YANG Caili, YANG Xiaoming, ZHU Jiangfeng. Response of environmental factors to distribution of skipjack tuna purse seine fishery in Western and Central Pacific Ocean during different El Niña events[J]. South China Fisheries Science, 2021, 17(3): 8-18. DOI: 10.12131/20210014
Citation: YANG Caili, YANG Xiaoming, ZHU Jiangfeng. Response of environmental factors to distribution of skipjack tuna purse seine fishery in Western and Central Pacific Ocean during different El Niña events[J]. South China Fisheries Science, 2021, 17(3): 8-18. DOI: 10.12131/20210014

Response of environmental factors to distribution of skipjack tuna purse seine fishery in Western and Central Pacific Ocean during different El Niña events

More Information
  • Received Date: January 10, 2021
  • Revised Date: March 15, 2021
  • Accepted Date: March 24, 2021
  • Available Online: April 09, 2021
  • Skipjack tuna (Katsuwonus pelamis) is widely distributed in the Western and Central Pacific Ocean, and El Niño events have significant impacts on its distribution. Based on the logbook data from mainland of China and the oceanographic environmental data, we applied the Maximum Entropy Model (MaxEnt) to explore the spatial distribution of fishing grounds and the response characteristics of environmental factors in different types of El Niño events. The results show that: 1) The MaxEnt model could predict the distribution of fishing grounds well. 2) The moderate Central Pacific El Niño events were mainly distributed around 160°E in the equatorial Pacific, while the super Eastern Pacific and weak Central Pacific El Niño events were mainly distributed around 170°E. 3) Sea surface temperature (SST), sea temperature at depth of 50 m (T50) and sea surface salinity (SSS) were the key factors affecting the distribution of skipjack tuna. In the moderate Central Pacific El Niño events, SSS had the highest contribution rate, while in the super Eastern Pacific and weak Central Pacific El Niño events, T50 did. 4) The center of gravity of fishing ground along the longitude was mainly distributed between 160°E and 175°W, and the suitable habitat average percentage was different in different El Niño events. The moderate Central Pacific El Niño events was 24%; the super Eastern Pacific El Niño events was 28%; the weak Central Pacific El Niño events was 29%.
  • [1]
    WILLIAMS P, THOMAS R, SPC (Secretariat of the Pacific Community). Overview of tuna fisheries in the Western and Central Pacific Ocean, including economic conditions 2019[R]. Pohnpei State: WCPFC-SC16, 2020.
    [2]
    LEHODEY P, BERTIGNAC M, HAMPTON J. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
    [3]
    WANG J T, CHEN X J, STAPLES K W, et al. The skipjack tuna fishery in the west-central Pacific Ocean: applying neural networks to detect habitat preferences[J]. Fish Sci, 2018, 84(2): 309-321. doi: 10.1007/s12562-017-1161-6
    [4]
    MCPHADEN M J, PICAUT J. El Niño-Southern Oscillation displacements of the western equatorial Pacific warm pool[J]. Science, 1990, 250(4986): 1385-1388. doi: 10.1126/science.250.4986.1385
    [5]
    HAMPTON J. Estimates of tag-reporting and tag-shedding rates in a large-scale tuna tagging experiment in the western tropical Pacific Ocean[J]. Fish Byte, 1997, 95(1): 68-79.
    [6]
    LIMA M, NAYA D E. Large-scale climatic variability affects the dynamics of tropical skipjack tuna in the Western Pacific Ocean[J]. Ecography, 2011, 34(4): 597-605. doi: 10.1111/j.1600-0587.2010.06422.x
    [7]
    YEH S W, KUG J S, DEWITTE B, et al. Erratum: El Niño in a changing climate[J]. Nature, 2009, 462(7273): 674-674.
    [8]
    YU J Y, KAO H Y. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001[J]. J Geophys Res-Atmos, 2007, 112(D13): 106.
    [9]
    LEE T, MCPHADEN M J. Increasing intensity of El Niño in the central-equatorial Pacific[J]. Geophys Res Lett, 2010, 37(14): 603.
    [10]
    李政纬. ENSO现象对中西太平洋鲣鲔围网渔况之影响[D]. 基隆: 台湾海洋大学, 2005: 20-28.
