LIU Zuoyi, QI Shibin, HE Ning, KOU Jiefeng, SUN Kaifeng. Effects of nitrogen, phosphorus and carbon on growth of seven marine microalgae[J]. South China Fisheries Science, 2020, 16(1): 87-97. DOI: 10.12131/20190089
Citation: LIU Zuoyi, QI Shibin, HE Ning, KOU Jiefeng, SUN Kaifeng. Effects of nitrogen, phosphorus and carbon on growth of seven marine microalgae[J]. South China Fisheries Science, 2020, 16(1): 87-97. DOI: 10.12131/20190089

Effects of nitrogen, phosphorus and carbon on growth of seven marine microalgae

More Information
  • Received Date: April 23, 2019
  • Revised Date: August 21, 2019
  • Available Online: October 08, 2019
  • In order to screen fine algae species (strains) for in situ treatment of aquaculture tail water, we investigated the effects of nitrogen (nitrate, ammonium and urea), phosphorus (phosphate) and carbon (carbonate) on the growth of seven marine microalgae (Cochlodinium geminatum, Karenia mikimotoi, Skeletonema costatum, Chaetoceros muelleri, Phaeocystis globosa, Platymonas subcordiformis, Nannochloropsis oculata) in batch cultures. The results reaveal that the growth rates of microalgae were positively correlated with nutrients concentration. Compared with the control, the enhancements on the specific growth rate were 35%, 19% and 19% in C. geminatum, S. costatum and N. oculata under carbonate treatments. The enchancements on the specific growth rate under phosphate, nitrate, ammonium and urea were 25.01%−446.60%, 16.54%−77.52%, 15.79%−88.82% and 25.16%−71.43%, respectively. In general, the maximal specific growth rates (highest in P. globosa) of seven marine algae under carbon, nitrogen and phosphorus were negatively correlated with cell size, while those of P. subcordiformis and N. oculata were not significantly different with red tide microalgae except P. globosa. The nitrate and phosphate uptake rates were positively correlated with cell size, but the utilization efficiency of nitrogen/phosphorus per cell was negatively correlated with cell size. The N/P ratios in all culture medium increased. The phosphorus uptake rates were higher than nitrogen uptake rates. P. subcordiformis and N. oculata can be used in algal absorption of nitrogen and phosphorus in aquaculture tail water.
  • [1]
    张景平, 黄小平, 江志坚, 等. 珠江口海域污染的水质综合污染指数和生物多样性指数评价[J]. 热带海洋学报, 2010, 29(1): 69-76. doi: 10.3969/j.issn.1009-5470.2010.01.011
    [2]
    SHI X Y, LI H M, WANG H. Nutrient structure of the Taiwan Warm Current and estimation of vertical nutrient fluxes in upwelling areas in the East China Sea in summer[J]. J Ocean Univ China, 2014, 13(4): 613-620. doi: 10.1007/s11802-014-2481-0
    [3]
    HUNG J J, HUANG W C, YU C S. Environmental and biogeochemical changes following a decade's reclamation in the Dapeng (Tapong) Bay, southwestern Taiwan[J]. Est Coast Shelf Sci, 2013, 130(SI): 9-20.
    [4]
    李仕平, 李仙, 张光磊, 等. 东寨港海水增养殖区水质状况及变化趋势研究[J]. 海南师范大学学报(自然科学版), 2017, 30(4): 430-435.
    [5]
    HERATH S S, SATOH S. Environmental impact of phosphorus and nitrogen from aquaculture[M]. England: Woodhead Publishing, 2015: 369-386.
    [6]
    EDWARDS P. Aquaculture environment interactions: past, present and likely future trends[J]. Aquaculture, 2015, 447: 2-14. doi: 10.1016/j.aquaculture.2015.02.001
    [7]
    蒋增杰, 方建光, 毛玉泽, 等. 海水鱼类网箱养殖水域沉积物有机质的来源甄别[J]. 中国水产科学, 2012, 19(2): 348-354.
