Citation: | SONG Liming, LI Yiting. Research progress of mechanical property of tuna longline gear[J]. South China Fisheries Science, 2020, 16(2): 121-127. DOI: 10.12131/20190183 |
The mechanical property of longline gear affects fishing efficiency and energy consumption directly. The paper summarizes relevant research methods and progress on the mechanical property of tuna longline gear, including the initial measurement at sea, the model test in the flume tank, and the numerical simulation. Results show that: 1) the theoretical analysis of mechanical property of longline gear have developed from static analysis to dynamic analysis; 2) the model test of longline could only be carried out on a small scale in order to verify the accuracy of numerical simulation analysis under specific circumstances; 3) the perpendicular drag coefficient (CN90) and inertia coefficient (Cm) were determined to be 1.12 and 3, respectively. It is suggested that the future studies on longline gear mechanical property should: 1) foucus on the effects of the stiffness and damping of fishing gear materials on the numerical simulation accuracy; 2) combine the behavioral characteristics of tuna to study the hydrodynamic force after hooking and take it into account in the model, so that the model can match the actual operation state; 3) further numerically simulate the interaction among the fishing gear, current, fishing boat, line hauler and catches.
[1] |
宋利明. 渔具测试[M]. 北京: 中国农业出版社, 2017: 85-88.
|
[2] |
官文江, 朱江峰, 高峰. 印度洋长鳍金枪鱼资源评估的影响因素分析[J]. 中国水产科学, 2018, 25(5): 1102-1114.
|
[3] |
官文江, 朱江峰, 田思泉. 应用贝叶斯生物量动态模型评估印度洋黄鳍金枪鱼资源[J]. 中国水产科学, 2018, 25(3): 621-631.
|
[4] |
SANTOS R C, SILVA-COSTA A, SANT'ANA R A, et al. Improved line weighting reduces seabird bycatch without affecting fish catch in the Brazilian pelagic longline fishery[J]. Aquat Conserv, 2019, 29(3): 442-449. doi: 10.1002/aqc.3002
|
[5] |
TASKER M. Educational and training material for use in reducing seabird by catch[C]//Indian Ocean Tuna Commission, Victoria, Seychelles. 2nd Session of The Working Party on Environment and Bycatch. IOTC-2006-WPBy-INF05, 2006:1-2.
|
[6] |
邵化斌. 海洋动物保护的国际管理机制研究[D]. 上海: 上海海洋大学, 2018: 1-4.
|
[7] |
庄之栋. 大西洋金枪鱼延绳钓重要兼捕种类的生物学研究[D]. 上海: 上海海洋大学, 2011: 1-8.
|
[8] |
姜润林, 戴小杰, 许柳雄. 热带大西洋金枪鱼延绳钓兼捕鲨鱼种类组成和渔获率及其与表温的关系[J]. 海洋渔业, 2009, 31(4): 389-394. doi: 10.3969/j.issn.1004-2490.2009.04.008
|
[9] |
杨胜龙, 张忭忭, 唐宝军, 等. 基于GAM模型分析水温垂直结构对热带大西洋大眼金枪鱼渔获率的影响[J]. 中国水产科学, 2017, 24(4): 875-883.
|
[10] |
周成. 东太平洋公海长鳍金枪鱼延绳钓渔获特征的研究[C]//中国水产学会, 四川省水产学会. 2016年中国水产学会学术年会论文摘要集, 2016: 438-439.
|
[11] |
BEVERLY S, CURRAN D, MUSYL M, et al. Effects of eliminating shallow hooks from tuna longline sets on target and non-target species in the Hawaii-based pelagic tuna fishery[J]. Fish Res, 2009, 96(2/3): 281-288.
|
[12] |
刘勇, 程家骅. 渔业多鱼种综合开捕网目尺寸和捕捞努力量管理目标确定方法探讨[J]. 渔业科学进展, 2015, 36(6): 1-7. doi: 10.11758/yykxjz.20150601
|
[13] |
许友伟, 戴小杰, 陈作志. 大西洋延绳钓渔获物常见种类的生态风险评估[J]. 上海海洋大学学报, 2015, 24(3): 441-448.
