HOU Juan, ZHOU Weifeng, FAN Wei, ZHANG Heng. Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific[J]. South China Fisheries Science, 2020, 16(5): 42-50. DOI: 10.12131/20200022
Citation: HOU Juan, ZHOU Weifeng, FAN Wei, ZHANG Heng. Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific[J]. South China Fisheries Science, 2020, 16(5): 42-50. DOI: 10.12131/20200022

Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific

More Information
  • Received Date: February 12, 2020
  • Revised Date: May 20, 2020
  • Accepted Date: June 10, 2020
  • Available Online: September 27, 2020
  • According to the data of longline fishing of Thunnus alalunga in the South Pacific Ocean from 2008 to 2015, we investigated  11 environmental indicators (sea surface temperature, chlorophyll a concentration, sea surface temperature anomaly, chlorophyll anomaly, sea surface temperature gradient, chlorophyll gradient, sea level anomaly, and sea surface temperature and chlorophyll values one month before and after the corresponding fishing area grid) and three spatio-temporal indicators (month, longitude and latitude).  Besides, based on six integrated learning models, taking month as time resolution and 0.5°×0.5° as space resolution, we carried out the model construction and prediction of T. alalunga fishery in the South Pacific. The optimal parameters of the model are determined by 10 fold cross validation and grid search. The accurary rates of RF (Random forest), Treebag, C5.0 decision tree, GBDT (Gradient boosting decision tree), AdaBoost (Adaptive boosting) and Stacking integration model were 75.52%, 73.87%, 72.99%, 71.14%, 71.33% and 75.84 %, respectively. The Stacking integration model had the highest accuracy. We used 2015 environmental data to test the forecast accuracy, and find that the overall forecast accuracy was 63.86%−82.14%, with an average of 70.99%; the forecast accuracy of catch per unit effort (CPUE) fishing area was 62.71%−97.85%, with an average of 78.76%. The results show that the Stacking integration model has a good effect and feasibility on the prediction of T. alalunga fishery in the South Pacific.

