Citation: | SONG Liming, LI Yiting. Research progress of mechanical property of tuna longline gear[J]. South China Fisheries Science, 2020, 16(2): 121-127. DOI: 10.12131/20190183 |
The mechanical property of longline gear affects fishing efficiency and energy consumption directly. The paper summarizes relevant research methods and progress on the mechanical property of tuna longline gear, including the initial measurement at sea, the model test in the flume tank, and the numerical simulation. Results show that: 1) the theoretical analysis of mechanical property of longline gear have developed from static analysis to dynamic analysis; 2) the model test of longline could only be carried out on a small scale in order to verify the accuracy of numerical simulation analysis under specific circumstances; 3) the perpendicular drag coefficient (CN90) and inertia coefficient (Cm) were determined to be 1.12 and 3, respectively. It is suggested that the future studies on longline gear mechanical property should: 1) foucus on the effects of the stiffness and damping of fishing gear materials on the numerical simulation accuracy; 2) combine the behavioral characteristics of tuna to study the hydrodynamic force after hooking and take it into account in the model, so that the model can match the actual operation state; 3) further numerically simulate the interaction among the fishing gear, current, fishing boat, line hauler and catches.
[1] |
宋利明. 渔具测试[M]. 北京: 中国农业出版社, 2017: 85-88.
|
[2] |
官文江, 朱江峰, 高峰. 印度洋长鳍金枪鱼资源评估的影响因素分析[J]. 中国水产科学, 2018, 25(5): 1102-1114.
|
[3] |
官文江, 朱江峰, 田思泉. 应用贝叶斯生物量动态模型评估印度洋黄鳍金枪鱼资源[J]. 中国水产科学, 2018, 25(3): 621-631.
|
[4] |
SANTOS R C, SILVA-COSTA A, SANT'ANA R A, et al. Improved line weighting reduces seabird bycatch without affecting fish catch in the Brazilian pelagic longline fishery[J]. Aquat Conserv, 2019, 29(3): 442-449. doi: 10.1002/aqc.3002
|
[5] |
TASKER M. Educational and training material for use in reducing seabird by catch[C]//Indian Ocean Tuna Commission, Victoria, Seychelles. 2nd Session of The Working Party on Environment and Bycatch. IOTC-2006-WPBy-INF05, 2006:1-2.
|
[6] |
邵化斌. 海洋动物保护的国际管理机制研究[D]. 上海: 上海海洋大学, 2018: 1-4.
|
[7] |
庄之栋. 大西洋金枪鱼延绳钓重要兼捕种类的生物学研究[D]. 上海: 上海海洋大学, 2011: 1-8.
|
[8] |
姜润林, 戴小杰, 许柳雄. 热带大西洋金枪鱼延绳钓兼捕鲨鱼种类组成和渔获率及其与表温的关系[J]. 海洋渔业, 2009, 31(4): 389-394. doi: 10.3969/j.issn.1004-2490.2009.04.008
|
[9] |
杨胜龙, 张忭忭, 唐宝军, 等. 基于GAM模型分析水温垂直结构对热带大西洋大眼金枪鱼渔获率的影响[J]. 中国水产科学, 2017, 24(4): 875-883.
|
[10] |
周成. 东太平洋公海长鳍金枪鱼延绳钓渔获特征的研究[C]//中国水产学会, 四川省水产学会. 2016年中国水产学会学术年会论文摘要集, 2016: 438-439.
|
[11] |
BEVERLY S, CURRAN D, MUSYL M, et al. Effects of eliminating shallow hooks from tuna longline sets on target and non-target species in the Hawaii-based pelagic tuna fishery[J]. Fish Res, 2009, 96(2/3): 281-288.
|
[12] |
刘勇, 程家骅. 渔业多鱼种综合开捕网目尺寸和捕捞努力量管理目标确定方法探讨[J]. 渔业科学进展, 2015, 36(6): 1-7. doi: 10.11758/yykxjz.20150601
|
[13] |
许友伟, 戴小杰, 陈作志. 大西洋延绳钓渔获物常见种类的生态风险评估[J]. 上海海洋大学学报, 2015, 24(3): 441-448.
|
[14] |
曹道梅. 金枪鱼延绳钓渔具动力学模拟[D]. 上海: 上海海洋大学, 2011: 16-28.
|
[15] |
BOGGS C H. Depth, capture time, and hooked longevity of longline caught pelagic fish[J]. Fish Bull, 1992, 90(4): 642-658.
|
[16] |
MIZUNO K, OKAZAKI M, NAKANO H, et al. Estimation of underwater shape of tuna longline by using micro-BTs[J]. Bull Nat Res Ins Far Seas Fish, 1997, 34(1): 1-24.
|
[17] |
MIZUNO K, OKAZAKI M, MIYABE N. Fluctuation of longline shortening rate and its effect on underwater longline shape[J]. Bull Nat Res Ins Far Seas Fish, 1998, 35(1): 155-164.
