XU Shannan, GUO Jianzhong, FAN Jiangtao, XU Youwei, SU Li, LI Chunhou. Annual variation in fish biomass size spectrum in Daya Bay, South China Sea in summer[J]. South China Fisheries Science, 2020, 16(4): 28-38. DOI: 10.12131/20200016
Citation: XU Shannan, GUO Jianzhong, FAN Jiangtao, XU Youwei, SU Li, LI Chunhou. Annual variation in fish biomass size spectrum in Daya Bay, South China Sea in summer[J]. South China Fisheries Science, 2020, 16(4): 28-38. DOI: 10.12131/20200016

Annual variation in fish biomass size spectrum in Daya Bay, South China Sea in summer

More Information
  • Received Date: February 08, 2020
  • Revised Date: March 29, 2020
  • Accepted Date: April 14, 2020
  • Available Online: April 27, 2020
  • Based on the data collected from three bottom trawl surveys of fishery resources in 2015, 2017 and 2018, we constructed the biomass size spectrum of fish in the Daya Bay in summer, and compared and analyzed the differences of the characteristic parameters of fish biomass size spectrum. The results show that the biomass size spectrum in different years displayed obvious annual and spatial variation characteristics. The fish biomass size spectrum of the Sheldon-type were all "single-peak" as a whole, with the largest particle size ranges in 2015 and 2018 (−1–9), followed by 2017 (−1–8); The dominant species composition of the fish community evolved from Thamnaconus hypargyreus, Leiognathus brevirostris and Apogon lineatusin in 2015 to the main small-size species such as L. brevirostris and Siganus oramin in 2017 and 2018. The species composition of the normalized biomass size spectrum curvature in 2015 was the largest, followed by that in 2018, while that in 2017 was the smallest. In terms of spatial distribution, the curvature of the coastal waters was the largest in 2015 but the smallest in 2017; the curvature of the central area was the largest in 2018 but the smallest in 2017; and the curvature of the mouth area was the largest in 2018 but the smallest in 2017. The abundance-biomass comparison (ABC) curve indicates that the fish community in the Daya Bay in summer was at a state of severe disturbance. The biomass size spectrum characteristics displayed obvious annual differences, relating to fish life habits, supplement ratios, habitat environment and human activities, especially fishing factors.

  • [1]
    SHELDON R W, PARSONS T R. A continuous size spectrum for particulate matter in the sea[J]. J Fish Res Board Can, 1967, 24(5): 909-915. doi: 10.1139/f67-081
    [2]
    郭建忠, 陈作志, 徐姗楠. 鱼类粒径谱研究进展[J]. 海洋渔业, 2017, 39(5): 582-591. doi: 10.3969/j.issn.1004-2490.2017.05.012
    [3]
    周林滨, 谭烨辉, 黄良民, 等. 水生生物粒径谱/生物量谱研究进展[J]. 生态学报, 2010, 30(12): 3319-3333.
    [4]
    LEFORT S, AUMONT O, BOPP L, et al. Spatial and body-size dependent response of marine pelagic communities to projected global climate change[J]. Global Change Biol, 2015, 21(1): 154-164. doi: 10.1111/gcb.12679
    [5]
    GUIET J, POGGIALE J C, MAURY O. Modelling the community size-spectrum: recent developments and new directions[J]. Ecol Model, 2016, 337: 4-14. doi: 10.1016/j.ecolmodel.2016.05.015
    [6]
    DUPLISEA D E, KERR S R. Application of a biomass size spectrum model to demersal fish data from the scotian shelf[J]. J Theor Biol, 1995, 177(3): 263-269. doi: 10.1006/jtbi.1995.0243
    [7]
    GRAHAM N, DULVY N K, JENNINGS S, et al. Size-spectra as indicators of the effects of fishing on coral reef fish assemblages[J]. Coral Reefs, 2005, 24(1): 118-124. doi: 10.1007/s00338-004-0466-y
    [8]
    JUNG S, HOUDE E D. Fish biomass size spectra in Chesapeake Bay[J]. Estuar Coast, 2005, 28(2): 226-240. doi: 10.1007/BF02732857
    [9]
    BLANCHARD J L, ANDERSEN K H, SCOTT F, et al. Evaluating targets and trade-offs among fisheries and conservation objectives using a multispecies size spectrum model[J]. J Appl Ecol, 2014, 51(3): 612-622. doi: 10.1111/1365-2664.12238
    [10]
    林秋奇, 赵帅营, 韩博平, 等. 广东流溪河水库后生浮游动物生物量谱时空异质性[J]. 湖泊科学, 2006, 18(6): 661-669. doi: 10.3321/j.issn:1003-5427.2006.06.016
    [11]
    宋伦, 王年斌, 宋永刚, 等. 辽宁近岸浑浊海域网采浮游生物的粒径结构特征[J]. 应用生态学报, 2013, 24(4): 900-908.