  • [1]
    范永超, 陈新军, 汪金涛. 基于多因子栖息地指数模型的南太平洋长鳍金枪鱼渔场预报[J]. 海洋湖沼通报, 2015(2): 36-44.
    [2]
    樊伟, 张晶, 周为峰. 南太平洋长鳍金枪鱼延绳钓渔场与海水表层温度的关系分析[J]. 大连水产学院学报, 2007(5): 366-371.
    [3]
    郭刚刚, 张胜茂, 樊伟, 等. 基于表层及温跃层环境变量的南太平洋长鳍金枪鱼栖息地适应性指数模型比较[J]. 海洋学报, 2016, 38(10): 44-51.
    [4]
    杨嘉樑, 黄洪亮, 宋利明, 等. 基于分位数回归的库克群岛海域长鳍金枪鱼栖息环境综合指数[J]. 中国水产科学, 2014, 21(4): 832-851.
    [5]
    林显鹏, 郭爱, 张洪亮, 等. 所罗门群岛海域长鳍金枪鱼的垂直分布与环境因子的关系[J]. 浙江海洋学院学报(自然科学版), 2011, 30(4): 303-306.
    [6]
    BRIAND K, MOLONY B, LEHODEY P. A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean[J]. Fish Oceanogr, 2011, 20(6): 517-529. doi: 10.1111/j.1365-2419.2011.00599.x
    [7]
    DOMOKOS R K, SEKI M P, POLOVINA J J, et al. Oceanographic investigation of the American Samoa albacore (Thunnus alalunga) habitat and longline fishing grounds[J]. Fish Oceanogr, 2007, 16(6): 555-572. doi: 10.1111/j.1365-2419.2007.00451.x
    [8]
    LEHODEY P, SENINA I, NICOL S, et al. Modelling the impact of climate change on South Pacific albacore tuna[J]. Deep Sea Res II, 2015, 113: 246-259. doi: 10.1016/j.dsr2.2014.10.028
    [9]
    郭刚刚, 张胜茂, 樊伟, 等. 南太平洋长鳍金枪鱼垂直活动水层空间分析[J]. 南方水产科学, 2016, 12(5): 123-130. doi: 10.3969/j.issn.2095-0780.2016.05.016
    [10]
    闫敏, 张衡, 樊伟, 等. 南太平洋长鳍金枪鱼渔场CPUE时空分布及其与关键海洋环境因子的关系[J]. 生态学杂志, 2015(11): 3191-3197.
    [11]
    储宇航, 戴小杰, 田思泉, 等. 南太平洋延绳钓长鳍金枪鱼生物学组成及其与栖息环境关系[J]. 海洋渔业, 2016, 38(2): 130-139. doi: 10.3969/j.issn.1004-2490.2016.02.003
    [12]
    范江涛. 南太平洋长鳍金枪鱼延绳钓渔业渔情预报研究[D]. 上海: 上海海洋大学, 2011: 21-22.
    [13]
    毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34-43.
    [14]
    范江涛, 陈新军, 钱卫国, 等. 南太平洋长鳍金枪鱼渔场预报模型研究[J]. 广东海洋大学学报, 2011, 31(6): 61-67. doi: 10.3969/j.issn.1673-9159.2011.06.010
    [15]
    马孟磊, 陈新军, 陈作志, 等. 南太平洋长鳍金枪鱼栖息地指数模型的比较研究[J]. 广东海洋大学学报, 2017, 37(3): 59-66. doi: 10.3969/j.issn.1673-9159.2017.03.009
    [16]
    崔雪森, 唐峰华, 张衡, 等. 基于朴素贝叶斯的西北太平洋柔鱼渔场预报模型的建立[J]. 中国海洋大学学报(自然科学版), 2015, 45(2): 37-43.
    [17]
    周为峰, 黎安舟, 纪世建, 等. 基于贝叶斯分类器的南海黄鳍金枪鱼渔场预报模型[J]. 海洋湖沼通报, 2018(1): 116-122.
    [18]
    牛明香, 李显森, 徐玉成. 基于广义可加模型和案例推理的东南太平洋智利竹筴鱼中心渔场预报[J]. 海洋环境科学, 2012, 31(1): 30-33. doi: 10.3969/j.issn.1007-6336.2012.01.007
    [19]
    闫敏, 张衡, 伍玉梅, 等. 基于GAM模型研究时空及环境因子对南太平洋长鳍金枪鱼渔场的影响[J]. 大连海洋大学学报, 2015, 30(6): 681-685.
    [20]
    崔雪森, 唐峰华, 周为峰, 等. 基于支持向量机的西北太平洋柔鱼渔场预报模型构建[J]. 南方水产科学, 2016, 12(5): 1-7. doi: 10.3969/j.issn.2095-0780.2016.05.001
    [21]
    张月霞, 丘仲锋, 伍玉梅, 等. 基于案例推理的东海区鲐鱼中心渔场预报[J]. 海洋科学, 2009, 33(6): 8-11.
    [22]
    LUCAS P. Bayesian analysis, pattern analysis, and data mining in health care[J]. Curr Opin Crit Care, 2004, 10(5): 399-403. doi: 10.1097/01.ccx.0000141546.74590.d6
    [23]
    RONG P, YANG Q, PAN S J. Mining competent case bases for case-based reasoning[J]. Artif Intell, 2007, 171(16/17): 1039-1068. doi: 10.1016/j.artint.2007.04.018
    [24]
    苏奋振, 周成虎, 杜云艳, 等. 海洋渔业资源地理信息系统应用的时空问题[J]. 应用生态学报, 2003(9): 1569-1572. doi: 10.3321/j.issn:1001-9332.2003.09.036
    [25]
    徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092. doi: 10.7540/j.ynu.20180455
    [26]
    陈雪忠, 樊伟, 崔雪森, 等. 基于随机森林的印度洋长鳍金枪鱼渔场预报[J]. 海洋学报(中文版), 2013, 35(1): 158-164.
    [27]
    高峰. 基于提升回归树的东、黄海鲐鱼渔场预报模型研究[D]. 上海: 上海海洋大学, 2016: 80-91.
    [28]
    FENG Y, CHEN X, GAO F, et al. Impacts of changing scale on Getis-Ord Gi hotspots of CPUE: a case study of the neon flying squid (Ommastrephes bartramii) in the northwest Pacific Ocean[J]. Acta Oceanol Sin, 2018, 37(5): 67-76. doi: 10.1007/s13131-018-1212-6
    [29]
    胡启伟. 西沙—中沙海域鸢乌贼资源时空分布环境效应遥感研究[D]. 上海: 上海海洋大学, 2018: 31.
    [30]
    PI Q L, HU J. Analysis of sea surface temperature fronts in the Taiwan Strait and its adjacent area using an advanced edge detection method[J]. Sci China Earth Sci, 2010, 53(7): 1008-1016. doi: 10.1007/s11430-010-3060-x
    [31]
    袁浩杰. Adaboost算法的并行化及其在目标分类中的应用[D]. 广州: 华南理工大学, 2015: 8.
    [32]
    FRIEDMAN J H. Stochastic gradient boosting[J]. Compt Stat Data An, 2003, 38(4): 367-378.
    [33]
    李强. 创建决策树算法的比较研究——ID3, C4.5, C5.0算法的比较[J]. 甘肃科学学报, 2006(4): 88-91. doi: 10.3969/j.issn.1004-0366.2006.04.026
    [34]
    江承旭. 斐济专属经济区长鳍金枪鱼渔场分析[D]. 上海: 上海海洋大学, 2017: 12-13.
    [35]
    刘洪生, 蒋汉凌, 戴小杰. 中西太平洋长鳍金枪鱼渔场与海温的关系[J]. 上海海洋大学学报, 2014, 23(4): 602-607.
    [36]
    ZAINUDDIN M, SAITOH K, SAITOH S I. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data[J]. Fish Oceanogr, 2010, 17(2): 61-73.
    [37]
    朱国平, 李凤莹, 陈锦淘, 等. 印度洋中南部长鳍金枪鱼繁殖栖息的适应性[J]. 海洋环境科学, 2012, 31(5): 697-700.
    [38]
    宋婷婷, 樊伟, 伍玉梅. 卫星遥感海面高度数据在渔场分析中的应用综述[J]. 海洋通报, 2013, 32(4): 474-480. doi: 10.11840/j.issn.1001-6392.2013.04.017
    [39]
    陈新军, 高峰, 官文江, 等. 渔情预报技术及模型研究进展[J]. 水产学报, 2013, 37(8): 1270-1280.
    [40]
    CUTLER D R, EDWARDS Jr T C, BEARD K H, et al. Random forests for classification in ecology[J]. Ecology, 2007, 88(11): 2783-2792. doi: 10.1890/07-0539.1
  • Related Articles

