YANG Caili, YANG Xiaoming, ZHU Jiangfeng. Response of environmental factors to distribution of skipjack tuna purse seine fishery in Western and Central Pacific Ocean during different El Niña events[J]. South China Fisheries Science, 2021, 17(3): 8-18. DOI: 10.12131/20210014
Citation: YANG Caili, YANG Xiaoming, ZHU Jiangfeng. Response of environmental factors to distribution of skipjack tuna purse seine fishery in Western and Central Pacific Ocean during different El Niña events[J]. South China Fisheries Science, 2021, 17(3): 8-18. DOI: 10.12131/20210014

Response of environmental factors to distribution of skipjack tuna purse seine fishery in Western and Central Pacific Ocean during different El Niña events

More Information
  • Received Date: January 10, 2021
  • Revised Date: March 15, 2021
  • Accepted Date: March 24, 2021
  • Available Online: April 09, 2021
  • Skipjack tuna (Katsuwonus pelamis) is widely distributed in the Western and Central Pacific Ocean, and El Niño events have significant impacts on its distribution. Based on the logbook data from mainland of China and the oceanographic environmental data, we applied the Maximum Entropy Model (MaxEnt) to explore the spatial distribution of fishing grounds and the response characteristics of environmental factors in different types of El Niño events. The results show that: 1) The MaxEnt model could predict the distribution of fishing grounds well. 2) The moderate Central Pacific El Niño events were mainly distributed around 160°E in the equatorial Pacific, while the super Eastern Pacific and weak Central Pacific El Niño events were mainly distributed around 170°E. 3) Sea surface temperature (SST), sea temperature at depth of 50 m (T50) and sea surface salinity (SSS) were the key factors affecting the distribution of skipjack tuna. In the moderate Central Pacific El Niño events, SSS had the highest contribution rate, while in the super Eastern Pacific and weak Central Pacific El Niño events, T50 did. 4) The center of gravity of fishing ground along the longitude was mainly distributed between 160°E and 175°W, and the suitable habitat average percentage was different in different El Niño events. The moderate Central Pacific El Niño events was 24%; the super Eastern Pacific El Niño events was 28%; the weak Central Pacific El Niño events was 29%.
  • [1]
    WILLIAMS P, THOMAS R, SPC (Secretariat of the Pacific Community). Overview of tuna fisheries in the Western and Central Pacific Ocean, including economic conditions 2019[R]. Pohnpei State: WCPFC-SC16, 2020.
    [2]
    LEHODEY P, BERTIGNAC M, HAMPTON J. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
    [3]
    WANG J T, CHEN X J, STAPLES K W, et al. The skipjack tuna fishery in the west-central Pacific Ocean: applying neural networks to detect habitat preferences[J]. Fish Sci, 2018, 84(2): 309-321. doi: 10.1007/s12562-017-1161-6
    [4]
    MCPHADEN M J, PICAUT J. El Niño-Southern Oscillation displacements of the western equatorial Pacific warm pool[J]. Science, 1990, 250(4986): 1385-1388. doi: 10.1126/science.250.4986.1385
    [5]
    HAMPTON J. Estimates of tag-reporting and tag-shedding rates in a large-scale tuna tagging experiment in the western tropical Pacific Ocean[J]. Fish Byte, 1997, 95(1): 68-79.
    [6]
    LIMA M, NAYA D E. Large-scale climatic variability affects the dynamics of tropical skipjack tuna in the Western Pacific Ocean[J]. Ecography, 2011, 34(4): 597-605. doi: 10.1111/j.1600-0587.2010.06422.x
    [7]
    YEH S W, KUG J S, DEWITTE B, et al. Erratum: El Niño in a changing climate[J]. Nature, 2009, 462(7273): 674-674.
    [8]
    YU J Y, KAO H Y. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001[J]. J Geophys Res-Atmos, 2007, 112(D13): 106.
    [9]
    LEE T, MCPHADEN M J. Increasing intensity of El Niño in the central-equatorial Pacific[J]. Geophys Res Lett, 2010, 37(14): 603.
    [10]
    李政纬. ENSO现象对中西太平洋鲣鲔围网渔况之影响[D]. 基隆: 台湾海洋大学, 2005: 20-28.
