YUAN Yumei, SHI Cunbin, TAO Jiafa, ZHANG Defeng, SUN Chengwen, GONG Hua, HUANG Zhibin, LAI Yingtiao. Preparation and immunogenicity of Lactococcus lactis vaccine expressing Sip-Pgk fusion protein of Streptococcus agalactiae isolated from tilapia[J]. South China Fisheries Science, 2019, 15(6): 9-18. DOI: 10.12131/20190092
Citation: YUAN Yumei, SHI Cunbin, TAO Jiafa, ZHANG Defeng, SUN Chengwen, GONG Hua, HUANG Zhibin, LAI Yingtiao. Preparation and immunogenicity of Lactococcus lactis vaccine expressing Sip-Pgk fusion protein of Streptococcus agalactiae isolated from tilapia[J]. South China Fisheries Science, 2019, 15(6): 9-18. DOI: 10.12131/20190092

Preparation and immunogenicity of Lactococcus lactis vaccine expressing Sip-Pgk fusion protein of Streptococcus agalactiae isolated from tilapia

More Information
  • Received Date: April 21, 2019
  • Revised Date: July 14, 2019
  • Accepted Date: September 08, 2019
  • Available Online: September 02, 2019
  • In order to develop a more effective Oreochromis sp. oral vaccine of Streptococcus agalactiae, we constructed a recombinant plasmid pNZ8148-sip-pgk which expressed Sip-Pgk fusion protein of S. agalactiae by using homologous recombination, and Lactococcus lactis NZ9000 pNZ8148-sip-pgk was obtained by electrotransformation of L. lactis NZ9000. The Sip-Pgk fusion protein was induced by nisin and tested by Western blot so that a Sip-Pgk fusion protein Lactobacillus oral vaccine was prepared. The tilapia was vaccinated orally by gavage with recombinant L. lactis NZ9000 pNZ8148-sip-pgk for twice or three times. ELISA was used to detect the level of serum antibody after immunization, and the relative immune protection rate was obtained by intraperitoneal injection of S. agalactis on the 18th day after immunization. The results show that the inducible protein size of the constructed recombinant Lactobacillus was 92 kD, which was consistent with the size of the target protein. Compared with the second immunization, the third immunization with the fusion protein Lactobacillus vaccine could significantly improve the serum antibody level of tilapia and the immune protection against S. agalactiae. The serum level of Lactobacillus vaccine immunized with three times Sip-Pgk fusion protein was significantly higher than that of single protein group and PBS group, with the highest relative immune protection rate of 45.56%.

  • [1]
    杜娟娟, 董浚键, 叶星, 等. 尼罗罗非鱼Siglec-4b like基因的克隆与表达特性分析[J]. 南方水产科学, 2016, 12(1): 67-76. doi: 10.3969/j.issn.2095-0780.2016.01.010
    [2]
    卢迈新. 罗非鱼链球菌病研究进展[J]. 南方水产, 2010, 6(1): 75-79. doi: 10.3969/j.issn.1673-2227.2010.01.013
    [3]
    王慧芝, 车斌, 陈国平. 中国罗非鱼出口现状及应对措施[J]. 山西农业科学, 2010, 38(8): 81-83. doi: 10.3969/j.issn.1002-2481.2010.08.22
    [4]
    张红燕, 袁永明, 贺艳辉, 等. 中国罗非鱼产品出口贸易特点及展望[J]. 农业展望, 2017, 13(9): 104-107. doi: 10.3969/j.issn.1673-3908.2017.09.020
    [5]
    廖静, 罗茵. 《中国罗非鱼产业发展报告》预测我国罗非鱼产量有望超1000万吨[J]. 海洋与渔业, 2017(12): 46.
    [6]
    谢云丹, 冯娟, 刘婵, 等. 自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析[J]. 南方水产科学, 2019, 15(2): 47-57. doi: 10.12131/20180185
    [7]
    吴南, 郭佳, 熊丽, 等. 罗非鱼链球菌病疫苗的研究进展[J]. 南方水产科学, 2013, 9(6): 90-96. doi: 10.3969/j.issn.2095-0780.2013.06.015
    [8]
    SUANYUK N, KONG F R, KO D, et al. Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand: relationship to human isolates?[J]. Aquaculture, 2008, 284(1/2/3/4): 35-40.