    [12]
    林岿璇, 张志南, 王睿照. 东、黄海典型站位底栖动物粒径谱研究[J]. 生态学报, 2004, 24(2): 241-245. doi: 10.3321/j.issn:1000-0933.2004.02.011
    [13]
    饶义勇, 蔡立哲, 黄聪丽, 等. 湛江高桥红树林湿地底栖动物粒径谱[J]. 生态学报, 2015, 35(21): 7182-7189.
    [14]
    徐姗楠, 郭建忠, 陈作志, 等. 大亚湾鱼类生物量粒径谱特征[J]. 中国水产科学, 2019, 26(1): 34-43.
    [15]
    CHEN Z Z, XU S N, QIU Y S. Using a food-web model to assess the trophic structure and energy flows in Daya Bay, China[J]. Cont Shelf Res, 2015, 111: 316-326. doi: 10.1016/j.csr.2015.08.013
    [16]
    FETZER W W, ROTH B M, INFANTE D M, et al. Spatial and temporal dynamics of nearshore fish communities in Lake Michigan and Lake Huron[J]. J Great Lakes Res, 2017, 43(2): 319-334. doi: 10.1016/j.jglr.2016.12.003
    [17]
    LOTZE H K, LENIHAN H S, BOURQUE B J, et al. Depletion, degradation, and recovery potential of estuaries and coastal seas[J]. Science, 2005, 312(5781): 1806-1809.
    [18]
    徐恭昭. 大亚湾环境与资源[M]. 合肥: 安徽科学技术出版社, 1989: 245-272.
    [19]
    SUN C C, WANG Y S, WU M L, et al. Seasonal variation of water quality and phytoplankton response patterns in Daya Bay, China[J]. Int J Env Res Pub, 2011, 8(7): 2951-2966. doi: 10.3390/ijerph8072951
    [20]
    谢福武, 刘华雪, 黄洪辉, 等. 大亚湾浮游植物粒级结构对温排水和营养盐输入的响应[J]. 热带海洋学报, 2018, 37(3): 55-64.
    [21]
    杜飞雁, 李纯厚, 廖秀丽, 等. 大亚湾海域浮游动物生物量变化特征[J]. 海洋环境科学, 2006, 25(S1): 37-39.
    [22]
    王肇鼎, 练健生, 胡建兴, 等. 大亚湾生态环境的退化现状与特征[J]. 生态科学, 2003, 22(4): 313-320. doi: 10.3969/j.issn.1008-8873.2003.04.006
    [23]
    王雪辉, 杜飞雁, 邱永松, 等. 1980-2007年大亚湾鱼类物种多样性、区系特征和数量变化[J]. 应用生态学报, 2010, 21(9): 2403-2410.
    [24]
    陈丕茂, 袁华荣, 贾晓平, 等. 大亚湾杨梅坑人工鱼礁区渔业资源变动初步研究[J]. 南方水产科学, 2013, 9(5): 100-108. doi: 10.3969/j.issn.2095-0780.2013.05.016
    [25]
    郭建忠, 陈作志, 许友伟, 等. 人类活动对大亚湾海域鱼类群落多样性及其演替的影响[J]. 中国水产科学, 2018, 25(3): 595-607.
    [26]
    林昭进, 王雪辉, 江艳娥. 大亚湾鱼卵数量分布及种类组成特征[J]. 中国水产科学, 2010, 17(3): 543-550.
    [27]
    成庆泰, 郑葆珊. 中国鱼类系统检索.下册[M]. 北京: 科学出版社, 1987: 287-293.
    [28]
    NELSON J S. Fishes of the World, 4th Edition[J]. Fish Fish, 2006, 7(4): 334. doi: 10.1111/j.1467-2979.2006.00227.x
    [29]
    WARWICK R M. A new method for detecting pollution effects on marine macrobenthic communities[J]. Mar Biol, 1986, 92(4): 557-562. doi: 10.1007/BF00392515
    [30]
    YEMANE D, FIELD J G, LESLIE R W. Exploring the effects of fishing on fish assemblages using Abundance Biomass Comparison (ABC) curves[J]. ICES J Mar Sci, 2005, 62(3): 374-379. doi: 10.1016/j.icesjms.2005.01.009
    [31]
    晏磊, 谭永光, 杨炳忠, 等. 基于张网渔业休渔前后的黄茅海河口渔业资源群落比较[J]. 南方水产科学, 2016, 12(6): 1-8. doi: 10.3969/j.issn.2095-0780.2016.06.001
    [32]
    SPRULES W, MUNAWAR M. Plankton size spectra in relation to ecosystem productivity, size, and perturbation[J]. Can J Fish Aquat Sci, 1986, 43(9): 1789-1794. doi: 10.1139/f86-222
    [33]
    SPRULES W G, STOCKWELL J D. Size-based biomass and production models in the St Lawrence Great Lakes[J]. ICES J Mar Sci, 1995, 52(3/4): 705-710.
