Citation: | HAN Tianjiao, XU Wujie, XU Yu, WEN Guoliang, HU Xiaojuan, SU Haochang, CAO Yucheng. Effect of stopping adding brown sugar on water quality and nitrogen budget in biofloc systems cultured with Litopenaeus vannamei[J]. South China Fisheries Science, 2020, 16(6): 81-88. DOI: 10.12131/20200052 |
Based on a 30-day culture of Litopenaeus vannamei and its pond water with biofloc technology (BFT), we set up brown sugar continuous addition (BS) group and non-added brown sugar (NBS) group to explore the effect of stopping adding brown sugar on the water quality and nitrogen budget in L. vannamei biofloc (BF) culture system. The total ammonia nitrogen (TAN) and nitrite nitrogen (NO2 – -N) were monitored within 28 d, and the total nitrogen (TN) of shrimp body and feed were measured before and after the experiment. The results show that the concentrations of TAN and NO2 −-N in water of BS and NBS groups remained low levels. During the test, the concentrations of TAN in these two groups maintained at 0.02~0.06 mg·L−1, and after the 7th day, that of NO2 −-N was lower than 1.00 mg·L−1.The results indicate that the main nitrogen income was feed, which accounted for 78.8%; the main nitrogen output was water TN, which accounted for 45.06% and 52.55% in BS and NBS groups, respectively; the nitrogen output of harvested shrimps accounted for 21.49% and 25.43%, respectively, and the nitrogen utilization efficiencies of feed in the two groups were 18.14% and 23.14%, respectively. Thus, it is concluded that the removal effects of TAN and NO2 – -N by microorganisms in water body will not be affected if brown sugar is stopped in a stable BF culture system.
[1] |
CRAB R, DEFOIRDT T, BOSSIER P, et al. Biofloc technology in aquaculture: beneficial effects and future challenges[J]. Aquaculture, 2012, 356: 351-356.
|
[2] |
RAY A J, LEWIS B L, BROWDY C L, et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems[J]. Aquaculture, 2010, 299(1/2/3/4): 89-98.
|
[3] |
BRIGGS M R P, FVNGE-SMITH S J. A nutrient budget of some intensive marine shrimp ponds in Thailand[J]. Aquacult Res, 1994, 25(8): 789-811. doi: 10.1111/j.1365-2109.1994.tb00744.x
|
[4] |
BOYD C E. Better management practices for marine shrimp aquaculture[M]. New Jersey: Wiley-Blackwell 2008: 227-259.
|
[5] |
READ P, FERNANDES T. Management of environmental impacts of marine aquaculture in Europe[J]. Aquaculture, 2003, 226(1): 139-163.
|
[6] |
FUNGE-SMITH S J, BRIGGS M R P. Nutrient budgets in intensive shrimp ponds: implications for sustainability[J]. Aquaculture, 1998, 164(1): 117-133.
|
[7] |
邓吉朋, 黄建华, 江世贵, 等. 生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J]. 南方水产科学, 2014, 10(3): 29-37. doi: 10.3969/j.issn.2095-0780.2014.03.005
|
[8] |
田道贺, 桂福坤, 李华, 等. 硝化型生物絮团的驯化培养[J]. 南方水产科学, 2019, 15(4): 39-45.
|
[9] |
AVNIMELECH Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176(3): 227-235.
|
[10] |
XU W J, MORRIS T C, SAMOCHA T M. Effects of two commercial feeds for semi-intensive and hyper-intensive culture and four C/N ratios on water quality and performance of Litopenaeus vannamei juveniles at high density in biofloc-based, zero-exchange outdoor tanks[J]. Aquaculture, 2018, 490: 194-202. doi: 10.1016/j.aquaculture.2018.02.028
|
[11] |
WEI Y F, WANG A L, LIAO S A. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation[J]. Aquaculture, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2019.734492.
|
[12] |
AZIM M, LITTLE D, BRON J E. Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture[J]. Bioresour Technol, 2008, 99(9): 3590-3599. doi: 10.1016/j.biortech.2007.07.063
|
[13] |
SEARS K, ALLEMAN J, BARNARD J, et al. Density and activity characterization of activated sludge flocs[J]. J Environ Eng-ASCE, 2006, 132(10): 1235-1242. doi: 10.1061/(ASCE)0733-9372(2006)132:10(1235)
|
[14] |
AVNIMELECH Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds[J]. Aquaculture, 2007, 264(1): 140-147.
|
[15] |
NOOTONG K, PRASERT P, POWTONGSOOK S. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system[J]. J World Aquacult Soc, 2011, 42(3): 339-346. doi: 10.1111/j.1749-7345.2011.00472.x
|
[16] |
CRAB R, AVNIMELECH Y, DEFOIRDT T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270(1): 1-14.
|
[17] |
EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1): 346-358.
|
[18] |
HARGREAVES J A. Photosynthetic suspended-growth systems in aquaculture[J]. Aquacult Eng, 2006, 34(3): 344-363. doi: 10.1016/j.aquaeng.2005.08.009
|
[19] |
YORAM A, KOCHBA M. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 1N tracing[J]. Aquaculture, 2009, 287(1/2): 163-168.