    [9]
    辛年香, 蔡延渠. 鱼类链球菌病的研究进展[J]. 科学养鱼, 2017(9): 61-63.
    [10]
    陆英杰, 赖达光, 田鑫江, 等. 罗非鱼海豚链球菌的分离鉴定及药敏试验[J]. 广东农业科学, 2014, 41(7): 110-113. doi: 10.3969/j.issn.1004-874X.2014.07.029
    [11]
    PASNIK J D, JOYCE J E, KLESIUS H P. Duration of protective antibodies and correlation with survival in Nile tilapia Oreochromis niloticus following Streptococcus agalactiae vaccination[J]. Dis Aquat Org, 2005, 66(2): 129-134.
    [12]
    MIAN G F, GODOY D T, LEAL C A G, et al. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia[J]. Vet Microbiol, 2009, 136(1/2): 180-183.
    [13]
    李莉萍, 王瑞, 梁万文, 等. 罗非鱼无乳链球菌弱毒株与其母源株部分生物学特性及免疫原性比较研究[J]. 西南农业学报, 2015, 28(5): 2316-2322.
    [14]
    KAYANSAMRUAJ P, PIRARAT N, KATAGIRI T, et al. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand[J]. J Vet Diagn Invest, 2014, 26(4): 488-495. doi: 10.1177/1040638714534237
    [15]
    张新艳, 樊海平, 钟全福, 等. 罗非鱼无乳链球菌的分离、鉴定及致病性研究[J]. 水产学报, 2008, 32(5): 772-779.
    [16]
    王玉堂. 疫苗及其在水生动物疾病预防中的应用(七) [J]. 中国水产, 2019(1): 84-87.
    [17]
    易德玮, 罗玲, 杨坤明, 等. 乳酸菌作为DNA疫苗载体的研究进展[J]. 饲料博览, 2018(8): 16-19. doi: 10.3969/j.issn.1001-0084.2018.08.004
    [18]
    SAMAZAN F, ROKBI B, SEGUIN D, et al. Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis[J]. Microb Cell Fact, 2015, 14(1): 104-118. doi: 10.1186/s12934-015-0271-z
    [19]
    BERMUDEZ-HUMARAN L G, CORTES-PEREZ N G, L'HARIDON R, et al. Production of biological active murine IFN-gamma by recombinant Lactococcus lactis[J]. FEMS Microbiol Lett, 2008, 280(2): 144-149. doi: 10.1111/j.1574-6968.2007.01038.x
    [20]
    BAHEY-EL-DIN M, GAHAN C G, GRIFFIN B T. Lactococcus lactis as a cell factory for delivery of therapeutic proteins[J]. Curr Gene Ther, 2010, 10(1): 34-45. doi: 10.2174/156652310790945557
    [21]
    SÁEZ D, FERNÁNDEZ P, RIVERA A, et al. Oral immunization of mice with recombinant Lactococcus lactis expressing Cu, Zn superoxide dismutase of Brucella abortus triggers protective immunity[J]. Vaccine, 2012, 30(7): 1283-1290. doi: 10.1016/j.vaccine.2011.12.088
    [22]
    ADACHI K, KAWANA K, YOKOYAMA T, et al. Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7[J]. Vaccine, 2010, 28(16): 2810-2817. doi: 10.1016/j.vaccine.2010.02.005
    [23]
    PEREIRA U P, SOARES S C, BLOM J, et al. In silico prediction of conserved vaccine targets in Streptococcus agalactiae strains isolated from fish, cattle, and human samples[J]. Genet Mol Res, 2013, 12(3): 1283-2912.
