QIN Chuanxin, ZUO Tao, YU Gang, ZHOU Wenli, LI Chunhou. Advances in research of environmental DNA (eDNA) in biomass assessment of aquatic ecosystems[J]. South China Fisheries Science, 2020, 16(5): 123-128. DOI: 10.12131/20190256
Citation: QIN Chuanxin, ZUO Tao, YU Gang, ZHOU Wenli, LI Chunhou. Advances in research of environmental DNA (eDNA) in biomass assessment of aquatic ecosystems[J]. South China Fisheries Science, 2020, 16(5): 123-128. DOI: 10.12131/20190256

Advances in research of environmental DNA (eDNA) in biomass assessment of aquatic ecosystems

More Information
  • Received Date: December 18, 2019
  • Revised Date: May 09, 2020
  • Accepted Date: May 11, 2020
  • Available Online: September 27, 2020
  • Environmental DNA (eDNA) technology is attracting more and more attention in the biological evaluation of aquatic ecosystems because of its non-invasive, efficient, economical and sensitive characteristics. Focusing on the content, application status and challenges of eDNA technology, we review its application prospect in biomass assessment of aquatic ecosystems in laboratory environment and wild aquatic ecosystem. Besides, we discusse its advantages and disadvantages, ecological process as well as evaluation error. Finally, we prospect the technology application in aquatic biomass assessment, so as to provide references for eDNA technology application in that field.