|
[18] |
MIYAMOTO Y, UCHIDA K, ORII R, et al. Three-dimensional underwater shape measurement of tuna longline using ultrasonic positioning system and ORBCOMM buoy[J]. Fish Sci, 2006, 72(1): 63-68. doi: 10.1111/j.1444-2906.2006.01117.x
|
[19] |
宋利明, 高攀峰. 马尔代夫海域延绳钓渔场大眼金枪鱼的钓获水层、水温和盐度[J]. 水产学报, 2006, 30(3): 335-340.
|
[20] |
BACH P, GAERTNER D, MENKES C, et al. Effects of the gear deployment strategy and current shear on pelagic longline shoaling[J]. Fish Res, 2009, 95(1): 55-64. doi: 10.1016/j.fishres.2008.07.009
|
[21] |
张艳波, 戴小杰, 朱江峰, 等. 东南太平洋金枪鱼延绳钓主要渔获种类垂直分布[J]. 应用生态学报, 2015, 26(3): 912-918.
|
[22] |
沈智宾. 金枪鱼延绳钓渔具作业过程数值模拟[D]. 上海: 上海海洋大学, 2016: 11-14.
|
[23] |
李杰, 晏磊, 杨炳忠, 等. 罩网兼作金枪鱼延绳钓的钓钩深度与渔获水层分析[J]. 海洋渔业, 2018, 40(6): 660-669. doi: 10.3969/j.issn.1004-2490.2018.06.003
|
[24] |
BIGELOW K A, HAMPTON J, MIYABE N. Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus)[J]. Fish Oceanogr, 2002, 11(3): 143-155. doi: 10.1046/j.1365-2419.2002.00196.x
|
[25] |
吴因文, 吴殷书. 悬链线和抛物线理论在金枪鱼延绳钓渔业中的应用[J]. 海洋渔业, 2005, 27(1): 1-9. doi: 10.3969/j.issn.1004-2490.2005.01.001
|
[26] |
LEE C W, LEE J H, CHA B J, et al. Physical modeling for underwater flexible systems dynamic simulation[J]. Ocean Eng, 2005, 32(3/4): 331-347.
|
[27] |
BIGELOW K, MUSYL M K, POISSON F, et al. Pelagic longline gear depth and shoaling[J]. Fish Res, 2006, 77(2): 173-183. doi: 10.1016/j.fishres.2005.10.010
|
[28] |
马家志, 虞聪达, 郑基, 等. 北大西洋公海金枪鱼延绳钓渔具渔法及其性能调查研究[J]. 浙江海洋学院学报(自然科学版), 2015, 34(3): 287-292.
|
[29] |
栾松鹤, 戴小杰, 田思泉, 等. 中西太平洋金枪鱼延绳钓主要渔获物垂直结构的初步研究[J]. 海洋渔业, 2015, 37(6): 501-509. doi: 10.3969/j.issn.1004-2490.2015.06.003
|
[30] |
冯波, 龚超, 钟子超, 等. 南海金枪鱼延绳钓作业参数优化[J]. 渔业现代化, 2018, 45(4): 64-69. doi: 10.3969/j.issn.1007-9580.2018.04.010
|
[31] |
刘莉莉, 周成, 虞聪达, 等. 钓钩深度和浸泡时间对东太平洋公海长鳍金枪鱼延绳钓渔获性能的影响研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(1): 40-48.
|
[32] |
WAN R, HU F, TOKAI T, et al. A method for analyzing the static response of submerged rope systems based on a finite element method[J]. Fish Sci, 2002, 68(1): 65-70. doi: 10.1046/j.1444-2906.2002.00390.x
|
[33] |
万荣, 宋协法, 唐衍力, 等. 渔具模型空间形状的计测方法[J]. 水产学报, 2004, 28(4): 443-449.
|
[34] |
LEE J H, LEE C W, CHA B J. Dynamic simulation of tuna longline gear using numerical methods[J]. Fish Sci, 2005, 71(6): 1287-1294. doi: 10.1111/j.1444-2906.2005.01095.x
|
[35] |
张新峰, 胡夫祥, 许柳雄, 等. 网渔具计算机数值模拟的研究进展[J]. 海洋渔业, 2015, 37(3): 277-287. doi: 10.3969/j.issn.1004-2490.2015.03.011
|
[36] |
WAN R, CUI J H, SONG X F, et al. A numerical model for predicting the fishing operation status of tuna longlines[J]. 水产学报, 2005, 29(2): 238-245.
|
[37] |
周际. 印度洋金枪鱼延绳钓钓钩深度模型[D]. 上海: 上海海洋大学, 2008: 1-93.
|
[38] |
BALASH C, COLBOURNE B, BOSE N, et al. Aquaculture net drag force and added mass[J]. Aquacult Eng, 2009, 41(1): 14-21. doi: 10.1016/j.aquaeng.2009.04.003
|
[39] |
宋利明, 张智, 袁军亭, 等. 基于最小势能原理的延绳钓渔具作业状态数值模拟[J]. 中国水产科学, 2011, 18(5): 1170-1178.