    [11]
    周甦芳, 沈建华, 樊伟. ENSO现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004, 26(3): 167-172. doi: 10.3969/j.issn.1004-2490.2004.03.002
    [12]
    YEN K W, LU H J. Spatial-temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean[J]. Fish Sci, 2016, 82(4): 563-571. doi: 10.1007/s12562-016-0992-x
    [13]
    唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518-522.
    [14]
    ZHANG J, ZHANG Y, LIU L, et al. Predicting potential distribution of Tibetan spruce (Picea smithiana) in Qomolangma (Mount Everest) National Nature Preserve using Maximum Entropy Niche-based model[J]. Chin Geogr Sci, 2011, 21(4): 417-426. doi: 10.1007/s11769-011-0483-z
    [15]
    ELITH J, PHILLIPS S J, HASTIE T, et al. A statistical explanation of MaxEnt for ecologists[J]. Divers Distrib, 2011, 17(1): 43-57. doi: 10.1111/j.1472-4642.2010.00725.x
    [16]
    DUQUE-LAZO J, van GILS H, GROEN T A, et al. Transfer ability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia[J]. Ecol Model, 2016, 320: 62-70. doi: 10.1016/j.ecolmodel.2015.09.019
    [17]
    张嘉容, 杨晓明, 田思泉. 基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测[J]. 中国水产科学, 2020, 27(10): 1222-1233.
    [18]
    陈芃, 陈新军. 基于最大熵模型分析西南大西洋阿根廷滑柔鱼栖息地分布[J]. 水产学报, 2016, 40(6): 893-902.
    [19]
    薛嘉伦, 樊伟, 唐峰华, 等. 基于最大熵模型预测西北太平洋公海鲐潜在栖息地分布[J]. 南方水产科学, 2018, 14(1): 92-98. doi: 10.3969/j.issn.20950780.2018.01.012
    [20]
    BUI D T, LOFMAN O, REVHAUG I, et al. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression[J]. Nat Hazards, 2011, 59(3): 1413-1444. doi: 10.1007/s11069-011-9844-2
    [21]
    何珊, 王学昉, 戴黎斌, 等. 人工集鱼装置禁渔期措施对中国大陆金枪鱼围网船队捕捞努力量特征的影响[J]. 大连海洋大学学报, 2018, 33(1): 102-107.
    [22]
    温健, 贡静雯, 李婷, 等. 异常气候条件下秘鲁外海茎柔鱼栖息地的时空变动[J]. 海洋学报, 2020, 42(10): 92-99.
    [23]
    RODHOUSE P G. Managing and forecasting squid fisheries in variable environments[J]. Fish Res, 2001, 54(1): 3-8. doi: 10.1016/S0165-7836(01)00370-8
    [24]
    XIE R H, HUANG F, REN H L. Subtropical air-sea interaction and development of central Pacific El Niño[J]. J Ocean Univ, 2013, 12(2): 260-271. doi: 10.1007/s11802-013-2143-7
    [25]
    夏飞, 黎鑫, 杨明浩, 等. 两类开始型厄尔尼诺事件与次表层海温异常的联系[J]. 厦门大学学报(自然科学版), 2020, 59(3): 381-393.
    [26]
    KAO H Y, YU J Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO[J]. J Clim, 2 009, 22(3): 615-632.
    [27]
    李崇银. 关于ENSO本质的进一步研究[J]. 气候与环境研究, 2002, 7(2): 160-174. doi: 10.3878/j.issn.1006-9585.2002.02.04
    [28]
    叶泰豪, 冯波, 颜云榕, 等. 中西太平洋鲣渔场与温盐垂直结构关系的研究[J]. 海洋湖沼通报, 2012(1): 49-55. doi: 10.3969/j.issn.1003-6482.2012.01.007
    [29]
    杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学院, 2010, 25(1): 34-40.
    [30]
    PICAUT J, IOUALALEN M, MENKES C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
    [31]
    ZHENG F, ZHANG R H. Interannually varying salinity effects on ENSO in the tropical Pacific: a diagnostic analysis from Argo[J]. Ocean Dyn, 2015, 65(5): 691-705. doi: 10.1007/s10236-015-0829-7
    [32]
    范秀梅, 杨胜龙, 张胜茂, 等. 基于栖息地指数的阿拉伯海鲐鱼渔情预报模型构建[J]. 南方水产科学, 2020, 16(4): 8-17. doi: 10.12131/20190255
    [33]
    杨晓明, 王学昉, 田思泉, 等. 赤道太平洋中部围网自由群的空间点模式的影响因子[J]. 水产学报, 2018, 42(8): 1220-1228.
    [34]
    郭爱, 陈新军, 范江涛. 中西太平洋鲣鱼时空分布及其与ENSO关系探讨[J]. 水产科学, 2010, 29(10): 591-596. doi: 10.3969/j.issn.1003-1111.2010.10.006
    [35]
    SATIBI M, OSAWA T, ARTHANA I W. Evaluation of tuna fishing ground in southern coast of Java-Sumbawa Sea using satellite observer data[J]. J Environ Sci, 2012, 4(1): 25-30.
    [36]
    MUGO R, SAITOH S I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
    [37]
    王凡, 刘传玉, 胡石建, 等. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782. doi: 10.11867/j.issn.1001-8166.2018.08.0775
    [38]
    LEHODEY P, SENINA I, CALMETTES B, et al. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries[J]. Clim Change, 2013, 119(1): 95-109. doi: 10.1007/s10584-012-0595-1
    [39]
    陈洋洋, 陈新军, 郭立新, 等. 基于不同气候条件的中西太平洋鲣鱼渔场预报[J]. 上海海洋大学学报, 2019, 28(1): 145-153.
  • Related Articles