  • [1]
    KNUDSEN S W, EBERT R B, HESSELSØE M, et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea[J]. J Exp Mar Biol Ecol, 2019, 510: 31-45. doi: 10.1016/j.jembe.2018.09.004
    [2]
    郝雅宾, 张爱菊, 刘金殿, 等. 环境DNA技术在鱼类资源研究中的应用[J]. 生物技术通报, 2018, 34(12): 56-62.
    [3]
    EVANS N T, SHIREY P D, WIERINGA J G, et al. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing[J]. Fisheries, 2017, 42(2): 90-99. doi: 10.1080/03632415.2017.1276329
    [4]
    FICETOLA G F, MIAUD C, POMPANON F, et al. Species detection using environmental DNA from water samples[J]. Biol Lett, 2008, 4(4): 423-425. doi: 10.1098/rsbl.2008.0118
    [5]
    李晗溪, 黄雪娜, 李世国, 等. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. doi: 10.17520/biods.2018233
    [6]
    李苗, 单秀娟, 王伟继, 等. 中国对虾生物量评估的环境DNA检测技术的建立及优化[J]. 渔业科学进展, 2019, 40(1): 12-19.
    [7]
    李萌, 尉婷婷, 史博洋, 等. 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用[J]. 生物多样性, 2019, 27(5): 480-490. doi: 10.17520/biods.2018227
    [8]
    TAKAHARA T, MINAMOTO T, YAMANAKA H, et al. Estimation of fish biomass using environmental DNA[J]. PLoS One, 2012, 7(4): e35868. doi: 10.1371/journal.pone.0035868
    [9]
    WILLERSLEV E, HANSEN A J, BINLADEN J. Diverse plant and animal genetic records from holocene and pleistocene sediments[J]. Science, 2003, 300(5620): 791-795. doi: 10.1126/science.1084114
    [10]
    吴昀晟, 唐永凯, 李建林, 等. 环境DNA在长江江豚监测中的应用[J]. 中国水产科学, 2019, 26(1): 124-132.
    [11]
    TURNER C R, BARNES M A, XU C C Y, et al. Particle size distribution and optimal capture of aqueous macrobial eDNA[J]. Methods Ecol Evol, 2014, 5(7): 676-684. doi: 10.1111/2041-210X.12206
    [12]
    单秀娟, 李苗, 王伟继. 环境DNA (eDNA) 技术在水生生态系统中的应用研究进展[J]. 渔业科学进展, 2018, 39(3): 23-29.
    [13]
    高天翔, 陈治, 王晓艳. 近海鱼类多样性调查新方法——环境DNA分析技术[J]. 浙江海洋大学学报(自然科学版), 2018, 37(1): 1-7.
    [14]
    卢珊. 常见水生动物与其环境DNA的定性与定量关系[D]. 南京: 南京南京师范大学, 2015: 12.
    [15]
    NATHAN L M, MEGAN S, WEGLEITNER B J, et al. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms[J]. Environ Sci Technol, 2014, 48(21): 12800-12806. doi: 10.1021/es5034052
    [16]
    LACOURSIÈRE-ROUSSEL A, HOWLAND K, NORMANDEAU E, et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity[J]. Ecol Evol, 2018, 8(16): 7763-7777. doi: 10.1002/ece3.4213
    [17]
    赵明, 赵梦迪, 马春艳, 等. 环境DNA在水域生态中的研究进展[J]. 中国水产科学, 2018, 25(4): 714-720.
    [18]
    陈治, 陈建威, 王晓艳, 等. 舟山近海环境DNA保存方法的建立及优化[J]. 海洋与湖沼, 2019, 50(5): 1098-1107. doi: 10.11693/hyhz20190200034
    [19]
    孙晶莹, 杨江华, 张效伟. 环境DNA (eDNA) 宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究[J]. 生态毒理学报, 2018, 13(5): 76-86. doi: 10.7524/AJE.1673-5897.20180108001
    [20]
    MAUVISSEAU Q, PARRONDO M, FERNÁNDEZ M P, et al. On the way for detecting and quantifying elusive species in the sea: the Octopus vulgaris case study[J]. Fish Res, 2017, 191: 41-48. doi: 10.1016/j.fishres.2017.02.023
    [21]
    赵梦迪. 利用环境DNA分析冬季中国东黄海水域的鱼类多样性[D]. 上海: 上海海洋大学, 2017: 42.
    [22]
    李蕊. 水环境游离DNA表征及其应用探索 [D]. 南京: 东南大学, 2017: 49.
    [23]
    MIYA M, SATO Y, FUKUNAGA T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Roy Soc Open Sci, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
    [24]
    YAMAMOTO S, MASUDA R, SATO Y, et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea[J]. Sci Rep, 2017, 7: 40368. doi: 10.1038/srep40368
    [25]
    STRICKLER K M, FREMIER A K, GOLDBERG C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms[J]. Biol Conserv, 2015, 183: 85-92. doi: 10.1016/j.biocon.2014.11.038
    [26]
    MARUYAMA A, NAKAMURA K, YAMANAKA H, et al. The release rate of environmental DNA from juvenile and adult fish[J]. PLoS One, 2014, 9(12): e114639. doi: 10.1371/journal.pone.0114639
    [27]
    EICHMILLER J J, BEST S E, SORENSEN P W. Effects of temperature and trophic state on degradation of environmental DNA in lake water[J]. Environ Sci Technol, 2016, 50(4): 1859-1867. doi: 10.1021/acs.est.5b05672
    [28]
    KLYMUS K E, RICHTER C A, CHAPMAN D C, et al. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix[J]. Biol Conserv, 2015, 183: 77-84. doi: 10.1016/j.biocon.2014.11.020
    [29]
    SASSOUBRE L M, YAMAHARA K M, GARDNER L D, et al. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish[J]. Environ Sci Technol, 2016, 50(19): 10456-10464. doi: 10.1021/acs.est.6b03114
    [30]
    KELLY R P, PORT J A, YAMAHARA K M, et al. Harnessing DNA to improve environmental management[J]. Science, 2014, 344(6191): 1455-1456. doi: 10.1126/science.1251156
    [31]
    EVANS N T, OLDS B P, RENSHAW M A, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding[J]. Mol Ecol Resour, 2015, 16(1): 29-41.
    [32]
    PILLIOD D S, GOLDBERG C S, ARKLE R S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples[J]. Can J Fish Aquat Sci, 2013, 70(8): 1123-1130. doi: 10.1139/cjfas-2013-0047
    [33]
    BALDIGO B P, SPORN L A, GEORGE S D, et al. Efficacy of environmental DNA to detect and quantify Brook trout populations in headwater streams of the adirondack mountains, New York[J]. Trans Am Fish Soc, 2016, 146(1): 99-111.
    [34]
    YAMAMOTO S, MINAMI K, FUKAYA K, et al. Environmental DNA as a 'Snapshot' of fish distribution: a case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan[J]. PLoS One, 2016, 11(3): e0149786. doi: 10.1371/journal.pone.0149786
    [35]
    RICE C J, LARSON E R, TAYLOR C A. Environmental DNA detects a rare large river crayfish but with little relation to local abundance[J]. Freshw Biol, 2018, 63(5): 443-455. doi: 10.1111/fwb.13081
    [36]
    TILLOTSON M D, KELLY R P, DUDA J J, et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales[J]. Biol Conserv, 2018, 220: 1-11. doi: 10.1016/j.biocon.2018.01.030
    [37]
    LACOURSIÈRE-ROUSSEL A, CÔTÉ G, LECLERC V, et al. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management[J]. J Appl Ecol, 2016, 53(4): 1148-1157. doi: 10.1111/1365-2664.12598
    [38]
    HERING D, BORJA A, JONES J I, et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive[J]. Water Res, 2018, 138: 192-205. doi: 10.1016/j.watres.2018.03.003
    [39]
    CERCO C F, SCHULTZ M T, NOEL M R, et al. A fate and transport model for Asian carp environmental DNA in the Chicago area waterways system[J]. J Great Lakes Res, 2018, 44(4): 813-823. doi: 10.1016/j.jglr.2018.04.010
    [40]
    PILLIOD D S, GOLDBERG C S, ARKLE R S, et al. Factors influencing detection of eDNA from a stream-dwelling amphibian[J]. Mol Ecol Resour, 2014, 14(1): 109-116. doi: 10.1111/1755-0998.12159
    [41]
    LANCE R, KLYMUS K, RICHTER C, et al. Experimental observations on the decay of environmental DNA from bighead and silver carps[J]. Manag Biol Invasion, 2017, 8(3): 343-359. doi: 10.3391/mbi.2017.8.3.08
    [42]
    RUPPERT K M, KLINE R J, RAHMAN M S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA[J]. Glob Ecol Conserv, 2019, 17: e00547. doi: 10.1016/j.gecco.2019.e00547
    [43]
    LODGE D M, TURNER C R, JERDE C L, et al. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA[J]. Mol Ecol, 2012, 21: 2555-2558.
  • Related Articles

