Citation: | NIU Yingyue, OU Youjun, LAN Junnan, WEN Jiufu, LI Jia'er, LI Junwei, ZHOU Hui. Structure and early development of gill tissue in artificially cultured Eleutheronema tetradactylum[J]. South China Fisheries Science, 2020, 16(5): 108-114. DOI: 10.12131/20200028 |
We investigated the structure and early development of gill tissue in artificially cultured Eleutheronema tetradactylum [1−35 d after hatching (DAH)] by histological section technique and transmission electron microscopy. The results show that the gill rakers were prick-shaped; the primary lamella on the gill arch were in a comb-like pattern; and the secondary gill lamella were evenly arranged on both sides of the primary lamella. The transmission electron microscopy shows that the secondary lamella consisted of mitochondria-rich cells (two types) pavement cells, pillar cells, blood cells, mucous cells and non-differentiated cells. According to the early development, the gill-primordia appeared on 1 DAH; the primitive gill arch appeared on 3 DAH, containing pavement cells and blood cells; the secondary gill lamella appeared on 5 DAH, and the pillar cells were on the secondary gill lamella; there were scattered mitochondria-rich cells at the base of the secondary lamella which increased and whose structure was basically formed on 18 DAH; the gill structure was basically identical to the adult fish on 35 DAH. The development could be divided into three stages: Stage I was organ-primordium formation (0−3 DAH). During this stage, the gill-primordia formed but undifferentiated, and the respiration was primarily via the finfold, skin and microvascular surface of yolk-sac. Stage II was characterized by differentiation and development of gill filaments (4−17 DAH). During this stage, the gill arches, filaments, secondary gill lamella and gill rakers developed gradually and the basic structure and morphology of the gill were established. During Stage III (18−35 DAH), the gill development was mainly the change in number and shape.
[1] |
WANG J, SUN P, YIN F. Low mtDNA Cytb diversity and shallow population structure of Eleutheronema tetradactylum in the East China Sea and the South China Sea[J]. Biochem Syst Ecol, 2014, 55: 268-274. doi: 10.1016/j.bse.2014.03.026
|
[2] |
区又君, 谢木娇, 李加儿, 等. 广东池塘培育四指马鲅亲鱼初次性成熟和苗种规模化繁育技术研究[J]. 南方水产科学, 2017, 13(4): 97-104. doi: 10.3969/j.issn.2095-0780.2017.04.012
|
[3] |
陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹鳃器官的影响[J]. 南方水产科学, 2017, 13(1): 124-130. doi: 10.3969/j.issn.2095-0780.2017.01.016
|
[4] |
区又君, 李加儿, 谢菁, 等. 鲻早期发育阶段鳃的超微结构及其呼吸表面积的研究[J]. 南方水产科学, 2014, 10(4): 52-57. doi: 10.3969/j.issn.2095-0780.2014.04.009
|
[5] |
林先智, 区又君, 李加儿, 等. 淡水驯化养殖条件下遮目鱼幼鱼的成活、生长及鳃器官的变化[J]. 南方水产科学, 2015, 11(3): 53-58. doi: 10.3969/j.issn.2095-0780.2015.03.009
|
[6] |
龚仕玲, 谢冬梅, 李英文, 等. 镉暴露诱导黄颡鱼鳃的组织学损伤、氧化应激和免疫反应[J]. 水生生物学报, 2019, 43(2): 340-347. doi: 10.7541/2019.042
|
[7] |
王东东, 吴成宾, 郑国栋, 等. 饥饿胁迫对团头鲂鳃组织结构及Na+/K+-ATP酶、抗氧化酶的影响[J]. 上海海洋大学学报, 2019, 28(5): 765-771. doi: 10.12024/jsou.20190302544
|
[8] |
HWANG P, LEE T. New insights into fish ion regulation and mitochondrion-rich cells[J]. Comp Biochem Physiol A, 2007, 148(3): 479-497. doi: 10.1016/j.cbpa.2007.06.416
|
[9] |
廖光勇, 区又君, 李加儿. 波纹唇鱼鳃丝的光镜、扫描和透射电镜观察[J]. 动物学杂志, 2011, 46(1): 7-15.
|
[10] |
阮成旭, 吴德峰, 袁重桂. 大黄鱼幼鱼鳃结构的光镜和透射电镜观察[J]. 解剖学报, 2014, 45(1): 120-123. doi: 10.3969/j.issn.0529-1356.2014.01.023
|
[11] |
罗芬, 陈礼强, 康斌. 黄颡鱼 (Pelteobagrus fulvidraco) 鳃的超微结构研究[J]. 海洋与湖沼, 2011, 42(4): 488-494.
|
[12] |
向乾乾, 丁刘勇, 张超, 等. 怒江裂腹鱼鳃的显微和超微结构[J]. 中国水产科学, 2018, 25(6): 1183-1193.
|
[13] |
区又君, 陈四海, 李加儿, 等. 珠江口池养梭鱼鳃的光镜、扫描和透射电镜观察[J]. 四川动物, 2013, 32(4): 550-554. doi: 10.3969/j.issn.1000-7083.2013.04.015
|
[14] |
赵巧雅, 王新栋, 孙雪婧, 等. 斑马鱼鳃的光镜和透射电镜观察[J]. 动物学杂志, 2018, 53(1): 92-98.
