ZHOU Xihan, WU Qia'er, ZHOU Yanbo, XIE Enge, MA Shengwei. Prediction of abundance of Sthenoteuthis oualaniensis in South China Sea based on optimized grey system model[J]. South China Fisheries Science, 2021, 17(3): 1-7. DOI: 10.12131/20200218
Citation: ZHOU Xihan, WU Qia'er, ZHOU Yanbo, XIE Enge, MA Shengwei. Prediction of abundance of Sthenoteuthis oualaniensis in South China Sea based on optimized grey system model[J]. South China Fisheries Science, 2021, 17(3): 1-7. DOI: 10.12131/20200218

Prediction of abundance of Sthenoteuthis oualaniensis in South China Sea based on optimized grey system model

More Information
  • Received Date: October 18, 2020
  • Revised Date: January 09, 2021
  • Accepted Date: January 24, 2021
  • Available Online: January 26, 2021
  • Squid (Sthenoteuthis oualaniensis), one of the important economic Cephalopods in the South China Sea, has great development potential and economic value, playing an increasingly significant role in the marine fisheries of the South China Sea. In order to understand the variation of catch per unit effort (CPUE) and make scientific predictions, we constructed a gray prediction model GM (1,N) and combined it with marine environmental factors, then fitted and predicted the production data of the South China Sea squid from spring to summer of 2013−2019. Besides, we modified the background value of the original model by Simpson formula and Fourier series, and corrected the residual error of the simulated value. The results show that the average relative errors of the traditional GM (1,N) model and the optimized grey GM (1,N) model were 7.78% and 2.54%, respectively. For the prediction of squid CPUE in 2019, the optimized grey GM (1,N) model reduced the relative error from 4.79% of the traditional GM (1,N) model to 1.87%. It is showed that the optimized grey system model has a higher prediction accuracy than the traditional GM (1,N) model, which provides a new idea on how to predict the relative abundance of squid resources accurately.
  • [1]
    张鹏, 杨吝, 张旭丰, 等. 南海金枪鱼和鸢乌贼资源开发现状及前景[J]. 南方水产, 2010, 6(1): 68-74.
    [2]
    EKO S, YE H J, DAI Y, et al. Detailed spatiotemporal impacts of El Niño on phytoplankton biomass in the South China Sea[J]. J Geophys Res Oceans, 2017, 12(2): 123-126.
    [3]
    招春旭, 邱星宇, 何雄波, 等. 南海春季月相、水深、作业时间与鸢乌贼CPUE的关系[J]. 水产学报, 2019, 43(11): 2372-2382.
    [4]
    耿喆, 朱江峰, 夏萌, 等. 数据缺乏条件下的渔业资源评估方法研究进展[J]. 海洋湖沼通报, 2018(5): 130-137.
    [5]
    邓聚龙. 灰色系统基本方法[M]. 武汉: 华中理工大学出版社, 1987: 20-60.
    [6]
    陈新军. 灰色系统理论在渔业科学中的应用[M]. 北京: 中国农业出版社, 2003: 1-32.
    [7]
    袁德宝, 张振超, 张军, 等. 最优化分数阶算子EGM (1,1) 模型在变形监测预报中的应用[J]. 大地测量与地球动力学, 2020, 40(4): 331-334, 345.
    [8]
    索瑞霞, 王翔宇, 沈剑. 基于动态无偏灰色马尔科夫模型的煤炭需求量预测[J]. 数学的实践与认识, 2019, 49(13): 179-186.
    [9]
    徐华锋, 刘思峰, 方志耕. GM (1,1) 模型灰色作用量的优化[J]. 数学的实践与认识, 2010, 40(2): 26-32.
    [10]
    高媛媛, 魏勇. 灰色模型背景值优化的一种新方法[J]. 统计与决策, 2020, 36(7): 21-26.
    [11]