    [11]
    周甦芳, 沈建华, 樊伟. ENSO现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004, 26(3): 167-172. doi: 10.3969/j.issn.1004-2490.2004.03.002
    [12]
    YEN K W, LU H J. Spatial-temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean[J]. Fish Sci, 2016, 82(4): 563-571. doi: 10.1007/s12562-016-0992-x
    [13]
    唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518-522.
    [14]
    ZHANG J, ZHANG Y, LIU L, et al. Predicting potential distribution of Tibetan spruce (Picea smithiana) in Qomolangma (Mount Everest) National Nature Preserve using Maximum Entropy Niche-based model[J]. Chin Geogr Sci, 2011, 21(4): 417-426. doi: 10.1007/s11769-011-0483-z
    [15]
    ELITH J, PHILLIPS S J, HASTIE T, et al. A statistical explanation of MaxEnt for ecologists[J]. Divers Distrib, 2011, 17(1): 43-57. doi: 10.1111/j.1472-4642.2010.00725.x
    [16]
    DUQUE-LAZO J, van GILS H, GROEN T A, et al. Transfer ability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia[J]. Ecol Model, 2016, 320: 62-70. doi: 10.1016/j.ecolmodel.2015.09.019
    [17]
    张嘉容, 杨晓明, 田思泉. 基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测[J]. 中国水产科学, 2020, 27(10): 1222-1233.
    [18]
    陈芃, 陈新军. 基于最大熵模型分析西南大西洋阿根廷滑柔鱼栖息地分布[J]. 水产学报, 2016, 40(6): 893-902.
    [19]
    薛嘉伦, 樊伟, 唐峰华, 等. 基于最大熵模型预测西北太平洋公海鲐潜在栖息地分布[J]. 南方水产科学, 2018, 14(1): 92-98. doi: 10.3969/j.issn.20950780.2018.01.012
    [20]
    BUI D T, LOFMAN O, REVHAUG I, et al. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression[J]. Nat Hazards, 2011, 59(3): 1413-1444. doi: 10.1007/s11069-011-9844-2
    [21]
    何珊, 王学昉, 戴黎斌, 等. 人工集鱼装置禁渔期措施对中国大陆金枪鱼围网船队捕捞努力量特征的影响[J]. 大连海洋大学学报, 2018, 33(1): 102-107.
    [22]
    温健, 贡静雯, 李婷, 等. 异常气候条件下秘鲁外海茎柔鱼栖息地的时空变动[J]. 海洋学报, 2020, 42(10): 92-99.
    [23]
    RODHOUSE P G. Managing and forecasting squid fisheries in variable environments[J]. Fish Res, 2001, 54(1): 3-8. doi: 10.1016/S0165-7836(01)00370-8
    [24]
    XIE R H, HUANG F, REN H L. Subtropical air-sea interaction and development of central Pacific El Niño[J]. J Ocean Univ, 2013, 12(2): 260-271. doi: 10.1007/s11802-013-2143-7
    [25]
    夏飞, 黎鑫, 杨明浩, 等. 两类开始型厄尔尼诺事件与次表层海温异常的联系[J]. 厦门大学学报(自然科学版), 2020, 59(3): 381-393.
    [26]
    KAO H Y, YU J Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO[J]. J Clim, 2 009, 22(3): 615-632.
    [27]
    李崇银. 关于ENSO本质的进一步研究[J]. 气候与环境研究, 2002, 7(2): 160-174. doi: 10.3878/j.issn.1006-9585.2002.02.04
    [28]
    叶泰豪, 冯波, 颜云榕, 等. 中西太平洋鲣渔场与温盐垂直结构关系的研究[J]. 海洋湖沼通报, 2012(1): 49-55. doi: 10.3969/j.issn.1003-6482.2012.01.007
    [29]
    杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学院, 2010, 25(1): 34-40.
    [30]
    PICAUT J, IOUALALEN M, MENKES C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
    [31]
    ZHENG F, ZHANG R H. Interannually varying salinity effects on ENSO in the tropical Pacific: a diagnostic analysis from Argo[J]. Ocean Dyn, 2015, 65(5): 691-705. doi: 10.1007/s10236-015-0829-7
    [32]
    范秀梅, 杨胜龙, 张胜茂, 等. 基于栖息地指数的阿拉伯海鲐鱼渔情预报模型构建[J]. 南方水产科学, 2020, 16(4): 8-17. doi: 10.12131/20190255
    [33]
    杨晓明, 王学昉, 田思泉, 等. 赤道太平洋中部围网自由群的空间点模式的影响因子[J]. 水产学报, 2018, 42(8): 1220-1228.
    [34]
    郭爱, 陈新军, 范江涛. 中西太平洋鲣鱼时空分布及其与ENSO关系探讨[J]. 水产科学, 2010, 29(10): 591-596. doi: 10.3969/j.issn.1003-1111.2010.10.006
    [35]
    SATIBI M, OSAWA T, ARTHANA I W. Evaluation of tuna fishing ground in southern coast of Java-Sumbawa Sea using satellite observer data[J]. J Environ Sci, 2012, 4(1): 25-30.
    [36]
    MUGO R, SAITOH S I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
    [37]
    王凡, 刘传玉, 胡石建, 等. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782. doi: 10.11867/j.issn.1001-8166.2018.08.0775
    [38]
    LEHODEY P, SENINA I, CALMETTES B, et al. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries[J]. Clim Change, 2013, 119(1): 95-109. doi: 10.1007/s10584-012-0595-1
    [39]
    陈洋洋, 陈新军, 郭立新, 等. 基于不同气候条件的中西太平洋鲣鱼渔场预报[J]. 上海海洋大学学报, 2019, 28(1): 145-153.
  • Cited by