|
[15] |
区又君, 何永亮, 李加儿. 卵形鲳鲹胚后发育阶段鳃的分化和发育[J]. 中国水产科学, 2012, 19(1): 13-21.
|
[16] |
刘阳, 温海深, 黄杰斯, 等. 花鲈鳃与鳔器官发育的组织学与形态学观察[J]. 水产学报, 2019, 43(12): 2476-2484.
|
[17] |
潘基桂, 房慧伶. 鱼鳃及鳃上器形态学的研究概况[J]. 广西农业生物科学, 2002, 21(4): 289-291.
|
[18] |
HIRT M V. Systematics, gill raker morphology, and pharyngeal arch development of suckers (Cypriniformes: Catostomidae)[D]. Minnesota: University of Minnesota, 2015, 22-25.
|
[19] |
关海红, 蔺玉华. 鲤鱼鳃组织结构及鳃对重金属离子的耐受性[J]. 水产学杂志, 2004, 17(1): 68-72. doi: 10.3969/j.issn.1005-3832.2004.01.015
|
[20] |
JENJIAN H B B. Quantitative analysis of the fine structure of the fish gill: environmental response and relation to welfare[D]. Glasgow: University of Glasgow, 2011: 22-27.
|
[21] |
李霞. 水产动物组织胚胎学[M]. 北京: 中国农业出版社, 2006: 118-121.
|
[22] |
GAROFAKO F, SANTOVITO G, AMELIO D. Morpho-functional effects of heat stress on the gills of Antarctic T. bernacchii and C. hamatus[J]. Mar Pollut Bull, 2019, 141: 194-204. doi: 10.1016/j.marpolbul.2019.02.048
|
[23] |
FERNANDES M N, PAYLINO M G, SAKURAGUI M M, et al. Organochlorines and metals induce changes in the mitochondria-rich cells of fish gills: an integrative field study involving chemical, biochemical and morphological analyses[J]. Aquat Toxicol, 2013, 126: 180-190. doi: 10.1016/j.aquatox.2012.11.008
|
[24] |
da CRUZ A L, FERNANDES M N. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study[J]. Zoology, 2016, 119(6): 526-533. doi: 10.1016/j.zool.2016.08.003
|
[25] |
EVANS D H, PIERMARINI P M, CHOE K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 2005, 85(1): 97-177. doi: 10.1152/physrev.00050.2003
|
[26] |
BARTELS H. Freeze-fracture study of the pavement cell in the lamprey gill epithelium. Analogy of membrane structure with the granular cell in the amphibian urinary bladder[J]. Biol Cell, 2012, 66(1/2): 165-171.
|
[27] |
CARMONA R, GARCIA-GALLEGO M A, DOMEZAIN A, et al. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens[J]. J Fish Biol, 2010, 64(2): 553-566.
|
[28] |
林先智. 遮目鱼 (Chanos chanos) 生长、生理对盐度胁迫的响应及消化道内分泌细胞的鉴别与定位[D]. 上海: 上海海洋大学, 2015: 74.
|
[29] |
魏渲辉, 汝少国, 徐路, 等. 海水和淡水适应过程中广盐性鱼类鳃氯细胞的形态与功能变化及其激素调节[J]. 海洋科学, 2001(4): 16-20. doi: 10.3969/j.issn.1000-3096.2001.04.006
|
[30] |
区又君, 林先智, 李加儿, 等. 遮目鱼幼鱼鳃线粒体丰富细胞的形态结构及其在不同盐度下的变化[J]. 中国细胞生物学学报, 2014, 36(12): 1622-1629.
|
[31] |
郭恩棉, 张艳萍, 王鑫. 短盖巨脂鲤鳃、伪鳃和鳔胚后发育学研究[J]. 海洋湖沼通报, 2005(3): 31-37. doi: 10.3969/j.issn.1003-6482.2005.03.005
|
[32] |
何滔, 肖志忠, 刘清华, 等. 条石鲷鳃的组织发育及鳃上钠钾三磷酸腺苷酶活性的早期变化[J]. 水产学报, 2013, 37(4): 520-525.
|
[33] |
SANTAMARÍA C A, MARÍN de MATEO M, TRAVESET R, et al. Larval organogenesis in common dentex Dentex dentex L. (Sparidae): histological and histochemical aspects[J]. Aquaculture, 2004, 237(1/2/3/4): 207-228.
|
[34] |
FALK-PETERSEN I B. Comparative organ differentiation during early life stages of marine fish[J]. Fish Shellfish Immunol, 2005, 19(5): 397-412. doi: 10.1016/j.fsi.2005.03.006
|
1. |
徐思琪,张世勇,张文平,刘洪岩,王明华,钟立强,边文冀,陈校辉. 温度诱导斑点叉尾鮰雌性化研究. 福建农业学报. 2022(06): 741-747 .
![]() | |
2. |
周胜杰,胡静,杨蕊,杨其彬,马振华. 三斑海马早期发育观察. 南方农业学报. 2021(08): 2302-2310 .
![]() |