|
[14] |
曹道梅. 金枪鱼延绳钓渔具动力学模拟[D]. 上海: 上海海洋大学, 2011: 16-28.
|
[15] |
BOGGS C H. Depth, capture time, and hooked longevity of longline caught pelagic fish[J]. Fish Bull, 1992, 90(4): 642-658.
|
[16] |
MIZUNO K, OKAZAKI M, NAKANO H, et al. Estimation of underwater shape of tuna longline by using micro-BTs[J]. Bull Nat Res Ins Far Seas Fish, 1997, 34(1): 1-24.
|
[17] |
MIZUNO K, OKAZAKI M, MIYABE N. Fluctuation of longline shortening rate and its effect on underwater longline shape[J]. Bull Nat Res Ins Far Seas Fish, 1998, 35(1): 155-164.
|
[18] |
MIYAMOTO Y, UCHIDA K, ORII R, et al. Three-dimensional underwater shape measurement of tuna longline using ultrasonic positioning system and ORBCOMM buoy[J]. Fish Sci, 2006, 72(1): 63-68. doi: 10.1111/j.1444-2906.2006.01117.x
|
[19] |
宋利明, 高攀峰. 马尔代夫海域延绳钓渔场大眼金枪鱼的钓获水层、水温和盐度[J]. 水产学报, 2006, 30(3): 335-340.
|
[20] |
BACH P, GAERTNER D, MENKES C, et al. Effects of the gear deployment strategy and current shear on pelagic longline shoaling[J]. Fish Res, 2009, 95(1): 55-64. doi: 10.1016/j.fishres.2008.07.009
|
[21] |
张艳波, 戴小杰, 朱江峰, 等. 东南太平洋金枪鱼延绳钓主要渔获种类垂直分布[J]. 应用生态学报, 2015, 26(3): 912-918.
|
[22] |
沈智宾. 金枪鱼延绳钓渔具作业过程数值模拟[D]. 上海: 上海海洋大学, 2016: 11-14.
|
[23] |
李杰, 晏磊, 杨炳忠, 等. 罩网兼作金枪鱼延绳钓的钓钩深度与渔获水层分析[J]. 海洋渔业, 2018, 40(6): 660-669. doi: 10.3969/j.issn.1004-2490.2018.06.003
|
[24] |
BIGELOW K A, HAMPTON J, MIYABE N. Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus)[J]. Fish Oceanogr, 2002, 11(3): 143-155. doi: 10.1046/j.1365-2419.2002.00196.x
|
[25] |
吴因文, 吴殷书. 悬链线和抛物线理论在金枪鱼延绳钓渔业中的应用[J]. 海洋渔业, 2005, 27(1): 1-9. doi: 10.3969/j.issn.1004-2490.2005.01.001
|
[26] |
LEE C W, LEE J H, CHA B J, et al. Physical modeling for underwater flexible systems dynamic simulation[J]. Ocean Eng, 2005, 32(3/4): 331-347.
|
[27] |
BIGELOW K, MUSYL M K, POISSON F, et al. Pelagic longline gear depth and shoaling[J]. Fish Res, 2006, 77(2): 173-183. doi: 10.1016/j.fishres.2005.10.010
|
[28] |
马家志, 虞聪达, 郑基, 等. 北大西洋公海金枪鱼延绳钓渔具渔法及其性能调查研究[J]. 浙江海洋学院学报(自然科学版), 2015, 34(3): 287-292.