    [1]ZHONG Zhanyou, DENG Hong, KOU Chunni, CHEN Weitao, WU Zhi, LI Yuefei, XIA Yuguo, LI Huifeng, LI Jie, ZHU Shuli. Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology[J]. South China Fisheries Science, 2025, 21(2): 47-58. DOI: 10.12131/20240173
    [2]CHEN Weitao, DUAN Xinbin, GAO Lei, LI Xinhui, YANG Jiping, WANG Dengqiang. Genetic structure analysis of Ochetobius elongatus between Yangtze River and Pearl River using multiple loci[J]. South China Fisheries Science, 2022, 18(6): 19-25. DOI: 10.12131/20220007
    [3]WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019
    [4]XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131
    [5]ZHU Shuli, LI Yuefei, WU Zhi, LI Jie, XIA Yuguo, YANG Jiping, LI Xinhui. Research on catchable size and resource protection of Squaliobarbus curriculus in Xijiang River Fengkai section based on length-frequency data[J]. South China Fisheries Science, 2020, 16(4): 1-7. DOI: 10.12131/20190231
    [6]ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042
    [7]KUANG Tianxu, SHUAI Fangmin, CHEN Weitao, LI Xinhui. Genetic diversity and population structure of Carassius auratus in Xijiang River[J]. South China Fisheries Science, 2018, 14(5): 29-35. DOI: 10.3969/j.issn.2095-0780.2018.05.004
    [8]YANG Xishu, ZHANG Qun, YÜ Fanyang, LV Jinlei, DI Xiaodan, SHAO Junwei, HUANG Zhenyu, LU Lifeng. MtDNA ND2 sequence-based genetic analysis of Anabas testudineus from South China and Lancang/Mekong River[J]. South China Fisheries Science, 2017, 13(3): 43-50. DOI: 10.3969/j.issn.2095-0780.2017.03.006
    [9]WU Zhi, TAN Xichang, LI Xinhui, TANG Yong. Acoustic monitoring on fish resources in Xijiang section of Pearl River during first closed fishing season[J]. South China Fisheries Science, 2014, 10(3): 24-28. DOI: 10.3969/j.issn.2095-0780.2014.03.004
    [10]ZHU Shuli, LI Xinhui, LI Yuefei, WANG Chao, YANG Jiping, LI Lin. Age and growth of Spualiobarbus curriculus from Zhaoqing Guangdong Section of Xijiang River[J]. South China Fisheries Science, 2013, 9(2): 27-31. DOI: 10.3969/j.issn.2095-0780.2013.02.005
  • Cited by