    [34]
    KERR S R, DICKIE L M. The biomass spectrum[M]. New York: Columbia University Press, 2001: 110-128.
    [35]
    MACPHERSON E, GORDOA A. Biomass spectra in benthic fish assemblages in the Benguela System[J]. Mar Ecol Prog, 1996, 138(1/2/3): 27-32.
    [36]
    TREBILCO R, BAUM J K, SALOMON A K, et al. Ecosystem ecology: size-based constraints on the pyramids of life[J]. Trends Ecol Evol, 2013, 28(7): 423-431. doi: 10.1016/j.tree.2013.03.008
    [37]
    ROCHET M J, BENOIT E. Fishing destabilizes the biomass flow in the marine size spectrum[J]. Proc Biol Sci, 2012, 279(1727): 284-292. doi: 10.1098/rspb.2011.0893
    [38]
    詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 1995: 257-260.
    [39]
    SHINDO S. General review of the trawl fishery and the demersal fish stocks of the South China Sea[R]. Rome: FAO Fish Tech Pap, 1973, 120: 1-49.
    [40]
    SHELDON R W, PRAKASH A, SUTCLIFFE W H. The size distribution of particles in the ocean[J]. Limnol Oceanogr, 1972, 17(3): 327-340. doi: 10.4319/lo.1972.17.3.0327
    [41]
    PINKAS L, OLIPHANT M S, IVERSON I L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. Calif Dep Fish Game, Fish Bull, 1971, 152: 1-105.
    [42]
    CLARKE K R, AINSWORTH M. A method of linking multivariate community structure to environmental variables[J]. Mar Ecol Prog Ser, 1993, 92(3): 205-219.
    [43]
    李圣法. 以数量生物量比较曲线评价东海鱼类群落的状况[J]. 中国水产科学, 2008, 15(1): 136-144. doi: 10.3321/j.issn:1005-8737.2008.01.018
    [44]
    FENBERG P B, ROY K. Ecological and evolutionary consequences of size-selective harvesting: how much do we know?[J]. Mol Ecol, 2008, 17(1): 209-220. doi: 10.1111/j.1365-294X.2007.03522.x
    [45]
    王跃中, 孙典荣, 贾晓平, 等. 捕捞压力和气候变化对东海马面鲀渔获量的影响[J]. 南方水产科学, 2013, 9(1): 8-15. doi: 10.3969/j.issn.2095-0780.2013.01.002
    [46]
    施震, 黄小平. 大亚湾海域氮磷硅结构及其时空分布特征[J]. 海洋环境科学, 2013, 32(6): 118-123.
    [47]
    HAEDRICH R L, BARNES S M. Changes over time of the size structure in an exploited shelf fish community[J]. Fish Res, 1997, 31(3): 229-239. doi: 10.1016/S0165-7836(97)00023-4
    [48]
    SVEDANG H. The inshore demersal fish community on the Swedish Skagerrak coast: regulation by recruitment from offshore sources[J]. ICES J Mar Sci, 2003, 60(1): 23-31. doi: 10.1006/jmsc.2002.1329
    [49]
    JENNINGS S, GREENSTREET S P R, HILL L, et al. Long-term trends in trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size spectra and community metrics[J]. Mar Biol, 2002, 141(6): 1085-1097. doi: 10.1007/s00227-002-0905-7
    [50]
    SILVERT W, PLATT T. Energy flux in the pelagic ecosystem: a time-dependent equation[J]. Limnol Oceanogr, 1978, 23(4): 813-816. doi: 10.4319/lo.1978.23.4.0813
    [51]
    MACPHERSON E, GORDOA A, GARCIA-RUBIES A. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean[J]. Estuar Coast Shelf Sci, 2002, 55(5): 777-788. doi: 10.1006/ecss.2001.0939
    [52]
    郭建忠, 陈作志, 许友伟, 等. 大亚湾鱼类资源数量的时空分布特征[J]. 中国海洋大学学报, 2018, 48(12): 47-55.
    [53]
    WANG Y S, LOU Z P, SUN C C, et al. Ecological environment changes in Daya Bay, China, from 1982 to 2004[J]. Mar Pollut Bull, 2008, 56(11): 1871-1879. doi: 10.1016/j.marpolbul.2008.07.017
    [54]
    李纯厚, 徐姗楠, 杜飞雁, 等. 大亚湾生态系统对人类活动的响应及健康评价[J]. 中国渔业质量与标准, 2015, 5(1): 1-10.