|
[29] |
栾松鹤, 戴小杰, 田思泉, 等. 中西太平洋金枪鱼延绳钓主要渔获物垂直结构的初步研究[J]. 海洋渔业, 2015, 37(6): 501-509. doi: 10.3969/j.issn.1004-2490.2015.06.003
|
[30] |
冯波, 龚超, 钟子超, 等. 南海金枪鱼延绳钓作业参数优化[J]. 渔业现代化, 2018, 45(4): 64-69. doi: 10.3969/j.issn.1007-9580.2018.04.010
|
[31] |
刘莉莉, 周成, 虞聪达, 等. 钓钩深度和浸泡时间对东太平洋公海长鳍金枪鱼延绳钓渔获性能的影响研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(1): 40-48.
|
[32] |
WAN R, HU F, TOKAI T, et al. A method for analyzing the static response of submerged rope systems based on a finite element method[J]. Fish Sci, 2002, 68(1): 65-70. doi: 10.1046/j.1444-2906.2002.00390.x
|
[33] |
万荣, 宋协法, 唐衍力, 等. 渔具模型空间形状的计测方法[J]. 水产学报, 2004, 28(4): 443-449.
|
[34] |
LEE J H, LEE C W, CHA B J. Dynamic simulation of tuna longline gear using numerical methods[J]. Fish Sci, 2005, 71(6): 1287-1294. doi: 10.1111/j.1444-2906.2005.01095.x
|
[35] |
张新峰, 胡夫祥, 许柳雄, 等. 网渔具计算机数值模拟的研究进展[J]. 海洋渔业, 2015, 37(3): 277-287. doi: 10.3969/j.issn.1004-2490.2015.03.011
|
[36] |
WAN R, CUI J H, SONG X F, et al. A numerical model for predicting the fishing operation status of tuna longlines[J]. 水产学报, 2005, 29(2): 238-245.
|
[37] |
周际. 印度洋金枪鱼延绳钓钓钩深度模型[D]. 上海: 上海海洋大学, 2008: 1-93.
|
[38] |
BALASH C, COLBOURNE B, BOSE N, et al. Aquaculture net drag force and added mass[J]. Aquacult Eng, 2009, 41(1): 14-21. doi: 10.1016/j.aquaeng.2009.04.003
|
[39] |
宋利明, 张智, 袁军亭, 等. 基于最小势能原理的延绳钓渔具作业状态数值模拟[J]. 中国水产科学, 2011, 18(5): 1170-1178.
|
[40] |
宋利明, 张智, 袁军亭, 等. 基于有限元分析的漂流延绳钓渔具作业状态数值模拟[J]. 海洋与湖沼, 2011, 42(2): 256-261. doi: 10.11693/hyhz201102014014
|
[41] |
ZHANG X F, CAO D M, SONG L M, et al. Application of whole-implicit algorithm and virtual neural lattice in pelagic longline modeling[C]//IEEE. 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, China, 2012: 2603-2606.
|
[42] |
CAO D M, SONG L M, LI J, et al. Determining the drag coeffcient of a cylinder perpendicular to waterflow by numerical simulation and field measurement[J]. Ocean Eng, 2014, 85(1): 93-99.
|
[43] |
SONG L M, LI J, XU W Y, et al. The dynamic simulation of the pelagic longline deployment[J]. Fish Res, 2015, 167(1): 280-292.