    Periodical cited type(9)

    1. 邓洪,钟占友,寇春妮,朱书礼,李跃飞,夏雨果,武智,李捷,陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史. 生物多样性. 2025(01): 97-106 .
    2. 詹华伟,叶树政,陈锭娴,王凯丰,刘兰苑,龚剑,韩崇,李强. 基于线粒体Cytb序列的广东地区大刺鳅群体遗传多样性分析. 湖南农业科学. 2024(03): 1-6 .
    3. 刘童,王英俊,吴莹莹,邹琰,吕芳,吴海一,李建民,宋爱环. 魁蚶3个群体及杂交子代遗传多样性分析. 水产科学. 2024(04): 561-570 .
    4. 邓树庆,蔡杏伟,王韩,符成慧,张清凤,申志新,李高俊,李芳远. 保亭近腹吸鳅遗传多样性及保护建议. 热带生物学报. 2024(04): 419-426 .
    5. 王吉祥,刘凯,王永杰,刘彦斌,刘嘉成,王彩雯,肖伟,连总强,王玉涛. 黄河宁夏段黄河鮈群体的遗传多样性与系统发育分析. 基因组学与应用生物学. 2024(07): 1248-1259 .
    6. 卞玉玲,刘士力,刘一诺,贾永义,李飞,迟美丽,郑建波,程顺,顾志敏. 湖州河川沙塘鳢群体线粒体DNA cyt b基因序列的遗传多样性分析. 水产学杂志. 2023(01): 22-28+35 .
    7. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体nad1基因的大理州亚洲带绦虫遗传多样性分析. 热带医学杂志. 2023(03): 301-304 .
    8. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体12S rRNA基因对大理州亚洲带绦虫遗传多样性的分析. 中国人兽共患病学报. 2023(08): 784-788 .
    9. 范嗣刚,黄皓,王鹏飞,闫路路,赵超,张博,邱丽华. 基于cox1序列的中国6个花鲈野生群体遗传多样性. 广东海洋大学学报. 2022(03): 11-17 .

    Other cited types(6)

Catalog

    Article views (3125) PDF downloads (68) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return