XI Shigai, QIN Chuanxin, MA Zhenhua, YU Gang, SUN Jinhui, PAN Wanni, ZUO Tao, MA Hongmei, ZHU Wentao. Effects of dietary microalgae on growth and survival of larval development of sea urchin (Anthocidaris crassispina)[J]. South China Fisheries Science, 2020, 16(2): 115-120. DOI: 10.12131/20190209
Citation: XI Shigai, QIN Chuanxin, MA Zhenhua, YU Gang, SUN Jinhui, PAN Wanni, ZUO Tao, MA Hongmei, ZHU Wentao. Effects of dietary microalgae on growth and survival of larval development of sea urchin (Anthocidaris crassispina)[J]. South China Fisheries Science, 2020, 16(2): 115-120. DOI: 10.12131/20190209

Effects of dietary microalgae on growth and survival of larval development of sea urchin (Anthocidaris crassispina)

More Information
  • Received Date: October 22, 2019
  • Revised Date: December 23, 2019
  • Accepted Date: January 10, 2020
  • Available Online: January 16, 2020
  • To investigate the growth and survival of sea urchin (Anthocidaris crassispina) larvae, we fed six microalgal diets [Dicrateria zhanjiangensis, Chaetoceros gracilis, Pavlova viridis, Platymonas subcordiformis, Chlorella vulgaris, and mixture of C. gracilis and D. zhanjiangensis (1∶1)]. The results show that different diets had different effects on the growth and development of the planktonic larvae of sea urchin. D. zhanjiangensis was the optimal microalgal diet. C. gracilis was the second, and then were P. viridis, C. vulgari, and mixture of C. gracilis and D. zhanjiangensis. However, P. subcordiformis was not suitable to be used as the opening bait for sea urchin larvae rearing. In terms of baits, D. zhanjiangensis was the best, since the survival rate of the larvae could reach (23.12 ±1.8)%, significantly higher than those of other unicellular algae (P<0.05). In terms of growth rate, mixture of C. gracilis and D. zhanjiangensis was the best, since the average length of the larvae could reach (885.25±30.49) μm, significantly higher than those of the other five treatments (P<0.05). The growth of the larvae fed with P. viridis was slow at early stage with body length of (337.98±24.56) μm, but it grew faster than the other unicellular algae at later stage with body length of (580±32.95) μm, so P. viridis is the suitable bait for planktonic larvae of A. crassispina at later stage.

