DENG Yiqin, LIU Songlin, FENG Juan, JIANG Zhijian. Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China[J]. South China Fisheries Science, 2020, 16(5): 1-9. DOI: 10.12131/20200068
Citation: DENG Yiqin, LIU Songlin, FENG Juan, JIANG Zhijian. Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China[J]. South China Fisheries Science, 2020, 16(5): 1-9. DOI: 10.12131/20200068

Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China

More Information
  • Received Date: April 06, 2020
  • Revised Date: May 07, 2020
  • Accepted Date: May 31, 2020
  • Available Online: September 27, 2020
  • In this study, 16S rRNA gene sequencing was used to analyze the community structure of potential pathogenic bacteria in the typical tropical (Xincun, Li'an, Tanmen) seagrass meadows of the South China Sea. The abundances of Vibrio and Enterococcus were counted by selective medium analysis, and their typical virulence genes abundances were quantified by quantitative PCR. The results show that the putative bacterial pathogens in Xincun and Li'an clustered and then separated from those of Tanmen. Abundances of cultured Vibrio and Enterococcus, and the typical virulence genes contents of vhh, toxR, aspA, esp, and gelE followed a descending order of Xincun>Li'an>Tanmen, while the contents of Vibrio typical virulence genes of ctxA, tlh, trh, and vvp followed a descending order of Tanmen>Xincun> Li'an. Higher intensity human activities, such as nutrient load, probably are responsible for the higher abundance of pathogens and virulence genes of seagrass meadows in Xincun and Li'an, while the differences between Xincun and Li'an may be attributed to different types of human activities.