    [8]
    韩芳, 霍元子, 杜霞, 等. 象山港网箱养殖对水域环境的影响[J]. 上海海洋大学学报, 2012, 21(5): 825-830.
    [9]
    陈一波, 宋国宝, 赵文星, 等. 中国海水养殖污染负荷估算[J]. 海洋环境科学, 2016, 35(1): 1-6, 12.
    [10]
    王申, 高珊珊, 蒋力, 等. 水产养殖系统氮磷营养盐收支及其生态影响研究[J]. 水产学杂志, 2018, 31(5): 50-57. doi: 10.3969/j.issn.1005-3832.2018.05.011
    [11]
    李金亮, 陈雪芬, 赖秋明, 等. 凡纳滨对虾高位池养殖氮、磷收支研究及养殖效果分析[J]. 南方水产, 2010, 6(5): 13-20. doi: 10.3969/j.issn.1673-2227.2010.05.003
    [12]
    刘永士, 臧维玲, 侯文杰, 等. 凡纳滨对虾生长及养殖池氮、磷收支随养殖时间的变化[J]. 大连海洋大学学报, 2013, 28(2): 143-147. doi: 10.3969/j.issn.2095-1388.2013.02.006
    [13]
    夏丽华, 徐珊, 陈智斌, 等. 广东省海岸带海水养殖业污染贡献率研究[J]. 广州大学学报(自然科学版), 2013, 12(5): 80-86.
    [14]
    XIE B, YU K J. Shrimp farming in China: operating characteristics, environmental impact and perspectives[J]. Ocean Coast Manage, 2007, 50(7): 538-550. doi: 10.1016/j.ocecoaman.2007.02.006
    [15]
    朱蓉, 张洪海, 张婧, 等. 不同氮磷比和铁浓度对两种海洋微藻生产二甲基硫和二甲巯基丙酸内盐的实验研究[J]. 中国海洋大学学报 (自然科学版), 2018, 48(12): 62-70.
    [16]
    唐启升, 丁晓明, 刘世禄, 等. 我国水产养殖业绿色、可持续发展保障措施与政策建议[J]. 中国渔业经济, 2014, 32(2): 5-11. doi: 10.3969/j.issn.1009-590X.2014.02.001
    [17]
    MARTINEZ-CORDOVA L R, LÓPEZ-ELÍAS J A, LEYVA-MIRANDA G, et al. Bioremediation and reuse of shrimp aquaculture effluents to farm whiteleg shrimp, Litopenaeus vannamei: a first approach[J]. Aquacult Res, 2011, 42(10): 1415-1423. doi: 10.1111/j.1365-2109.2010.02730.x
    [18]
    AL-HAFEDH Y S, ALAM A, BUSCHMANN A H. Experiments on an integrated aquaculture system (seaweeds and marine fish) on the Red Sea coast of Saudi Arabia: efficiency comparison of two local seaweed species for nutrient biofiltration and production[J]. Rev Aquacult, 2012, 4(1): 21-31. doi: 10.1111/j.1753-5131.2012.01057.x
    [19]
    刘梅, 原居林, 何海生, 等. 微藻在南美白对虾养殖废水中的生长及净化效果[J]. 应用与环境生物学报, 2018, 249(4): 866-872.
    [20]
    田立丹, 王素英. 常见废水与螺旋藻生长的适配性研究[J]. 水产科学, 2011, 30(6): 325-330. doi: 10.3969/j.issn.1003-1111.2011.06.004
    [21]
    GUILLARD R R L. Culture of phytoplankton for feeding marine invertebrates[M]//SMITH W L, CHANLEY M H. Culture of marine invertebrate animals. New York: Plenum Press, 1975: 26-60.
    [22]
    GUILLARD R L, RYTHER J H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran[J]. Can J Microbiol, 1962, 8: 229-239. doi: 10.1139/m62-029
    [23]
    梁英, 李泽邦, 刘春强, 等. 不同磷源对3种海洋微藻生长和种间竞争的影响[J]. 海洋湖沼通报, 2017(5): 132-140.