|
[44] |
SONG L M, QI Y K, LI J, et al. Dynamic simulation of pelagic longline retrieval[J]. J Ocean Univ China, 2019, 18(2): 455-466. doi: 10.1007/s11802-019-3990-7
|
[45] |
TRIANTAFYLLOU M S, HOWELL C T. Dynamic response of cables under negative tension: an ill-posed problem[J]. J Sound Vib, 1994, 173(4): 433-447. doi: 10.1006/jsvi.1994.1239
|
[46] |
FROST G, COSTELLO M. Improved deployment characteristics of a tether-connected munition system[J]. J Guid Control Dyn, 2001, 24(3): 547-554. doi: 10.2514/2.4745
|
[1] | LI Jiangtao, ZHANG Yanqiu, ZHANG Hong, LIU Chun, QIU Xiaolong, CHEN Ming, FANG Junchao, QIU Xiaotong, LIN Li, LYU Xiaojing. Effects of density stress on swimming behavior and muscle energy metabolism of Micropterus salmoides[J]. South China Fisheries Science, 2024, 20(2): 102-110. DOI: 10.12131/20230176 |
[2] | BAO Junjie, WANG Yongjie, CHEN Honglian, SUN Wen, ZHANG Jing, ZHOU Beibei. Untargeted metabolomics analysis of metabolic differences of crayfish (Procambarus clarkii) meat with different diets[J]. South China Fisheries Science, 2023, 19(5): 104-112. DOI: 10.12131/20230055 |
[3] | CHEN Zhizhao, ZHU Tao, LEI Caixia, JIANG Peng, DU Jinxing, ZHU Junjie, SONG Hongmei, LI Shengjie. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates[J]. South China Fisheries Science, 2023, 19(5): 75-85. DOI: 10.12131/20230020 |
[4] | LIU Jiaxing, GUO Huayang, ZHU Kecheng, LIU Baosuo, ZHANG Nan, XIAN Lin, ZHANG Dianchang. Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2023, 19(4): 116-125. DOI: 10.12131/20230030 |
[5] | CHEN Li, XU Jiaxin, LI Liujia, ZHAO Chengfa, LONG Xiaowen. Effects of dietary fishmeal replacement by Periplaneta americana meal on biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss[J]. South China Fisheries Science, 2023, 19(4): 86-97. DOI: 10.12131/20220208 |
[6] | LIU Guangxin, DONG Yanjun, ZHAO Lijuan, DENG Yiqin, CHENG Changhong, MA Hongling, JIANG Jianjun, FENG Juan, GUO Zhixun, LIN Li. Sequencing of whole genome of Bacillus velezensis LG37 and screening of inorganic nitrogen metabolism candidate genes[J]. South China Fisheries Science, 2022, 18(3): 57-67. DOI: 10.12131/20210149 |
[7] | ZHANG Guilin, ZHANG Yating, JIANG Hong, LIU Zhen, MAO Xiangzhao. Metabolic engineering synthesis of neoxanthin, a key precursor of fucoxanthin[J]. South China Fisheries Science, 2022, 18(2): 57-65. DOI: 10.12131/20210316 |
[8] | SUN Caiyun, DONG Hongbiao, WANG Wenhao, LI Yong, GU Qunhong, DUAN Yafei, ZHANG Jiasong, XU Xiaodong. Effects of glycerol monolaurate on lipid metabolism of Lateolabrax maculatus[J]. South China Fisheries Science, 2021, 17(1): 67-75. DOI: 10.12131/20200130 |
[9] | CHEN Zicong, CHEN Pimao, YUAN Huarong, FENG Xue, TONG Fei, ZHANG Haoming. Study on respiratory metabolism changes of juvenile Penaeus monodon following strenuous activity[J]. South China Fisheries Science, 2020, 16(4): 75-83. DOI: 10.12131/20200017 |
[10] | LIU Yong, SHI Kuntao, ZHANG Shaohua, YUAN Yongdang. Advancement of respiratory metabolism study in bivalve mollusus[J]. South China Fisheries Science, 2007, 3(4): 65-69. |
1. |
田思泉,柳晓雪,花传祥,王寅,杜涣洋. 南海渔业资源状况及其管理挑战. 上海海洋大学学报. 2024(03): 786-798 .
![]() | |
2. |
刘子凯,许友伟,蔡研聪,孙铭帅,张魁,陈作志. 基于长度数据的南海北部深水金线鱼资源评估. 南方水产科学. 2024(04): 24-33 .
![]() | |
3. |
张曼,王雪辉,王淼娣,杜飞雁,孙典荣,王亮根,王跃中,许柳雄,邱永松. 基于长度贝叶斯生物量估算法的北部湾带鱼资源评估. 海洋学报. 2022(01): 11-21 .