  • [1]
    DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8. doi: 10.5194/bg-2-1-2005
    [2]
    HECK K L, HAYS G, ORTH R J. Critical evaluation of the nursery role hypothesis for seagrass meadows[J]. Mar Ecol Prog, 2003, 253: 123-136. doi: 10.3354/meps253123
    [3]
    STEWART J R, GAST R J, FUJIOKA R S, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs[J]. Environ Health-Glob, 2008, 7(Sup 2): S3.
    [4]
    LAMB J B, van de WATER, JEROEN A J M, et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 2017, 355(6326): 731-733. doi: 10.1126/science.aal1956
    [5]
    ARUMUGAM R, ANANTHARAMAN P. Antibacterial potential of three seagrasses against human pathogens[J]. Asian Pac J Trop Med, 2010(11): 890-893.
    [6]
    DUARTE C M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget[J]. Biogeosciences, 2017, 14(2): 301-310. doi: 10.5194/bg-14-301-2017
    [7]
    COUPLAND G T, WALKER D D I. High metabolic rates in beach cast communities[J]. Ecosystems, 2007, 10(8): 1341-1350. doi: 10.1007/s10021-007-9102-3
    [8]
    PATIL R, EYASEKARAN G J, SHANMUGAM S A. Control of bacterial pathogens, associated with fish diseases, by antagonistic marine actinomycetes isolated from marine sediments[J]. Ind J Geo-Mar Sci, 2011, 30(4): 324-267. doi: 10.1006/jmsc.2001.1116
    [9]
    ZHU H Y, LI X W, ZHENG X Y. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. Biomed Res Int, 2017: 2796054.
    [10]
    SHENG H, ZHOU P, ZHANG Y, et al. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China[J]. Soil Biol Biochem, 2015, 88: 148-157. doi: 10.1016/j.soilbio.2015.05.015
    [11]
    ROLL B M, FUJIOKA R S. Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality[J]. Water Sci Technol, 1997, 35(11/12): 179-186.
    [12]
    FUJIOKA R, SIAN-DENTON C, BORJA M, et al. Soil: the environmental source of Escherichia coli and Enterococci in Guam's streams[J]. J Appl Microbiol, 2010, 85(S1): 83-89.
    [13]
    WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proc Natl Acad Sci USA, 2009, 106(30): 12377-12381. doi: 10.1073/pnas.0905620106
    [14]
    周立柱, 杨顶田, 尹小青. 海南新村港和黎安港非点源污染负荷估算[J]. 生态科学, 2018, 37(3): 11-20.
    [15]
    ZHANG X, ZHAO C, YU S, et al. Rhizosphere microbial community structure are selected by habitats but not plant species in two  tropical  seagrass  beds[J].  Fronit  Mocrobiol,  2020, 11. doi: 10.3389/fmicb.2020.00161.
    [16]
    MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet J, 2011, 17(1): 10-12. doi: 10.14806/ej.17.1.200
    [17]
    KNIGHT R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. doi: 10.1093/bioinformatics/btr381
    [18]
    EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604
    [19]
    CHRISTIAN Q, ELMAR P, PELIN Y, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41(D1): D590-D596.
    [20]
    UCHIYAMA H. Distribution of Vibrio species isolated from aquatic environments with TCBS agar[J]. Environ Health Prev, 2000, 4(4): 199-204. doi: 10.1007/BF02931258
    [21]
    EMBERGER O, PAVLOVÃ M. Suitability of Slanetz-Bartley esculine sodium azide media for determination of Enterococci[J]. Epidemiol Mikrobi Im, 1971, 20(5): 262-269.
    [22]
    ANDERSON M J, GORLEY R N, CLARKE K R. PERMANOVA for PRIMER: guide to software and statistical methods[M]. Plymouth, UK: PRIMER-E Ltd., 2008: 105-121.
    [23]
    COLLADO L, INZA I, GUARRO J, et al. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution[J]. Environ Microbiol, 2008, 10(6): 1635-1640. doi: 10.1111/j.1462-2920.2007.01555.x
    [24]
    HAAGSMA J. Pathogenic anaerobic bacteria and the environment[J]. Rev Sci Tech, 1991, 10(3): 749-764. doi: 10.20506/rst.10.3.569
    [25]
    JANDA J M. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp.[J]. Clin Microbiol Rev, 1988, 1(3): 245-267. doi: 10.1128/CMR.1.3.245
    [26]
    DAVID P P, AURELIE L, GHISLAINE M, et al. The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms[J]. Front Microbiol, 2017, 8: 1542. doi: 10.3389/fmicb.2017.01542.
    [27]
    CHISTOSERDOV A Y, GUBBALA S L, SMOLOWITZ R, et al. A microbiological assessment of epizootic shell disease in the American lobster indicates its strictly dermal etiology[M]. Boston: Boston University of Massachusetts, 2005: 12-20.
    [28]
    DIEDRICH L K, MANBY C L. Haemophilus species as a urinary tract pathogen[J]. Lab Med, 2017, 48(1): e1-e3. doi: 10.1093/labmed/lmw063
    [29]
    RIVAS A J, VENCES A, HUSMANN M, et al. The Photobacterium damselae subsp. damselae major virulence factors Dly, HlyApl and HlyAch are secreted via the type II secretion system[J]. Infect Immun, 2015, 83(4): 1246-1256. doi: 10.1128/IAI.02608-14
    [30]
    WEBSTER N S. Sponge disease: a global threat?[J]. Environ Microbiol, 2007, 9(6): 1363-1375. doi: 10.1111/j.1462-2920.2007.01303.x
    [31]