  • Related Articles

    [1]SUN Huiyan, ZHOU Yanbo, MA Shengwei, TIAN Ji, XU Jingchun, LIU Zhiying, BI Jieting, WU Qia'er. Fishing characteristics of light fishing vessels in open South China Sea based on Beidou position data[J]. South China Fisheries Science, 2023, 19(2): 21-30. DOI: 10.12131/20220254
    [2]QIAN Jing, LI Jiajun, CHEN Zuozhi, MA Shengwei, ZHANG Peng, QIU Yongsong, CAI Yancong. An investigation of large-size light falling-net fishing vessels operating in South China Sea based on Beidou VMS data[J]. South China Fisheries Science, 2022, 18(6): 1-9. DOI: 10.12131/20220001
    [3]SU Li, CHEN Zuozhi, ZHANG Peng, LI Jie, WANG Huanhuan, HUANG Jiaxing. Catch composition and spatial-temporal distribution of catch rate of light falling-net fishing in central and southern South China Sea fishing ground in 2017[J]. South China Fisheries Science, 2018, 14(5): 11-20. DOI: 10.3969/j.issn.2095-0780.2018.05.002
    [4]ZHANG Peng, ZHANG Jun, LI Yuan, ZHANG Ran, LIN Longshan, YAN Lei, QIU Yongshong, SUN Dianrong, CHEN Sen. An exploratory fishing survey of light falling-net fisheries in the central and southern South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(2): 67-74. DOI: 10.3969/j.issn.2095-0780.2016.02.010
    [5]CHEN Sen, ZHANG Peng, YAN Lei, LI Jie, YANG Bingzhong, TAN Yongguang. Analysis on catch compositioin and fishing ground by new-built steel light falling-net fishing in the South China Sea[J]. South China Fisheries Science, 2015, 11(5): 125-131. DOI: 10.3969/j.issn.2095-0780.2015.05.015
    [6]YAN Lei, ZHANG Peng, YANG Lin, YANG Bingzhong, CHEN Sen, LI Yanan, TAN Yongguang. Effect of moon phase on fishing rate by light falling-net fishing vessels of Symplectoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2015, 11(3): 16-21. DOI: 10.3969/j.issn.2095-0780.2015.03.003
    [7]ZOU Jianwei, CHEN Lifeng, LIN Jiangjin, LU Zhifu, YANG Bohua. Analysis on variation & distribution of center fishing ground for light falling-net in offshore of the South China Sea: based on statistics of fishery surveillance to Guangxi fishing vessels[J]. South China Fisheries Science, 2014, 10(4): 78-84. DOI: 10.3969/j.issn.2095-0780.2014.04.013
    [8]ZHANG Peng, ZENG Xiaoguang, YANG Lin, PENG Changhan, ZHANG Xufeng, YANG Sheng, TAN Yongguang, YANG Bingzhong, YAN Lei. Analyses on fishing ground and catch composition of large-scale light falling-net fisheries in South China Sea[J]. South China Fisheries Science, 2013, 9(3): 74-79. DOI: 10.3969/j.issn.2095-0780.2013.03.012
    [9]XU Mingchang, XU Hao. Design and experiment of fishing device with electrical pulse for demersal fish in aquaculture pond[J]. South China Fisheries Science, 2011, 7(3): 62-67. DOI: 10.3969/j.issn.2095-0780.2011.03.011
    [10]YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. The catch composition of light falling-net fishing and its impact on fishery resources in the northern South China Sea[J]. South China Fisheries Science, 2009, 5(4): 41-46. DOI: 10.3969/j.issn.1673-2227.2009.04.008
  • Cited by

    Periodical cited type(5)

    1. 吕宇婷,苏家齐. 低盐水体钠离子钾离子对斑节对虾生长存活与肝胰腺鳃组织酶活性的影响. 农业与技术. 2025(02): 112-117 .
    2. 邹宇凡,吴玮杰,白志毅,李典中,蒋军,程熙,李家乐. 克氏原螯虾三群体双列杂交组合生长性能和耐干露能力比较分析. 上海海洋大学学报. 2024(02): 361-370 .
    3. 王崇懿,王伦,刘建勇,傅学丽. 凡纳滨对虾(Litopenaeus vannamei)不同品系生长与耐高盐性状配合力及杂种优势分析. 海洋与湖沼. 2022(01): 161-167 .
    4. 王伦,王崇懿,刘建勇,傅学丽. 凡纳滨对虾多代选育群体生长和耐综合胁迫性状的配合力及杂种优势分析. 海洋学报. 2022(04): 65-73 .
    5. 朱磅强,何俊,曾青华,张跃博. 动物杂种优势利用及其预测方法. 中国猪业. 2021(04): 22-26 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return