|
[20] |
张哲, 杨章武, 葛辉, 等. 不同碳源对凡纳滨对虾育苗标粗水体生物絮团的结构、营养成分、细菌群落及其水质的影响[J]. 水产学报, 2019, 43(3): 639-649.
|
[21] |
刘克明, 尤宏争, 马林, 等. 不同碳源培养生物絮团对南美白对虾养殖影响试验[J]. 河北渔业, 2019(4): 32-34.
|
[22] |
GHYOOT W, VANDAELE S, VERSTRAETE W. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor[J]. Water Res, 1999, 33(1): 23-32. doi: 10.1016/S0043-1354(98)00190-0
|
[23] |
XU W J, MORRIS T C, SAMOCHA T M. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system[J]. Aquaculture, 2016, 453: 169-175. doi: 10.1016/j.aquaculture.2015.11.021
|
[24] |
XU W J, PAN L Q. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J]. Aquaculture, 2013, 412: 117-124.
|
[25] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nat Rev Microbiol, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9
|
[26] |
XU W J, XU Y, SU H C, et al. Effects of feeding frequency on growth, feed utilization, digestive enzyme activity and body composition of Litopenaeus vannamei in biofloc-based zero-exchange intensive systems[J]. Aquaculture, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735079.
|
[27] |
FRíAS-ESPERICUETA M G, HARFUSH-MELENDEZ M, OSUNA-LÓPEZ J I, et al. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone[J]. Bull Environ Contam Toxicol, 1999, 62(5): 646-652. doi: 10.1007/s001289900923
|
[28] |
LIN Y C, CHEN J C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels[J]. Aquaculture, 2003, 224(1/2/3/4): 193-201.
|
[29] |
孙舰军, 丁美丽. 氨氮对中国对虾抗病力的影响[J]. 海洋与湖沼, 1999, 30(3): 267-272. doi: 10.3321/j.issn:0029-814X.1999.03.007
|
[30] |
VALENCIA-CASTAÑEDA G, FRÍAS-ESPERICUETA M G, VANEGAS-PÉREZ R C, et al. Toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei juveniles in low-salinity water in single and ternary exposure experiments and their environmental implications[J]. Environ Toxicol Pharmacol, 2019, 70: 103193. doi: 10.1016/j.etap.2019.05.002
|
[31] |
HARGREAVES J A. Biofloc production systems for aquacul-ture[M]. Mississippi: Southern Regional Aquacultue Center, 2013: 1-11.
|
[32] |
BOYD C E, TUCKER C S. Handbook for aquaculture water quality[M]. Auburn: Craftmaster Printers, 2014: 439.
|
[33] |
BOYD C E, TUCKER C S, SOMRIDHIVEJ B. Alkalinity and hardness: critical but elusive concepts in aquaculture[J]. J World Aquacult Soc, 2016, 47(1): 6-41. doi: 10.1111/jwas.12241
|
[34] |
SCHVEITZER R, ARANTES R, COSTODIO P F S, et al. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange[J]. Aquacult Eng, 2013, 56: 59-70. doi: 10.1016/j.aquaeng.2013.04.006
|
[35] |
XU W J, PAN L Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J]. Aquaculture, 2012, 356/357: 147-152. doi: 10.1016/j.aquaculture.2012.05.022
|
[36] |
臧维玲, 杨明, 戴习林, 等. 凡纳滨对虾室内封闭式养殖水质变化与氮收支的试验研究[J]. 农业环境科学学报, 2009, 28(5): 1019-1024. doi: 10.3321/j.issn:1672-2043.2009.05.028
|
[37] |
游奎. 对虾工程化养殖系统重要元素及能量收支[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2005: 75-87.
|
[38] |
MICHAUD L, BLANCHETON J P, BRUNI V, et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters[J]. Aquacult Eng, 2006, 34(3): 224-233. doi: 10.1016/j.aquaeng.2005.07.005
|
[39] |
BURFORD M A, THOMPSON P J, MCINTOSH R P, et al. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize[J]. Aquaculture, 2003, 219(1): 393-411.
|
[40] |
BURFORD M A, THOMPSON P J, MCINTOSH R P, et al. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system[J]. Aquaculture, 2004, 232(1): 525-537.
|
[41] |
LUO G Z, AVNIMELECH Y, PAN Y F, et al. Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge[J]. Aquacult Eng, 2013, 52: 73-79. doi: 10.1016/j.aquaeng.2012.09.003
|
[42] |
LUO G Z, XU J X, MENG H Y. Nitrate accumulation in biofloc aquaculture systems[J]. Aquaculture, 2020. DOI: https: //doi.org/ 10.1016/ j. aquaculture. 2019. 734675.
|
[43] |
WUCHTER C, ABBAS B, COOLEN M J, et al. Archaeal nitrification in the ocean[J]. Proc Natl Acad Sci USA, 2006, 103(33): 12317-12322. doi: 10.1073/pnas.0600756103
|