    WATRAL V, KENT M L. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities[J]. Comp Biochem Physiol C, 2007, 145(1): 55-60. doi: 10.1016/j.cbpc.2006.06.004
    [32]
    DALSGAARD I. Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish[J]. Ann Rev Fish Dis, 1993, 3: 127-144. doi: 10.1016/0959-8030(93)90032-7
    [33]
    STEVENS D A, HAMILTON J R, JOHNSON N, et al. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center three new species[J]. Medicine, 2009, 88(4): 244-249. doi: 10.1097/MD.0b013e3181aede29
    [34]
    FARKAS J. Filamentous Flavobacterium sp. isolated from fish with gill diseases in cold water[J]. Aquaculture, 1985, 44(1): 1-10. doi: 10.1016/0044-8486(85)90037-7
    [35]
    JOHNSON D I. Legionella spp. [M]. New York: Springer International Publishing AG, 2018:279-287
    [36]
    MAUEL M J, SOTO E, MORALIS J A, et al. A Piscirickettsiosis-like syndrome in cultured nile tilapia in Latin America with Francisella spp. as the pathogenic agent[J]. J Aquat Anim Health, 2007, 19(1): 27-34. doi: 10.1577/H06-025.1
    [37]
    VALDIVIA-ARENAS M A. Bloodstream infections due to Micrococcus spp and intravenous epoprostenol[J]. Infect Cont Hosp Ep, 2009, 30(12): 1237-1237.
    [38]
    BOWMAN J P. The Genus, Psychrobacter[M]. New York: Springer, 2006: 920-930.
    [39]
    LIU S, JIANG Z, DENG Y, et al. Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows[J]. Microbiol Open, 2018, 7(5): e00600. doi: 10.1002/mbo3.600
    [40]
    GHADERPOUR A, NASORI K N M, CHEW L L, et al. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia[J]. Mar Pollut Bull, 2014, 83(1): 324-330. doi: 10.1016/j.marpolbul.2014.04.029
    [41]
    PERKINS T L, KATIE C, BAAS J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PLoS One, 2014, 9(11): e112951. doi: 10.1371/journal.pone.0112951
    [42]
    AGAWIN N S R, DUARTE C M. Evidence of direct particle trapping by a tropical seagrass meadow[J]. Estuar Coast, 2002, 25(6): 1205-1209. doi: 10.1007/BF02692217
    [43]
    MAUGERI T L, CARBONE M, FERA M T, et al. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone[J]. J Appl Microbiol, 2004, 97(2): 354-361. doi: 10.1111/j.1365-2672.2004.02303.x
    [44]
    BAFFONE W, PIANETTI A, BRUSCOLINI F, et al. Occurrence and expression of virulence-related properties of Vibrio species isolated from widely consumed seafood products[J]. Int J Food Microbiol, 2000, 54(1/2): 9-18.
    [45]
    JOANN M B, DAVID A T, BRANT W T. Seagrasses and eutrophication[J]. J Exp Mar Biol Ecol, 2007, 50(1/2): 46-72.
    [46]
    ALLISON L S, JESSICA K C W, SUSANNE E C. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnol Oceanogr, 2012, 57(5): 1389-1402. doi: 10.4319/lo.2012.57.5.1389
    [47]
    MICHAEL J S, JOHN C B, MAGGY M N, et al. Algae as reservoirs for coral pathogens[J]. PLoS One, 2013, 8(7): e69717. doi: 10.1371/journal.pone.0069717
    [48]
    EGIDIUS E. Vibriosis: pathogenicity and pathology. A review[J]. Aquaculture, 1987, 67(1/2): 15-28.
    [49]
    杨青, 俞云松, 倪语星, 等. 2009年中国CHINET肠球菌属细菌耐药性监测[J]. 中国感染与化疗杂志, 2010, 10(6): 421-425.
    [50]
    FISHER K, PHILLIPS C. The ecology, epidemiology and virulence of Enterococcus[J]. Microbiology, 2009, 155(6): 1749-1757. doi: 10.1099/mic.0.026385-0
    [51]
    YASUYOSHI I K E. Pathogenicity of Enterococci[J]. Nihon Saikingaku Zasshi, 2017, 72(2): 189-211. doi: 10.3412/jsb.72.189
    [52]
    HSIEH J L, FRIES J S, NOBLE R T. Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary[J]. Ecol Appl, 2007, 17(5): S102-S109.
    [53]
    吴建平, 蔡创华, 周毅频, 等. 大亚湾网箱养殖水体弧菌种类组成及变化[J]. 湛江海洋大学学报, 2006, 26(4): 46-52.
    [54]
    AUSTIN B. Vibrios as causal agents of zoonoses[J]. Vet Microbiol, 2010, 140(3/4): 310-317.
    [55]
    REILLY G D, REILLY C A, SMITH E G, et al. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011[J]. Euro Surveill, 2011, 16(42): 321-326.
    [56]
    LIU S, JIANG Z, ZHANG J, et al. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Mar Pollut Bull, 2016, 110(1): 274-280. doi: 10.1016/j.marpolbul.2016.06.054
    [57]
    JOHNSON P T J, CARPENTER S R. Influence of eutrophication on disease in aquatic ecosystems: patterns, processes, and predictions. Infectious disease ecology: the effects of ecosystems on disease and of disease on ecosystems[M]. Princeton: Princeton University Press, 2010: 71-99.
    [58]
    GLADSTONE-GALLAGHER R V, HUGHES R W, DOUGLAS E J, et al. Biomass-dependent seagrass resilience to sediment eutrophication[J]. J Exp Mar Biol Ecol, 2008, 501: 54-64. doi: 10.1016/j.jembe.2018.01.002
    [59]
    GACIA E, DUARTE C M, MARBÀ N, et al. Sediment deposition and production in SE-Asia seagrass meadows[J]. Estuar Coast Shelf S, 2003, 56(5/6): 909-919.
    [60]
    MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. J Ecol, 2015, 103(2): 296-302. doi: 10.1111/1365-2745.12370
  • Related Articles