    [24]
    VIDOVA B, CHOTÁR M, GODANY A, et al. N-terminal anchor in surface immunogenic protein of Streptococcus agalactiae and its influence on immunity elicitation[J]. Folia Microbiologica, 2009, 54(2): 161-166. doi: 10.1007/s12223-009-0025-6
    [25]
    KIM B R, YANG E K, KIM D Y, et al. Generation of anti-tumour immune response using dendritic cells pulsed with carbonic anhydrase IX-Acinetobacter baumannii outer membrane protein A fusion proteins against renal cell carcinoma[J]. Clin Exp Immunol, 2011, 167(1): 73-83.
    [26]
    吴金花, 布日额, 王金良, 等. 奶牛乳腺炎无乳链球菌sippgkFbsA基因主要抗原区域的融合表达及抗原性鉴定[J]. 中国兽医学报, 2017, 37(7): 1292-1299.
    [27]
    曾祖聪, 可小丽, 卢迈新, 等. 罗非鱼无乳链球菌LrrG-Sip融合蛋白免疫原性研究[J]. 南方水产科学, 2017, 13(3): 51-57. doi: 10.3969/j.issn.2095-0780.2017.03.007
    [28]
    布日额, 吴金花, 王金良, 等. 奶牛乳腺炎无乳链球菌sippgk双基因主要抗原区域的融合表达[J]. 中国兽医学报, 2015, 35(8): 1228-1231.
    [29]
    MATSUI H, TAKEUCHI Y, OKUE K, et al. P172 An immunochromatographic detection of the Group B Streptococcus antigen from enrichment cultures[J]. Int J Antimicrob AG, 2013, 20(9): 1381-1387.
    [30]
    杜琳, 吕天星, 赵红梅, 等. 无乳链球菌CP+Sip-FbsA偶联蛋白免疫学特性的研究[J]. 中国预防兽医学报, 2016, 38(12): 976-980.
    [31]
    王艳, 王卓, 张瑜. 重组L. lactis的研究进展及在兽用疫苗中的应用[J]. 中国畜禽种业, 2014, 10(5): 41-43. doi: 10.3969/j.issn.1673-4556.2014.05.024
    [32]
    MOHSENI A H, RAZAVILAR V, KEYVANI H, et al. Efficient production and optimization of E7 oncoprotein from Iranian human papillomavirus type 16 in, Lactococcus lactis, using nisin-controlled gene expression (NICE) system[J]. Microb Pathogenesis, 2017, 110(9): 554-560.
    [33]
    YAGNIK B, PATEL S, DAVE M, et al. Factors affecting inducible expression of outer membrane protein A (OmpA) of Shigella dysenteriae Type-1 in Lactococcus lactis using Nisin inducible controlled expression (NICE)[J]. Ind J Microbiol, 2016, 56(1): 80-87. doi: 10.1007/s12088-015-0556-2
    [34]
    ABTS A, MAVARO A, STINDT J, et al. Easy and rapid purification of highly active Nisin[J]. Int J Pept, 2011, 2011(5): 175145.
    [35]
    赵维静, 赵建伟, 胡译文, 等. 表面展示狂犬病病毒糖蛋白的重组乳酸菌的构建及其免疫原性的研究[J]. 中国兽医科学, 2019, 49(4): 432-439.
    [36]
    ABREU, MARIA T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function[J]. Nat Rev Immunol, 2010, 10(2): 131-144. doi: 10.1038/nri2707
    [37]
    魏仙仙, 张富春, 李金耀. 重组乳酸乳球菌作为活载体疫苗的研究进展[J]. 中华生物医学工程杂志, 2017, 23(3): 252-258.
    [38]
    MUNANG'ANDU H M, PAUL J, EVENSEN Ø. An overview of vaccination strategies and antigen delivery systems for Streptococcus agalactiae vaccines in Nile tilapia (Oreochromis niloticus)[J]. Vaccines, 2016, 4(4): 48-61. doi: 10.3390/vaccines4040048
    [39]
    蔡玉臻, 刘志刚, 卢迈新, 等. 尼罗罗非鱼无乳链球菌Sip蛋白乳酸菌活载体口服疫苗的研制及其免疫效果[J]. 水产学报, 2019, 43(3): 661-670.