  • [1]
    陈锤. 紫海胆的生物学与养殖[J]. 海洋与渔业, 2007(7): 32.
    [2]
    郭文场. 中国海胆种质资源养殖与保护[J]. 特种经济动植物, 2013, 16(9): 9-11.
    [3]
    冯永勤. 紫海胆人工育苗技术研究[J]. 海洋科学, 2006, 30(1): 5-8, 48. doi: 10.3969/j.issn.1000-3096.2006.01.002
    [4]
    杨章武, 李正良, 郑雅友, 等. 紫海胆人工育苗技术的研究[J]. 台湾海峡, 2001, 20(1): 32-36.
    [5]
    陈颜锋, 游小艇. 紫海胆养殖试验[J]. 科学养鱼, 2003(10): 29.
    [6]
    聂永康, 陈丕茂, 周艳波, 等. 南方紫海胆增殖放流对虾类和蟹类行为的影响[J]. 安徽农业科学, 2016, 44(21): 7-11. doi: 10.3969/j.issn.0517-6611.2016.21.003
    [7]
    CARBONI S, VIGNIER J, CHIANTORE M, et al. Effects of dietary microalgae on growth, survival and fatty acid composition of sea urchin Paracentrotus lividus throughout larval development[J]. Aquaculture, 2011, 324: 250-258.
    [8]
    BRUNDU G, VIAN MONLEÓN L, VALLAINC D, et al. Effects of larval diet and metamorphosis cue on survival and growth of sea urchin post-larvae (Paracentrotus lividus; Lamarck, 1816)[J]. Aquaculture, 2016, 465: 265-271. doi: 10.1016/j.aquaculture.2016.09.014
    [9]
    聂永康, 陈丕茂, 周艳波, 等. 南方紫海胆摄食习性的初步研究[J]. 南方水产科学, 2016, 12(3): 1-8. doi: 10.3969/j.issn.2095-0780.2016.03.001
    [10]
    莫宝霖, 秦传新, 陈丕茂, 等. 基于碳、氮稳定同位素技术的大亚湾紫海胆食性分析[J]. 中国水产科学, 2017, 24(3): 566-75.
    [11]
    冯雪, 陈丕茂, 秦传新, 等. 温度和体重对南海野生紫海胆(Anthocidaris crassispina)呼吸代谢的影响[J]. 广东农业科学, 2012, 39(23): 123-5, 31. doi: 10.3969/j.issn.1004-874X.2012.23.040
    [12]
    孙勉英. 大连紫海胆食性的研究Ⅱ幼海胆期铒料的初步探讨[J]. 水产科学, 1990, 9(4): 31-34.
    [13]
    张鹏, 曾晓起, 尤凯. 盐度及饵料对马粪海胆幼体生长发育及变态的影响[J]. 海洋湖沼通报, 2004(4): 75-80. doi: 10.3969/j.issn.1003-6482.2004.04.013
    [14]
    常亚青, 丁君, 宋坚, 等. 海参、海胆生物学研究与养殖 [M]. 北京: 海洋出版社, 2004: 245-269.
    [15]
    SCHOLTZ R, BOLTON J J, MACEY B M. Effects of different microalgal feeds and their influence on larval development in the white-spined sea urchin Tripneustes gratilla[J]. S Afr J Mar Sci, 2013, 35(1): 25-34. doi: 10.2989/1814232X.2013.769902
    [16]
    BRUNDU G, VALLAINC D, BAROLI M, et al. Effects of on-demand feeding on sea urchin larvae (Paracentrotus lividus; Lamarck, 1816), development, survival and microalgae utilization[J]. Aquacult Res, 2017, 48(4): 1550-1560. doi: 10.1111/are.12990
    [17]
    CASTILLA-GAVILÁN M, BUZIN F, COGNIE B, et al. Optimising microalgae diets in sea urchin Paracentrotus lividus larviculture to promote aquaculture diversification[J]. Aquaculture, 2018, 490: 251-259. doi: 10.1016/j.aquaculture.2018.02.003
    [18]
    QI S, ZHAO X, ZHANG W, et al. The effects of 3 different microalgae species on the growth, metamorphosis and MYP gene expression of two sea urchins, Strongylocentrotus intermedius and S. nudus[J]. Aquaculture, 2018, 492: 123-131. doi: 10.1016/j.aquaculture.2018.02.007
    [19]
    SONNENHOLZNER-VARAS J I, TOURON N, ORRALA M M P. Breeding, larval development, and growth of juveniles of the edible sea urchin Tripneustes depressus: a new target species for aquaculture in Ecuador[J]. Aquaculture, 2018, 496: 134-145. doi: 10.1016/j.aquaculture.2018.07.019
    [20]
    蒲利云, 吴洪流, 冯永勤, 等. 白棘三列海胆生殖系统的组织学研究[J]. 海南大学学报(自然科学版), 2009, 27(2): 147-153.
    [21]
    常亚青, 王子臣, 宋坚, 等. 四种海胆杂交的可行性及子代的早期发育[J]. 水产学报, 2000, 24(3): 211-216.
    [22]
    王宝锋. 高腰海胆胚胎及幼体发育过程[J]. 大连海洋大学学报, 2019, 34(4): 526-530.
    [23]
    孙勉英. 大连紫海胆浮游幼体期的饵料试验[J]. 水产科学, 1989, 8(2): 23-26.
    [24]
    DUY N D Q, PIROZZI I, SOUTHGATE P C. Ingestion and digestion of live microalgae and microalgae concentrates by sandfish, Holothuria scabra, larvae[J]. Aquaculture, 2015, 448: 256-261. doi: 10.1016/j.aquaculture.2015.06.009
    [25]
    邓正华, 陈明强, 王雨, 等. 合浦珠母贝幼虫培育的饵料优化研究[J]. 水产科学, 2018, 37(6): 721-727.
    [26]
    邓正华, 叶乐, 吴开畅, 等. 黄边糙鸟蛤幼虫对9种单胞藻的摄食与消化研究[J]. 南方水产科学, 2016, 12(6): 91-98. doi: 10.3969/j.issn.2095-0780.2016.06.012
    [27]
    常亚青, 高绪生. 中间球海胆的人工育苗及增养殖技术(二)[J]. 水产科学, 2004(7): 45-46. doi: 10.3969/j.issn.1003-1111.2004.07.016
    [28]
    CAMERON R, HINEGARDNER R. Initiation of metamorphosis in laboratory cultured sea urchins[J]. Biol Bull, 1974, 146(3): 335-342. doi: 10.2307/1540409
    [29]
    王笑月. 杂交海胆浮游幼体期的饵料效果研究[J]. 齐鲁渔业, 2005, 22(4): 1-3.
    [30]
    王波, 张春利, 高倩, 等. 饵料对中间球海胆生长发育的影响初探[J]. 黄渤海海洋, 2002, 20(1): 54-59.
  • Related Articles