    CUI J, LIU S F, ZENG B, et al. A novel grey forecasting model and its optimization[J]. Appl Math Model, 2013, 37(6): 4399-4406. doi: 10.1016/j.apm.2012.09.052
    [12]
    孙辰军, 王翠茹, 张江维. 残差灰色预测模型的改进与应用[J]. 统计与决策, 2005(5): 19-20. doi: 10.3969/j.issn.1002-6487.2005.05.010
    [13]
    高雪, 陈新军, 余为. 基于灰色系统的西北太平洋柔鱼冬春生群资源丰度预测模型[J]. 海洋学报, 2017, 39(6): 55-61.
    [14]
    谢恩阁, 周艳波, 冯菲, 等. 中国南海外海鸢乌贼灯光罩网渔业CPUE标准化研究[J]. 大连海洋大学学报, 2020, 35(3): 439-446.
    [15]
    张立, 李渊, 林龙山, 等. 南海中南部主要经济种类渔业资源声学评估[J]. 海洋渔业, 2016, 38(6): 577-587. doi: 10.3969/j.issn.1004-2490.2016.06.003
    [16]
    余景, 胡启伟, 李纯厚, 等. 西沙—中沙海域春季鸢乌贼资源与海洋环境的关系[J]. 海洋学报, 2017, 39(6): 62-73.
    [17]
    冯波, 颜云榕, 张宇美, 等. 南海鸢乌贼 (Sthenoteuthis oualaniensis) 资源评估的新方法[J]. 渔业科学进展, 2014, 35(4): 1-6. doi: 10.11758/yykxjz.20140401
    [18]
    范江涛, 张俊, 冯雪, 等. 南沙海域鸢乌贼渔场与海洋环境因子的关系[J]. 上海海洋大学学报, 2019, 28(3): 419-426.
    [19]
    王言丰, 陈新军, 陈芃, 等. 基于灰色系统西南大西洋阿根廷滑柔鱼资源丰度预测模型的构建[J]. 海洋学报, 2019, 41(4): 64-73.
    [20]
    余胜威. MATLAB优化算法案例分析与应用[M]. 北京: 清华大学出版社, 2004: 46-55.
    [21]
    成枢, 周龙飞, 高秀明. 基于灰色关联GM (1,N)-Markov修正模型的应用[J]. 勘察科学技术, 2019(3): 43-48. doi: 10.3969/j.issn.1001-3946.2019.03.011
    [22]
    方舟, 陈洋洋, 陈新军, 等. 基于不同环境因子的中西太平洋鲣鱼资源丰度灰色预测模型构建[J]. 海洋学研究, 2018, 36(4): 60-67. doi: 10.3969/j.issn.1001-909X.2018.04.008
    [23]
    李庆扬, 王能超, 易大义. 数值分析[M]. 北京: 清华大学出版社, 2008: 32-39.
    [24]
    姜汝翰. 基于灰色模型的青岛港集装箱吞吐量预测研究[D]. 大连: 大连海事大学, 2019: 25-29.
    [25]
    DENG Z, KE Y, GONG H, et al. Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model[J]. GISci Remote Sens, 2017, 54(6): 797-818. doi: 10.1080/15481603.2017.1331511
    [26]
    郭雪峰, 黄健元, 王欢. 改进的灰色模型在流动人口预测中的应用[J]. 统计与决策, 2018, 34(8): 76-79.
    [27]
    蒲晓妮, 赵睿, 王江荣. 基于Fourier级数残差修正的灰色Verhulst模型及应用[J]. 自动化与仪器仪表, 2019(8): 98-101.
    [28]
    徐红云, 崔雪森, 周为峰, 等. 基于海洋遥感的南海外海鸢乌贼最适栖息环境分析[J]. 生态学杂志, 2016, 35(11): 3080-3085.
    [29]
    晏磊, 张鹏, 杨炳忠, 等. 南海鸢乌贼产量与表温及水温垂直结构的关系[J]. 中国水产科学, 2016, 23(2): 469-477.
    [30]
    范江涛, 张俊, 冯雪, 等. 基于地统计学的南沙海域鸢乌贼渔场分析[J]. 生态学杂志, 2017, 36(2): 442-446.
    [31]
    常永波. 几种人工神经网络模型在智利竹䇲鱼渔场渔情预报中的比较研究[D]. 上海: 上海海洋大学, 2016: 7-15.
    [32]
    SOYKAN C U, EGUCHI T, KOHIN S, et al. Prediction of fishing effort distributions using boosted regression trees[J]. Ecol Appl, 2014, 24(1): 71-83. doi: 10.1890/12-0826.1
    [33]
    HIROSHI S. Application of support vector regression to CPUE analysis for southern bluefin tuna Thunnus maccoyii, and its comparison with conventional methods[J]. Fish Sci, 2014, 80(5): 879-886. doi: 10.1007/s12562-014-0770-6
  • Cited by

    Periodical cited type(3)

    1. 万树杰,陈新军. 基于机器学习的西南印度洋深海散射层声学资源密度预测. 上海海洋大学学报. 2024(06): 1357-1368 .
    2. 赵旺,陈旭,陈明强,黄星美,邓正华,温为庚,王江勇. 鸢乌贼为蛋白源的方斑东风螺人工配合饲料养殖研究. 广东农业科学. 2023(04): 115-122 .
    3. 田振中,樊丽花,董海隆. 融合随机森林与多变量灰色的道路交通事故预测模型研究. 警察技术. 2023(05): 78-81 .

    Other cited types(4)

Catalog

    Article views (723) PDF downloads (46) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return