    [1]HU Xiaojuan, YANG Keng, WEN Guoliang, SU Haochang, XU Yunna, XU Chuangwen, XU Yu, XU Wujie, CAO Yucheng. Algicidal effect of bacteria CZBC1 on Microcystis aeruginosa in chloride type saline-alkali water[J]. South China Fisheries Science, 2024, 20(5): 169-175. DOI: 10.12131/20240142
    [2]Cover[J]. South China Fisheries Science, 2023, 19(4).
    [3]Cover[J]. South China Fisheries Science, 2023, 19(3).
    [4]cover[J]. South China Fisheries Science, 2022, 18(6).
    [5]cover[J]. South China Fisheries Science, 2022, 18(5).
    [6]cover[J]. South China Fisheries Science, 2022, 18(4).
    [7]cover[J]. South China Fisheries Science, 2022, 18(3).
    [8]WANG Hewei, ZHANG Zhe, MA Shengwei, CHEN Haigang, HUANG Zhifei, GONG Xiuyu, CAI Wengui, JIA Xiaoping. Effect of perfluorooctane sulfonate potassium on glutathione content and glutathione S-transferase activity of red sea bream[J]. South China Fisheries Science, 2012, 8(4): 23-28. DOI: 10.3969/j.issn.2095-0780.2012.04.004
    [9]CENG Shaokui, YANG Ping, CHEN Xiuhong. Study on the removal of fish odour and bitter from protein hydrolysates of tilapia by-products by microorganism fermentation[J]. South China Fisheries Science, 2009, 5(4): 58-63. DOI: 10.3969/j.issn.1673-2227.2009.04.011
    [10]CHEN Haigang, MA Shengwei, LIN Qin, GAN Juli, CAI Wengui, JIA Xiaoping. Effects of tributyltin chloride (TBTCl) on SOD activities, MDA contents and GPx activities in gill and liver of the black porgy (Sparus macrocephalus)[J]. South China Fisheries Science, 2009, 5(2): 23-27. DOI: 10.3969/j.issn.1673-2227.2009.02.004
  • Cited by

    Periodical cited type(3)

    1. 万树杰,陈新军. 基于机器学习的西南印度洋深海散射层声学资源密度预测. 上海海洋大学学报. 2024(06): 1357-1368 .
    2. 赵旺,陈旭,陈明强,黄星美,邓正华,温为庚,王江勇. 鸢乌贼为蛋白源的方斑东风螺人工配合饲料养殖研究. 广东农业科学. 2023(04): 115-122 .
    3. 田振中,樊丽花,董海隆. 融合随机森林与多变量灰色的道路交通事故预测模型研究. 警察技术. 2023(05): 78-81 .

    Other cited types(4)

Catalog

    Article views (3221) PDF downloads (63) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return