|
[40] |
宋利明, 张智, 袁军亭, 等. 基于有限元分析的漂流延绳钓渔具作业状态数值模拟[J]. 海洋与湖沼, 2011, 42(2): 256-261. doi: 10.11693/hyhz201102014014
|
[41] |
ZHANG X F, CAO D M, SONG L M, et al. Application of whole-implicit algorithm and virtual neural lattice in pelagic longline modeling[C]//IEEE. 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, China, 2012: 2603-2606.
|
[42] |
CAO D M, SONG L M, LI J, et al. Determining the drag coeffcient of a cylinder perpendicular to waterflow by numerical simulation and field measurement[J]. Ocean Eng, 2014, 85(1): 93-99.
|
[43] |
SONG L M, LI J, XU W Y, et al. The dynamic simulation of the pelagic longline deployment[J]. Fish Res, 2015, 167(1): 280-292.
|
[44] |
SONG L M, QI Y K, LI J, et al. Dynamic simulation of pelagic longline retrieval[J]. J Ocean Univ China, 2019, 18(2): 455-466. doi: 10.1007/s11802-019-3990-7
|
[45] |
TRIANTAFYLLOU M S, HOWELL C T. Dynamic response of cables under negative tension: an ill-posed problem[J]. J Sound Vib, 1994, 173(4): 433-447. doi: 10.1006/jsvi.1994.1239
|
[46] |
FROST G, COSTELLO M. Improved deployment characteristics of a tether-connected munition system[J]. J Guid Control Dyn, 2001, 24(3): 547-554. doi: 10.2514/2.4745
|
[1] | SUI Liuyang, HUANG Xiaohua, LIU Haiyang, HU Yu, YUAN Taiping, WANG Shaomin, TAO Qiyou. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science, 2021, 17(4): 98-108. DOI: 10.12131/20210049 |
[2] | HU Xiaoliang, WANG Xichang, LI Yulin, WANG Yifen, SHEN Jian. Numerical simulation of temperature distribution during radio frequency tempering of pollack surimi based on dielectric properties[J]. South China Fisheries Science, 2018, 14(5): 95-102. DOI: 10.3969/j.issn.2095-0780.2018.05.012 |
[3] | LI Jie, YAN Lei, YANG Bingzhong, ZHANG Peng. Numerical simulation on untrammeled settlement process of falling-net[J]. South China Fisheries Science, 2017, 13(4): 105-114. DOI: 10.3969/j.issn.2095-0780.2017.04.013 |
[4] | HUANG Xiaohua, GUO Genxi, TAO Qiyou, HU Yu. Numerical simulation of the forces and deformation of HDPE circular gravity cages[J]. South China Fisheries Science, 2013, 9(5): 126-131. DOI: 10.3969/j.issn.2095-0780.2013.05.019 |
[5] | HUANG Xiaohua, GUO Genxi, HU Yu, TAO Qiyou, ZHANG Xiaoming. Numerical simulation of dynamic process of cylinder nets in current[J]. South China Fisheries Science, 2011, 7(3): 56-61. DOI: 10.3969/j.issn.2095-0780.2011.03.010 |
[6] | HU Yu, GUO Genxi, HUANG Xiaohua, TAO Qiyou, ZHANG Xiaoming. Simulation of flow field inside the net cleaning machine based on ANSYS[J]. South China Fisheries Science, 2010, 6(1): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.01.002 |
[7] | HUANG Xiaohua, GUO Genxi, TAO Qiyou, HU Yu. Numerical simulation of the force and deformation of submerged plane nets in current[J]. South China Fisheries Science, 2009, 5(3): 23-29. DOI: 10.3969/j.issn.1673-2227.2009.03.004 |
[8] | WANG Cong, LIN Jun, CHEN Pi-mao, ZHANG Shou-yu. Numerical simulation on water exchange in Daya Bay[J]. South China Fisheries Science, 2008, 4(4): 8-15. |
[9] | WANG Hong, CHEN Pimao, JIA Xiaoping, ZHANG Shouyu, TANG Zhenchao, YU Jing, TAO Feng. Advance in the research on water exchange in the sea area[J]. South China Fisheries Science, 2008, 4(2): 75-80. |
[10] | CUI He, LIU Qun, WANG Yanjun. Application of a continuous Fox-form production model in fishery stock assessment[J]. South China Fisheries Science, 2008, 4(2): 34-42. |
1. |
宋利明,李轶婷. 基于龙格库塔法的漂流延绳钓沉降过程数值模拟. 中国水产科学. 2022(01): 157-169 .
![]() | |
2. |
周胜杰,杨蕊,于刚,马振华,孟祥君. 美济礁附近海域3种金枪鱼肌肉成分检测与营养评价. 南方水产科学. 2021(02): 51-59 .
![]() | |
3. |
宋利明,许回. 金枪鱼延绳钓渔获性能研究进展. 中国水产科学. 2021(07): 925-937 .
![]() |