ZHANG Jiarong, YANG Xiaoming, DAI Xiaojie, ZOU Lijin. Relationship between catch rate of longline albacore (Thunnus alalunga) and environmental factors in South Pacific[J]. South China Fisheries Science, 2020, 16(1): 69-77. DOI: 10.12131/20190178
Citation: ZHANG Jiarong, YANG Xiaoming, DAI Xiaojie, ZOU Lijin. Relationship between catch rate of longline albacore (Thunnus alalunga) and environmental factors in South Pacific[J]. South China Fisheries Science, 2020, 16(1): 69-77. DOI: 10.12131/20190178

Relationship between catch rate of longline albacore (Thunnus alalunga) and environmental factors in South Pacific

More Information
  • Received Date: September 08, 2019
  • Revised Date: October 24, 2019
  • Available Online: December 02, 2019
  • Based on the data of albacore logbook (Thunnus alalunga) collected by mainland China from 2015–2017 in the South Pacific and the marine environmental data in the same period, we analyzed the relationship between catch rate and environmental factors, so as to examine the effects of environmental factors at different depths on T. alalunga by establishing a GAM (Generalized additive model). In addition, we had obtained the correlation coefficient of each environmental factor (those with large correlation were grouped and modeled) by correlation analysis. The results show that: 1) Sea surface temperature and sea temperature at depth of 120 m, sea surface temperature and sea surface height, sea temperature at depth of 120 m and sea surface height, sea temperature and sea salinity at depth of 300 m were highly correlated factors. However, sea surface salinity, chlorophyll a concentration and northward sea surface wind had no significant correlation with the other environmental factors. 2) The explained cumulative deviance was 30%–40%; the environmental factors sorted by importance are as follows: sea temperature at depth of 120 m, sea surface temperature, sea temperature at depth of 300 m, sea salinity at depth of 120 m, sea surface height, sea salinity at depth of 300 m, sea surface salinity, mixed layer depth, northward sea surface wind, eastward sea surface wind and chlorophyll a concentration. 3) The sea temperature at depth of 120 m was negatively correlated with CPUE (Catch per unit effort) at 15–30 ℃. The trend of sea surface temperature was similar to the sea temperature at depth of 120 m, with a positive correlation at 25–28 ℃. The sea temperature at depth of 300 m and CPUE showed a significant positive relationship at 10–18 ℃.
  • [1]
    TREMBLAY B L, HAMPTON J, MCKECHNIE S, et al. Stock assessment of South Pacific albacore tuna (WCPFC-SC14-2018/SA-WP-05)[R]. Busan, Republic of Korea: The Pacific Community (SPC), 2018: 13.
    [2]
    BRIAND K, MOLONY B, LEHODEY P. A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean[J]. Fish Oceanogra, 2011, 20(6): 517-529. doi: 10.1111/j.1365-2419.2011.00599.x
    [3]
    宋利明, 谢凯, 赵海龙, 等. 库克群岛海域海洋环境因子对长鳍金枪鱼渔获率的影响[J]. 海洋通报, 2017(1): 96-106. doi: 10.11840/j.issn.1001-6392.2017.01.013
    [4]
    NIKOLIC N, MORANDEAU G, HOARAU L, et al. Review of albacore tuna, Thunnus alalunga, biology, fisheries and management[J]. Rev Fish Biol Fish, 2017, 27: 775-810. doi: 10.1007/s11160-016-9453-y
    [5]
    SAGARMINAGA Y, ARRIZABALAGA H. Spatio-temporal distribution of albacore (Thunnus alalunga) catches in the northeastern Atlantic: relationship with the thermal environment[J]. Fish Oceanogr, 2010, 19(2): 121-134. doi: 10.1111/j.1365-2419.2010.00532.x
    [6]