    [40]
    van BAARLEN P, TROOST F, van der MEER C, et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways[J]. Proc Natl Acad Sci USA, 2011, 108(11): 4562-4569.
  • Related Articles

    [1]LI Wenheng, WANG Haitao, SHAN Hongwei, GAO Chang, LI Jiqing. Effects of dietary supplementation with powder of Antarctic krill (Euphausia superba) on growth performance, body composition and color of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(1): 97-105. DOI: 10.12131/20220074
    [2]GUO Huayang, LIU Mingjian, GAO Jie, ZHU Kecheng, LIU Baosuo, GUO Liang, ZHANG Nan, SUN Jinhui, ZENG Chen, YANG Jingwen, LIU Bo, ZHANG Dianchang. Development of vertebral column and appendicular skeleton in larvae and juveniles of Platax teira[J]. South China Fisheries Science, 2022, 18(6): 93-99. DOI: 10.12131/20220058
    [3]LIU Mingjian, GUO Huayang, GAO Jie, ZHU Kecheng, LIU Baosuo, GUO Liang, ZHANG Nan, YANG Jingwen, LIU Bo, ZHANG Dianchang. Embryonic development and morphological characteristics of larvae and juvenile of Platax teira[J]. South China Fisheries Science, 2022, 18(4): 103-111. DOI: 10.12131/20210251
    [4]LIAO Xiurui, YANG Jinling, WEI Miao, LI Jiaoni, PAN Zhi, SHI Yaohua, VASQUEZ Herbert Ely, LIU Chunsheng, GU Zhifeng, ZHENG Xing. Effects of aquaculture water color on survival, growth and body color of Cherax quadricarinatus juveniles[J]. South China Fisheries Science, 2022, 18(1): 77-83. DOI: 10.12131/20210128
    [5]Lihao TONG, Xiangyu WU, Liangfu HUANG, Jun ZENG, Yaohua SHI, Xianming TANG. Correlation analysis of light intensity and growth, photosynthetic pigment, color value of Betaphycus gelatinae[J]. South China Fisheries Science, 2021, 17(5): 79-85. DOI: 10.12131/20200256
    [6]ZHENG Xing, LIN Siqi, YANG Shouguo, ZHANG Xingzhi, VASQUEZ Herbert Ely, GU Zhifeng, WANG Aimin. Change and correlation analysis of pigment contents and color value during growth of Chlorella vulgaris[J]. South China Fisheries Science, 2021, 17(1): 32-38. DOI: 10.12131/20200076
    [7]ZHAO Min, LI Laihao, YANG Xianqing, HUANG Hui, WEI Ya, CEN Jianwei, LIN Zhi. Study on non-CO color retention method of tilapia fillets[J]. South China Fisheries Science, 2019, 15(4): 107-112. DOI: 10.12131/20180227
    [8]SUN Zhijing, JIANG Jufeng, FU Zhiru, WU Huimin, LIU Xiaolian, XIA Sudong, ZHANG Zhenguo, HAO Shuang, FENG Shouming. Observation of embryonic and larval development of blood parrot cichlid fish Cichlasoma synspilum×C.citrinellum[J]. South China Fisheries Science, 2014, 10(3): 38-46. DOI: 10.3969/j.issn.2095-0780.2014.03.006
    [9]OU Yanyan, LIU Zhigang, LIU Jinshang. Study on body-color polymorphism of Chlamys nobilis in Liusha Bay[J]. South China Fisheries Science, 2012, 8(5): 15-24. DOI: 10.3969/j.issn.2095-0780.2012.05.003
    [10]ZHANG Yuehuan, YAN Xiwu, YAO Tuo, HUO Zhongming, YANG Feng, ZHANG Guofan. Study on population hybridization of two shell color strains of Manila clam Ruditapes philippinarum[J]. South China Fisheries Science, 2008, 4(3): 27-32.

Catalog

    Article views (5015) PDF downloads (69) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return