    [1]FEI Jiaojiao, LI Cheng, ZHANG Jian, TENG Yuxiu, WU Yuntao, SHI Jiangao. Effects of seamount characteristics in Central and Western Pacific Ocean on CPUEs of yellowfin tuna (Thunnus albacares) in longline and purse seine fisheries[J]. South China Fisheries Science, 2024, 20(2): 1-10. DOI: 10.12131/20230200
    [2]WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. DOI: 10.12131/20230011
    [3]ZHENG Haohao, YANG Xiaoming, ZHU Jiangfeng. Environmental impact mechanism of skipjack tuna fishery in Western and Central Pacific Ocean based on Multi-scale Geographical Weighted Regression Model (MGWR)[J]. South China Fisheries Science, 2023, 19(5): 1-10. DOI: 10.12131/20230014
    [4]WANG Xiao, LIU Wenjun, ZHANG Jian. Effect of Oceanic Niño index on interannual CPUE of yellowfin tuna (Thunnus albacares) in Western and Central Pacific Ocean based on ARIMA model[J]. South China Fisheries Science, 2023, 19(4): 10-20. DOI: 10.12131/20230007
    [5]LIN Hongyu, WANG Jintao, CHEN Xinjun, JIANG Mingfeng, XU Zi'an, LEI Lin, LYU Zehua. Spatial-temporal changes in western and central Pacific warm pool and their impact on distribution of Katsuwonus pelamis[J]. South China Fisheries Science, 2023, 19(3): 173-180. DOI: 10.12131/20220235
    [6]SHI Xiaofei, WANG Xiao, WANG Yixi, SHI Jiangao, ZHANG Jian. Feeding biology of yellowfin tuna (Thunnus albacares) in tropical central and western Pacific Ocean[J]. South China Fisheries Science, 2022, 18(1): 43-51. DOI: 10.12131/20210140
    [7]SUN Kang, DAI Xiaojie, WU Feng, GAO Chunxia. A study on catch rate, sex ratio and fork length of blue shark (Prionace glauca) in longline fishing in Western and Central Pacific Ocean[J]. South China Fisheries Science, 2021, 17(2): 28-35. DOI: 10.12131/20200221
    [8]LI Peng, XU Liuxiong, ZHOU Cheng, WANG Xuefang, TANG Hao, LIU Wei. Variation of fishing ground gravity of tuna free-swimming school caught by purse seiner in Western and Central Pacific Ocean and its relationship with Southern Oscillation Index[J]. South China Fisheries Science, 2020, 16(2): 70-76. DOI: 10.12131/20190158
    [9]TANG Fenghua, CUI Xuesen, YANG Shenglong, ZHOU Weifeng, CHENG Tianfei, WU Zuli, ZHANG Heng. GIS analysis on effect of temporal and spatial patterns of marine environment on purse seine fishery in the western and central Pacific[J]. South China Fisheries Science, 2014, 10(2): 18-26. DOI: 10.3969/j.issn.2095-0780.2014.02.003
    [10]LIAO Xiuli, DU Feiyan, LI Chunhou. Species composition and diversity of planktonic Copepods in Beibu Gulf during El Niño/La Niña[J]. South China Fisheries Science, 2011, 7(5): 1-8. DOI: 10.3969/j.issn.2095-0780.2011.05.001

Catalog

    Article views (734) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return