms[J]. South China Fisheries Science, 2015, 11(2): 72-78. DOI: 10.3969/j.issn.2095-0780.2015.02.010
    [3]ZHANG Xincheng, ZHU Xinping, LIU Yihui, HONG Xiaoyou, HUANG Jiancheng, ZENG Minling. Acute toxicity of mebendazole, deltamethrin and copper sulphate to Alosa sapidissima[J]. South China Fisheries Science, 2015, 11(2): 66-71. DOI: 10.3969/j.issn.2095-0780.2015.02.009
    [4]LIU Tianhong, YU Xiaoqing, GUO Pingping, WANG Zhigang, WU Zhihong, SUN Yuanqin, SUN Fuxin, WANG Juan, MA Danping. Effect of different copper salts on acute toxicity and histomorphology of juvenile sea cucumbers[J]. South China Fisheries Science, 2014, 10(6): 58-65. DOI: 10.3969/j.issn.2095-0780.2014.06.008
    [5]YE Le, ZHAO Wang, WU Kaichang. Acute toxicity tests of three antiparasitic drugs to juvenile snail of Babylonia areolata[J]. South China Fisheries Science, 2014, 10(4): 22-26. DOI: 10.3969/j.issn.2095-0780.2014.04.004
    [6]ZHENG Weigang, LI Zhongbao, LI Wenjing, WU Ning. Acute toxicity of Hg2+ to 5 species of genus Anguilla elver[J]. South China Fisheries Science, 2011, 7(4): 16-23. DOI: 10.3969/j.issn.2095-0780.2011.04.003
    [7]SHI Gang, CHEN Gang, ZHANG Jiandong, HUANG Jiansheng, PAN Chuanhao, BAI Lirong. Acute toxicity of 4 aquatic medicines to Lutjanus rivulatus larva[J]. South China Fisheries Science, 2011, 7(3): 50-55. DOI: 10.3969/j.issn.2095-0780.2011.03.009
    [8]WU Xuan, YU Gang, BAI Dong-qing, ZHOU Wen-li. Acute toxic effects of four Chinese herb additives on white cloud mountain fish Tanichthrs altbonubes[J]. South China Fisheries Science, 2010, 6(2): 73-76. DOI: 10.3969/j.issn.1673-2227.2010.02.012
    [9]LI Wenjing, LI Zhongbao, ZHENG Weigang, WU Ning. Acute toxicity of phentriazophos on five species of genus Anguilla elver[J]. South China Fisheries Science, 2009, 5(6): 13-18. DOI: 10.3969/j.issn.1673-2227.2009.06.003
    [10]CHEN Jing, LIU Zhigang, LI Luoying, HE Yongchan. Acute toxicity of three drugs acting on nymph of Sipunculus nudus[J]. South China Fisheries Science, 2009, 5(1): 54-58. DOI: 10.3969/j.issn.1673-2227.2009.01.009
  • Cited by

    Periodical cited type(6)

    1. 赵晓晨,范利平,陈基培. 码头建设对感潮河段水生态影响研究. 水资源开发与管理. 2024(03): 36-41+63 .
    2. 吴湘香,王银平,张燕,吴凡,魏念,杨海乐,沈丽,朱挺兵,茹辉军,刘凯,段辛斌,倪朝辉,李云峰. 长江干流浮游动物群落结构及时空分布格局. 水产学报. 2023(02): 183-192 .
    3. 廖河庭,郑尧,王宁,安树伟,顾玲玲,陈家长. 苏北不同地区藕虾种养模式浮游生物群落结构特征分析. 中国农学通报. 2023(08): 156-164 .
    4. 洪陈聪,胡权,陈皓若,徐赛赛,张健,陈立婧. 青草沙水库后生浮游动物功能群特征及影响因子. 生物学杂志. 2023(05): 47-53 .
    5. 王鑫,李昌文,徐加涛,李士虎,宋可心,唐佳伟,马晓娜,冯志华. 灌河口海域水生动物群落结构及分布特征. 江苏海洋大学学报(自然科学版). 2023(04): 29-41 .
    6. 吴转璋,朱超,唐萍,杨晓冉,王欢,张付海. 巢湖湖区浮游动物群落结构及其水质评价. 能源环境保护. 2022(04): 109-116 .

    Other cited types(2)

Catalog

    Recommendations
    Influence of miniature temperature-depth recorder (tdr-2050) on hook depth of tuna longline fishing hooks
    SONG Liming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Analysis of spatial distribution characteristics of zooplankton and its influence by environmental factors in northwest indian ocean
    YANG Jieqing et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Stock assessment ofthunnus alalungain indian ocean based on climate change factors
    YANG Shiyu et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Parametric modeling and application of gravity deepwater cage system
    WAN Chengyu et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Assessment of water availability in a river basin of india for changing climate
    Sambaran Jana et al., CONTEMPORARY ISSUES IN COMPUTING, 2020
    Study on the habitat suitability of south indian ocean albacore tuna based on the deep scattering layer
    WAN Shujie et al., JOURNAL OF FISHERY SCIENCES OF CHINA, 2025
    Unravelling the fractal complexity of temperature datasets across indian mainland
    Sankaran, Adarsh et al., FRACTAL AND FRACTIONAL, 2024
    More than marine heatwaves: a new regime of heat, acidity, and low oxygen compound extreme events in the gulf of alaska
    Hauri, Claudine et al., AGU ADVANCES, 2024
    Spatial variability and trend analysis of dust aerosols loading over indian sub-continent using merra 2 & calipso data
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Exploring water quality as a determinant of the existence of soft shell crab (scylla olivacea) in different habitats of the large marine ecosystem in the bay of bengal.
    WATER CONSERVATION AND MANAGEMENT, 2024
    Powered by
    Article views (1014) PDF downloads (54) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return