Citation: | ZHOU Xihan, WU Qia'er, ZHOU Yanbo, XIE Enge, MA Shengwei. Prediction of abundance of Sthenoteuthis oualaniensis in South China Sea based on optimized grey system model[J]. South China Fisheries Science, 2021, 17(3): 1-7. DOI: 10.12131/20200218 |
[1] |
张鹏, 杨吝, 张旭丰, 等. 南海金枪鱼和鸢乌贼资源开发现状及前景[J]. 南方水产, 2010, 6(1): 68-74.
|
[2] |
EKO S, YE H J, DAI Y, et al. Detailed spatiotemporal impacts of El Niño on phytoplankton biomass in the South China Sea[J]. J Geophys Res Oceans, 2017, 12(2): 123-126.
|
[3] |
招春旭, 邱星宇, 何雄波, 等. 南海春季月相、水深、作业时间与鸢乌贼CPUE的关系[J]. 水产学报, 2019, 43(11): 2372-2382.
|
[4] |
耿喆, 朱江峰, 夏萌, 等. 数据缺乏条件下的渔业资源评估方法研究进展[J]. 海洋湖沼通报, 2018(5): 130-137.
|
[5] |
邓聚龙. 灰色系统基本方法[M]. 武汉: 华中理工大学出版社, 1987: 20-60.
|
[6] |
陈新军. 灰色系统理论在渔业科学中的应用[M]. 北京: 中国农业出版社, 2003: 1-32.
|
[7] |
袁德宝, 张振超, 张军, 等. 最优化分数阶算子EGM (1,1) 模型在变形监测预报中的应用[J]. 大地测量与地球动力学, 2020, 40(4): 331-334, 345.
|
[8] |
索瑞霞, 王翔宇, 沈剑. 基于动态无偏灰色马尔科夫模型的煤炭需求量预测[J]. 数学的实践与认识, 2019, 49(13): 179-186.
|
[9] |
徐华锋, 刘思峰, 方志耕. GM (1,1) 模型灰色作用量的优化[J]. 数学的实践与认识, 2010, 40(2): 26-32.
|
[10] |
高媛媛, 魏勇. 灰色模型背景值优化的一种新方法[J]. 统计与决策, 2020, 36(7): 21-26.
|
[11] |
CUI J, LIU S F, ZENG B, et al. A novel grey forecasting model and its optimization[J]. Appl Math Model, 2013, 37(6): 4399-4406. doi: 10.1016/j.apm.2012.09.052
|
[12] |
孙辰军, 王翠茹, 张江维. 残差灰色预测模型的改进与应用[J]. 统计与决策, 2005(5): 19-20. doi: 10.3969/j.issn.1002-6487.2005.05.010
|
[13] |
高雪, 陈新军, 余为. 基于灰色系统的西北太平洋柔鱼冬春生群资源丰度预测模型[J]. 海洋学报, 2017, 39(6): 55-61.
|
[14] |
谢恩阁, 周艳波, 冯菲, 等. 中国南海外海鸢乌贼灯光罩网渔业CPUE标准化研究[J]. 大连海洋大学学报, 2020, 35(3): 439-446.
|
[15] |
张立, 李渊, 林龙山, 等. 南海中南部主要经济种类渔业资源声学评估[J]. 海洋渔业, 2016, 38(6): 577-587. doi: 10.3969/j.issn.1004-2490.2016.06.003
|
[16] |
余景, 胡启伟, 李纯厚, 等. 西沙—中沙海域春季鸢乌贼资源与海洋环境的关系[J]. 海洋学报, 2017, 39(6): 62-73.
|
[17] |
冯波, 颜云榕, 张宇美, 等. 南海鸢乌贼 (Sthenoteuthis oualaniensis) 资源评估的新方法[J]. 渔业科学进展, 2014, 35(4): 1-6. doi: 10.11758/yykxjz.20140401
|
[18] |
范江涛, 张俊, 冯雪, 等. 南沙海域鸢乌贼渔场与海洋环境因子的关系[J]. 上海海洋大学学报, 2019, 28(3): 419-426.
|
[19] |
王言丰, 陈新军, 陈芃, 等. 基于灰色系统西南大西洋阿根廷滑柔鱼资源丰度预测模型的构建[J]. 海洋学报, 2019, 41(4): 64-73.
|
[20] |
余胜威. MATLAB优化算法案例分析与应用[M]. 北京: 清华大学出版社, 2004: 46-55.
|
[21] |
成枢, 周龙飞, 高秀明. 基于灰色关联GM (1,N)-Markov修正模型的应用[J]. 勘察科学技术, 2019(3): 43-48. doi: 10.3969/j.issn.1001-3946.2019.03.011
|
[22] |
方舟, 陈洋洋, 陈新军, 等. 基于不同环境因子的中西太平洋鲣鱼资源丰度灰色预测模型构建[J]. 海洋学研究, 2018, 36(4): 60-67. doi: 10.3969/j.issn.1001-909X.2018.04.008
|
[23] |
李庆扬, 王能超, 易大义. 数值分析[M]. 北京: 清华大学出版社, 2008: 32-39.
|
[24] |
姜汝翰. 基于灰色模型的青岛港集装箱吞吐量预测研究[D]. 大连: 大连海事大学, 2019: 25-29.
|
[25] |
DENG Z, KE Y, GONG H, et al. Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model[J]. GISci Remote Sens, 2017, 54(6): 797-818. doi: 10.1080/15481603.2017.1331511
|
[26] |
郭雪峰, 黄健元, 王欢. 改进的灰色模型在流动人口预测中的应用[J]. 统计与决策, 2018, 34(8): 76-79.
|
[27] |
蒲晓妮, 赵睿, 王江荣. 基于Fourier级数残差修正的灰色Verhulst模型及应用[J]. 自动化与仪器仪表, 2019(8): 98-101.
|
[28] |
徐红云, 崔雪森, 周为峰, 等. 基于海洋遥感的南海外海鸢乌贼最适栖息环境分析[J]. 生态学杂志, 2016, 35(11): 3080-3085.
|
[29] |
晏磊, 张鹏, 杨炳忠, 等. 南海鸢乌贼产量与表温及水温垂直结构的关系[J]. 中国水产科学, 2016, 23(2): 469-477.
|
[30] |
范江涛, 张俊, 冯雪, 等. 基于地统计学的南沙海域鸢乌贼渔场分析[J]. 生态学杂志, 2017, 36(2): 442-446.
|
[31] |
常永波. 几种人工神经网络模型在智利竹䇲鱼渔场渔情预报中的比较研究[D]. 上海: 上海海洋大学, 2016: 7-15.
|
[32] |
SOYKAN C U, EGUCHI T, KOHIN S, et al. Prediction of fishing effort distributions using boosted regression trees[J]. Ecol Appl, 2014, 24(1): 71-83. doi: 10.1890/12-0826.1
|
[33] |
HIROSHI S. Application of support vector regression to CPUE analysis for southern bluefin tuna Thunnus maccoyii, and its comparison with conventional methods[J]. Fish Sci, 2014, 80(5): 879-886. doi: 10.1007/s12562-014-0770-6
|