    DOMOKOS R, SEKI M P, POLOVINA J J, et al. Oceanographic investigation of the American Samoa albacore (Thunnus alalunga) habitat and longline fishing grounds[J]. Fish Oceanogr, 2007, 16(6): 555-572. doi: 10.1111/j.1365-2419.2007.00451.x
    [7]
    毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34-43.
    [8]
    闫敏, 张衡, 伍玉梅, 等. 基于GAM模型研究时空及环境因子对南太平洋长鳍金枪鱼渔场的影响[J]. 大连海洋大学学报, 2015, 30(6): 681-685.
    [9]
    GONI N, DIDOUAN C, ARRIZABALAGA H, et al. Effect of oceanographic parameters on daily albacore catches in the Northeast Atlantic[J]. Deep-Sea Res II, 2015, 113: 73-80.
    [10]
    杨胜龙, 张忭忭, 唐宝军, 等. 基于GAM模型分析水温垂直结构对热带大西洋大眼金枪鱼渔获率的影响[J]. 中国水产科学, 2017, 24(4): 875-883.
    [11]
    王茹琳, 李庆, 封传红, 等. 基于MaxEnt的西藏飞蝗在中国的适生区预测[J]. 生态学报, 2017, 37(24): 8556-8566.
    [12]
    周兆丁, 吕锟, 沈瑾, 等. 统计软件SPSS相关分析及应用[J]. 电脑知识与技术, 2019, 15(20): 301-302.
    [13]
    徐国强, 朱文斌, 张洪亮, 等. 基于GAM模型分析印度洋大眼金枪鱼和黄鳍金枪鱼渔场分布与不同环境因子关系[J]. 海洋学报, 2018, 40(12): 70-82.
    [14]
    VENABLES W N, DICHMONT C M. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research[J]. Fish Res, 2004, 70(2/3): 319-337.
    [15]
    王军, 傅伯杰, 邱扬, 等. 黄土丘陵小流域土壤水分的时空变异特征——半变异函数[J]. 地理学报, 2000, 55(4): 428-438. doi: 10.3321/j.issn:0375-5444.2000.04.005
    [16]
    朱耿平, 刘强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种的潜在分布[J]. 生物多样性, 2014, 22(2): 223-230.
    [17]
    YANG X Q, KUSHWAHA S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51: 83-87. doi: 10.1016/j.ecoleng.2012.12.004
    [18]
    CHEN I C, LEE P F, TZENG W N. Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors[J]. Fish Oceanogr, 2005, 14(1): 71-80. doi: 10.1111/j.1365-2419.2004.00322.x
    [19]
    LAN K W, KAWAMURA H, LEE M A, et al. Relationship between albacore (Thunnus alalunga) fishing grounds in the Indian Ocean and the thermal environment revealed by cloud-free microwave sea surface temperature[J]. Fish Res, 2012, 113(1): 1-7. doi: 10.1016/j.fishres.2011.08.017
    [20]
    储宇航, 戴小杰, 田思泉, 等. 南太平洋延绳钓长鳍金枪鱼生物学组成及其与栖息环境关系[J]. 海洋渔业, 2016, 38(2): 130-139. doi: 10.3969/j.issn.1004-2490.2016.02.003
    [21]
    樊伟, 张晶, 周为峰. 南太平洋长鳍金枪鱼延绳钓渔场与海水表层温度的关系分析[J]. 大连水产学院学报, 2007, 22(5): 366-371.
    [22]
    郭刚刚, 张胜茂, 樊伟, 等. 南太平洋长鳍金枪鱼垂直活动水层空间分析[J]. 南方水产科学, 2016, 12(5): 123-130. doi: 10.3969/j.issn.2095-0780.2016.05.016
    [23]
    HOYLE S, LANGLEY A, HAMPTON J. Stock assessment of albacore tuna in the south Pacific Ocean (WCPFC-SC4-2008/SA-WP-8)[R]. Port Moresby, Papua New Guinea: The Pacific Community (SPC), 2008: 7.
    [24]
    WILLIAMS A J, ALLAIN V, NICOL S J, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean[J]. Deep-Sea Res II, 2015, 113: 154-169.
    [25]
    范永超, 戴小杰, 朱江峰, 等. 南太平洋长鳍金枪鱼延绳钓渔业CPUE标准化[J]. 海洋湖沼通报, 2017(1): 122-132.
    [26]
    蒋汉凌.南太平洋长鳍金枪鱼渔场与环境因素关系的研究[D]. 上海: 上海海洋大学, 2014: 29.
    [27]
    宋婷婷, 樊伟, 伍玉梅. 卫星遥感海面高度数据在渔场分析中的应用综述[J]. 海洋通报, 2013, 32(4): 474-480. doi: 10.11840/j.issn.1001-6392.2013.04.017
    [28]
    杨晓明, 王学昉, 田思泉, 等. 赤道太平洋中部围网自由群的空间点模式的影响因子[J]. 水产学报, 2018, 42(8): 1220-1228.
    [29]
    SAGARMINAGA Y, ARRIZABALAGA H. Relationship of Northeast Atlantic albacore juveniles with surface thermal and chlorophyll-a fronts[J]. Deep-Sea Res II, 2014, 107: 54-63.
    [30]
    赖诗涵.中西太平洋鲔延绳钓黄鳍鲔潜在栖地分布与预测模式建置之研究[D]. 基隆: 国立台湾海洋大学, 2018: 18.
    [31]
    BAKUN A, BLACK B A, BOGRAD S J, et al. Anticipated effects of climate change on coastal upwelling ecosystems[J]. Curr Clim Change Rep, 2015, 1(2): 85-93. doi: 10.1007/s40641-015-0008-4
    [32]
    陈芃, 陈新军, 雷林. 秘鲁上升流对秘鲁鳀渔场的影响[J]. 水产学报, 2018, 36(9): 1367-1377.
  • Related Articles