![]() | |
4. |
李亚男,杨炳忠,张鹏,李杰,王腾,晏磊. 南海北部拖网对蓝圆鲹的选择性研究. 南方水产科学. 2022(03): 170-176 .
![]() | |
5. |
史登福,张魁,蔡研聪,许友伟,孙铭帅,徐姗楠,朱江峰,陈作志. 数据有限条件下珠江口棘头梅童鱼资源状况评估. 海洋渔业. 2022(04): 435-445 .
![]() | |
6. |
崔明远,田思泉,麻秋云,范青松. 基于单位补充量模型的浙江南部海域蓝圆鲹资源评价. 水产科学. 2022(05): 727-737 .
![]() | |
7. |
王薇,陈国宝,牛麓连. 不同捕捞方式下南海北部海域鲹类渔场的时空分布. 广东海洋大学学报. 2022(06): 74-80 .
![]() | |
8. |
粟丽,陈作志,张魁,许友伟,邱永松. 基于底拖网调查数据的渔业资源质量状况评价体系构建——以北部湾为例. 广东海洋大学学报. 2021(01): 10-16 .
![]() | |
9. |
邓裕坚,易木荣,李波,刘思杓,邱康文,沈春燕,何雄波,颜云榕. 北部湾春季多齿蛇鲻生物学特征及其年际变化. 渔业科学进展. 2021(02): 36-44 .
![]() | |
10. |
何雄波,李波,王锦溪,易木荣,康斌,颜云榕. 不同时期北部湾日本带鱼营养生态位差异. 应用生态学报. 2021(02): 683-690 .
![]() | |
11. |
王开立,陈作志,许友伟,孙铭帅,王欢欢,蔡研聪,张魁,徐姗楠. 南海北部近海蓝圆鲹渔业生物学特征研究. 海洋渔业. 2021(01): 12-21 .
![]() | |
12. |
吴新燕,梁宏伟,罗相忠,沙航,邹桂伟. 不同月龄长丰鲢形态性状对体质量的影响. 南方水产科学. 2021(03): 62-69 .
![]() | |
13. |
史登福,许友伟,孙铭帅,黄梓荣,陈作志,张魁. 广东海洋渔业资源可捕量评估. 海洋渔业. 2021(05): 521-531 .
![]() | |
14. |
熊朋莉,陈作志,侯刚,张帅,邱永松,范江涛,徐姗楠. 珠江河口棘头梅童鱼生物学特征的年代际变化. 南方水产科学. 2021(06): 31-38 .
![]() | |
15. |
朱书礼,李跃飞,武智,李捷,夏雨果,杨计平,李新辉. 基于体长频率数据的西江封开段赤眼鳟可捕规格与资源保护研究. 南方水产科学. 2020(04): 1-7 .
![]() | |
16. |
洪小帆,张俊,江艳娥,蔡研聪,杨玉滔,王欢欢,李纲,陈作志. 南海西沙群岛琛航岛犬牙锥齿鲷生物学特征. 生态学杂志. 2020(10): 3320-3331 .
![]() | |
17. |
史登福,张魁,蔡研聪,耿平,许友伟,孙铭帅,陈作志. 南海北部带鱼群体结构及生长、死亡和性成熟参数估计. 南方水产科学. 2020(05): 51-59 .
![]() | |
18. |
崔明远,陈伟峰,戴黎斌,麻秋云. 浙江南部海域蓝圆鲹生长异质性及死亡特征. 中国水产科学. 2020(12): 1427-1437 .
![]() | |
19. |
李忠炉,张文旋,何雄波,颜云榕. 南海北部湾秋季蓝圆鲹与竹筴鱼的摄食生态及食物竞争. 广东海洋大学学报. 2019(03): 79-86 .
![]() | |
20. |
王言丰,余景,陈丕茂,于杰,刘祝楠. 北部湾灯光罩网渔场时空分布与海洋环境关系分析. 热带海洋学报. 2019(05): 68-76 .
![]() |