    [24]
    俞群娣, 王亚军, 余新威, 等. 微小亚历山大藻(Alexandrium minutum)的氮磷吸收, 生长, 产毒动态变化[J]. 海洋与湖沼, 2018, 49(2): 346-351.
    [25]
    韦桂秋, 王华, 蔡伟叙, 等. 近10年珠江口海域赤潮发生特征及原因初探[J]. 海洋通报, 2012, 31(4): 466-474.
    [26]
    王朝晖, 林朗聪, 康伟, 等. 有毒有害赤潮藻类旋沟藻(Cochlodinium schütt)研究进展[J]. 暨南大学学报(自然科学与医学版), 2011, 32(1): 109-114. doi: 10.3969/j.issn.1000-9965.2011.01.023
    [27]
    WANG B, XIN M, WEI Q, et al. A historical overview of coastal eutrophication in the China Seas[J]. Mar Pollut Bull, 2018, 136: 394-400. doi: 10.1016/j.marpolbul.2018.09.044
    [28]
    RAVEN J A, GIORDANO M, BEARDALL J. Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes[J]. Physiol Plantarum, 2008, 133(1): 4-14. doi: 10.1111/j.1399-3054.2007.01024.x
    [29]
    BENSCHOP J J, BADGER M R, PRICE G D. Characterisation of CO2 and HCO3 uptake in the cyanobacterium Synechocystis sp. PCC6803[J]. Photosynth Res, 2003, 77(2/3): 117-126. doi: 10.1023/A:1025850230977
    [30]
    FU M Z, WANG Z L, LI Y, et al. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): seasonal variability[J]. Cont Shelf Res, 2016, 29(18): 2178-2194.
    [31]
    赵艳芳, 俞志明, 宋秀贤, 等. 不同磷源形态对中肋骨条藻和东海原甲藻生长及磷酸酶活性的影响[J]. 环境科学, 2009, 30(3): 693-699. doi: 10.3321/j.issn:0250-3301.2009.03.012
    [32]
    YAMAGUCHI H, SAKAMOTO S, YAMAGUCHI M. Nutrition and growth kinetics in nitrogen-and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae)[J]. Harmful Algae, 2008, 7(1): 26-32. doi: 10.1016/j.hal.2007.05.011
    [33]
    王小冬, 王艳. 赤潮异弯藻和海洋卡盾藻抗氧化酶活性对氮磷比失衡的响应[J]. 海洋环境科学, 2012, 31(3): 337-340. doi: 10.3969/j.issn.1007-6336.2012.03.007
    [34]
    康燕玉, 梁君荣, 高亚辉, 等. 氮、磷比对两种赤潮藻生长特性的影响及藻间竞争作用[J]. 海洋学报(中文版), 2006, 28(5): 117-122. doi: 10.3321/j.issn:0253-4193.2006.05.015
  • Cited by

    Periodical cited type(5)

    1. 刘婷婷,刘小丽,邢燕,高慧,王勤,魏滨. 山东沿海6市市售水产品中多氯联苯污染特征及健康风险评估. 食品安全导刊. 2025(01): 99-102+108 .
    2. 陈征兵,王楚. 水环境中持久性有机污染物风险评价研究进展. 黑龙江环境通报. 2024(01): 10-12 .
    3. 马丽莎,谢文平,田斐,尹怡,单奇,郑光明,李恒翔. 广东沿海养殖牡蛎中多氯联苯残留水平及人体饮食暴露风险评估. 南方水产科学. 2021(02): 11-19 . 本站查看
    4. 杨代凤,刘腾飞,陆皓茜,毛健,钱辉,赵佳昕. 气相色谱-质谱法测定小麦中二噁英类多氯联苯. 食品安全质量检测学报. 2020(17): 6209-6215 .
    5. 肖妙,张彩云,李玉卡,刘二花,苏青. 畜产品中持久性有机污染物危害及检测. 今日畜牧兽医. 2019(10): 1-2 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return