    [1]ZHONG Zhanyou, DENG Hong, KOU Chunni, CHEN Weitao, WU Zhi, LI Yuefei, XIA Yuguo, LI Huifeng, LI Jie, ZHU Shuli. Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology[J]. South China Fisheries Science, 2025, 21(2): 47-58. DOI: 10.12131/20240173
    [2]CHEN Weitao, DUAN Xinbin, GAO Lei, LI Xinhui, YANG Jiping, WANG Dengqiang. Genetic structure analysis of Ochetobius elongatus between Yangtze River and Pearl River using multiple loci[J]. South China Fisheries Science, 2022, 18(6): 19-25. DOI: 10.12131/20220007
    [3]WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019
    [4]XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131
    [5]ZHU Shuli, LI Yuefei, WU Zhi, LI Jie, XIA Yuguo, YANG Jiping, LI Xinhui. Research on catchable size and resource protection of Squaliobarbus curriculus in Xijiang River Fengkai section based on length-frequency data[J]. South China Fisheries Science, 2020, 16(4): 1-7. DOI: 10.12131/20190231
    [6]ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042
    [7]KUANG Tianxu, SHUAI Fangmin, CHEN Weitao, LI Xinhui. Genetic diversity and population structure of Carassius auratus in Xijiang River[J]. South China Fisheries Science, 2018, 14(5): 29-35. DOI: 10.3969/j.issn.2095-0780.2018.05.004
    [8]YANG Xishu, ZHANG Qun, YÜ Fanyang, LV Jinlei, DI Xiaodan, SHAO Junwei, HUANG Zhenyu, LU Lifeng. MtDNA ND2 sequence-based genetic analysis of Anabas testudineus from South China and Lancang/Mekong River[J]. South China Fisheries Science, 2017, 13(3): 43-50. DOI: 10.3969/j.issn.2095-0780.2017.03.006
    [9]WU Zhi, TAN Xichang, LI Xinhui, TANG Yong. Acoustic monitoring on fish resources in Xijiang section of Pearl River during first closed fishing season[J]. South China Fisheries Science, 2014, 10(3): 24-28. DOI: 10.3969/j.issn.2095-0780.2014.03.004
    [10]ZHU Shuli, LI Xinhui, LI Yuefei, WANG Chao, YANG Jiping, LI Lin. Age and growth of Spualiobarbus curriculus from Zhaoqing Guangdong Section of Xijiang River[J]. South China Fisheries Science, 2013, 9(2): 27-31. DOI: 10.3969/j.issn.2095-0780.2013.02.005
  • Cited by

    Periodical cited type(9)

    1. 邓洪,钟占友,寇春妮,朱书礼,李跃飞,夏雨果,武智,李捷,陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史. 生物多样性. 2025(01): 97-106 .
    2. 詹华伟,叶树政,陈锭娴,王凯丰,刘兰苑,龚剑,韩崇,李强. 基于线粒体Cytb序列的广东地区大刺鳅群体遗传多样性分析. 湖南农业科学. 2024(03): 1-6 .
    3. 刘童,王英俊,吴莹莹,邹琰,吕芳,吴海一,李建民,宋爱环. 魁蚶3个群体及杂交子代遗传多样性分析. 水产科学. 2024(04): 561-570 .
    4. 邓树庆,蔡杏伟,王韩,符成慧,张清凤,申志新,李高俊,李芳远. 保亭近腹吸鳅遗传多样性及保护建议. 热带生物学报. 2024(04): 419-426 .
    5. 王吉祥,刘凯,王永杰,刘彦斌,刘嘉成,王彩雯,肖伟,连总强,王玉涛. 黄河宁夏段黄河鮈群体的遗传多样性与系统发育分析. 基因组学与应用生物学. 2024(07): 1248-1259 .
    6. 卞玉玲,刘士力,刘一诺,贾永义,李飞,迟美丽,郑建波,程顺,顾志敏. 湖州河川沙塘鳢群体线粒体DNA cyt b基因序列的遗传多样性分析. 水产学杂志. 2023(01): 22-28+35 .
    7. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体nad1基因的大理州亚洲带绦虫遗传多样性分析. 热带医学杂志. 2023(03): 301-304 .
    8. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体12S rRNA基因对大理州亚洲带绦虫遗传多样性的分析. 中国人兽共患病学报. 2023(08): 784-788 .
    9. 范嗣刚,黄皓,王鹏飞,闫路路,赵超,张博,邱丽华. 基于cox1序列的中国6个花鲈野生群体遗传多样性. 广东海洋大学学报. 2022(03): 11-17 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return