    [1]ZHU Shuli, CHEN Weitao, WU Zhi, XIA Yuguo, YANG Jiping, LI Yuefei, LI Jie. Preliminary investigation of fish diversity in middle and lower reaches of Pearl River based on environmental DNA technology[J]. South China Fisheries Science, 2024, 20(1): 120-129. DOI: 10.12131/20230111
    [2]XIE Yufang, WU Peng, LIU Yong, XIAO Yayuan, TANG Guanglong, WANG Teng, LIN Lin, LI Chunhou. Study on habitat suitability of Coilia mystus in Pearl River Estuary, China[J]. South China Fisheries Science, 2023, 19(1): 22-29. DOI: 10.12131/20220029
    [3]LI Hongting, ZHANG Shuai, ZOU Keshu, CHEN Zuozhi, CHEN Xiaolei, JIANG Peiwen, CAO Yiting, LI Min. Establishment and optimization of environmental DNA extraction method from water of Pearl River Estuary[J]. South China Fisheries Science, 2022, 18(3): 30-37. DOI: 10.12131/20210304
    [4]CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339
    [5]XIONG Pengli, CHEN Zuozhi, HOU Gang, ZHANG Shuai, QIU Yongsong, FAN Jiangtao, XU Shannan. Decadal change in biological traits of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2021, 17(6): 31-38. DOI: 10.12131/20210072
    [6]YAN Yali, ZHANG Nan, GUO Huayang, GUO Liang, ZHU Kecheng, LIU Baosuo, ZHANG Dianchang. Species identification and phylogenetic relationship in Siganidae based on DNA barcoding[J]. South China Fisheries Science, 2019, 15(1): 100-105. DOI: 10.12131/20180083
    [7]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [8]GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15.
    [9]WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45.
    [10]YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34.
  • Cited by

    Periodical cited type(11)

    1. 郭瑶杰,万武波,王海山,叶乐,陈治. 3组常用鱼类eDNA宏条形码通用引物对三亚水环境样品的物种检出效果比较. 南方水产科学. 2025(01): 66-76 . 本站查看
    2. 薛向平,孙朝徽,刘霞,惠筠,李学军,李秀启,司飞. 基于COI基因的黄河河南-山东段鲤群体遗传结构分析. 淡水渔业. 2025(02): 43-52 .
    3. 朱书礼,陈蔚涛,武智,夏雨果,杨计平,李跃飞,李捷. 基于环境DNA技术的珠江中下游鱼类多样性初步研究. 南方水产科学. 2024(01): 120-129 . 本站查看
    4. 于耀鲜,邢冉冉,邓婷婷,王琳,卢思远,王宏勋,王丽梅,陈颖. 基于重组酶介导等温扩增-CRISPR/Cas12a的青鱼物种快速鉴定研究. 食品安全质量检测学报. 2024(04): 40-48 .
    5. 徐颖琪,梁绪虹,陈新军,宋成辉,彭祖焜,王丛丛. 基于COⅠ基因构建西北太平洋常见鱼类DNA条形码参考数据库. 上海海洋大学学报. 2024(04): 823-835 .
    6. 张浩博,王晓艳,陈治,钟兰萍,高天翔. 基于环境DNA metabarcoding的舟山及其邻近海域鱼类空间分布格局的初步研究. 水产学报. 2024(08): 125-138 .
    7. 李筱芹,吴开阳,倪达富,杨丽亚,鲁桃秀,张连博,邓华堂,吴彤飞,何荣超,付梅,姚维志,吕红健. 基于环境DNA技术的梯级水坝对长江上游重要支流鱼类多样性的影响研究——以綦江为例. 生态学报. 2024(19): 8865-8883 .
    8. 陈炳耀,信誉,路方婷,孙婧,刘杉,李敏,吴斌,王崇瑞,张衡,周玉香,白玲. 长江江豚监测现状及展望. 中国环境监测. 2023(02): 1-10 .
    9. 陈治,蔡杏伟,申志新,张清凤,李芳远,谷圆,李高俊,赵光军,王镇江. 海南岛淡水鱼类eDNA宏条形码COⅠ通用引物的筛选. 渔业科学进展. 2023(06): 40-57 .
    10. 刘乙蒙,刘洋,刘必林,俞晔伟,宋成辉,王丛丛. Cyt b和12S rRNA基因条形码在灯笼鱼科鱼类物种鉴定中的应用. 中国水产科学. 2023(09): 1112-1126 .
    11. 蒋佩文,李敏,张帅,陈作志,徐姗楠. 基于环境DNA宏条码和底拖网的珠江河口鱼类多样性. 水生生物学报. 2022(11): 1701-1711 .

    Other cited types(5)

Catalog

    Article views (5084) PDF downloads (86) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return