    [1]Xiaoli CAO, Zhaolin LI, Yi HU. Effects of dietary taurine supplementation in low fish meal feed on growth, digestibility, intestinal enzyme activities of rice field eel (Monopterus albus)[J]. South China Fisheries Science, 2021, 17(5): 64-70. DOI: 10.12131/20200255
    [2]ZHANG Ying, WANG Longle, ZHONG Mingqi, ZENG Quanhui, LIU Xinhong, DU Hong. Influence of boron stress on growth and physiological characteristics of Gracilaria lemaneiformis[J]. South China Fisheries Science, 2014, 10(4): 9-15. DOI: 10.3969/j.issn.2095-0780.2014.04.002
    [3]CHEN Suwen, CHEN Lixiong, ZHU Changbo, SU Li. Effects of environmental factors on growth and survival of Gloiopeltis furcata thalli[J]. South China Fisheries Science, 2014, 10(3): 92-96. DOI: 10.3969/j.issn.2095-0780.2014.03.014
    [4]YANG Bin, XIE Enyi, QU Yuankai. Effects of different environment factors on the growth and photosynthetic pigments of seedlings of Sargassum mcclurei[J]. South China Fisheries Science, 2013, 9(4): 39-44. DOI: 10.3969/j.issn.2095-0780.2013.04.007
    [5]ZHANG Huajun, LI Zhuojia, ZHANG Jiasong, ZHANG Xiaoyang, CAO Yucheng, WEN Guoliang, CHENG Kaimin. Effects of stocking density on immune parameters and growth of juvenile Litopenaeus vannamei[J]. South China Fisheries Science, 2012, 8(4): 43-48. DOI: 10.3969/j.issn.2095-0780.2012.04.007
    [6]LI Xu-jie, REN Yi-ping, XU Bin-duo, MA Guang-wen. The growth characteristics of Penaeus japonicus in the Guzhenkou Bay of Qingdao[J]. South China Fisheries Science, 2008, 4(4): 26-29.
    [7]LI Min, ZHANG Hanhua, ZHU Changbo, WU Jinfeng, CHEN Lixiong. Effects of different diet combinations on the growth and survival of juvenile black abalone[J]. South China Fisheries Science, 2007, 3(6): 40-46.
    [8]LI Min, ZHANG Hanhua, ZHU Changbo. Advance of study on effects of environment factors and diets on growth of abalone[J]. South China Fisheries Science, 2007, 3(2): 76-80.
    [9]ZHOU Haiping, LI Zhuojia, YANG Yingying, CHEN Yongqing. Effects of environmental factors on the growth of Lactobacillus spp[J]. South China Fisheries Science, 2006, 2(4): 65-67.
    [10]YE Le, LIN Hei-zhe, LI Zhuo-jia, WU Kai-chang, WEN Guo-liang, MA Zhi-ming, ZHU Chang-fu. The effect of feeding frequency on growth of Litopenaeus vannamei (Boone) and water quality[J]. South China Fisheries Science, 2005, 1(4): 55-59.
  • Cited by

    Periodical cited type(1)

    1. 年勇白丁,张玥滢,张维柯,陈华保,万宣伍,马利,杨春平. 毒杀福寿螺槟榔碱饵料的研制. 植物医学. 2025(01): 75-83 .

    Other cited types(0)

Catalog

    Article views (3127) PDF downloads (172) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return