    Periodical cited type(6)

    1. 蔡润基,彭小红,叶双福,张天晨,高月芳,吕俊霖. 基于前后端生成概率密度图模型的虾苗自动计数. 南方水产科学. 2025(01): 173-184 . 本站查看
    2. 宋一帆,张胜茂,张衡,唐峰华,张寒野,石永闯,崔雪森. X-ray在鱼体组织及微量元素检测中的应用. 应用光学. 2024(01): 166-176 .
    3. 李佳康,张胜茂,吴祖立,石永闯,唐峰华. 养殖水体中校色卡识别与色彩变化分析. 渔业信息与战略. 2024(01): 49-60 .
    4. 李鹏龙,张胜茂,沈烈,樊伟,顾家辉,邹国华. 具有双层路由注意力机制的YOLOv8血鹦鹉目标检测与追踪方法. 大连海洋大学学报. 2024(02): 318-326 .
    5. 赵斌,李成林. 水产业采捕装备发展现状与提升对策. 中国海洋经济. 2024(02): 143-156+221-222 .
    6. 孙月莹,陈俊霖,张胜茂,王书献,熊瑛,樊伟. 基于改进YOLOv7的毛虾捕捞渔船作业目标检测与计数方法. 农业工程学报. 2023(10): 151-162 .

    Other cited types(4)

Catalog

    Recommendations
    Study on artificial propagation and embryonic development regularity ofdiscogobio multilineatus
    WANG Yuesong et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Chromosome-level genome and characteristic analysis ofplatax teira
    OUYANG Yan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Perkinsusspp. infections between cultured and wild oysterscrassostrea hongkongensisandsaccostrea mordax
    ZHUANG Menghao et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    A method for estimating quantity oftrachinotus ovatusin marine cage aquaculture based on high-frequency horizontal mechanical scanning sonar image
    HU Jiazhen et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Molecular cloning and expression analysis of igmh and mhcⅱβ genes in the spotted sea bass (lateolabrax maculatus)
    LEI Lina et al., JOURNAL OF FISHERIES OF CHINA, 2025
    Evaluation of biointegrity of phytoplankton in typical sections of the lower reaches of yangtze river using edna technology
    ZHOU Yu-heng et al., JOURNAL OF SOUTHERN AGRICULTURE, 2025
    Distinguishing trajectories and drivers of vegetated ecosystems in china's loess plateau
    Wang, Zhuangzhuang et al., EARTHS FUTURE, 2024
    Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction
    Hou, Zhiqian et al., ADVANCED MATERIALS, 2023
    Two step synthesis of octreotide-doxorubicin conjugates based on disulfide bond linker
    ACTA CHIMICA SINICA
    Fatigue life prediction for orthotropic steel bridge decks welds using a gaussian variational bayes network and small sample experimental data
    RELIABILITY ENGINEERING & SYSTEM SAFETY
    Powered by
    Article views (748) PDF downloads (49) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return