XIA Jingjin, CHEN Jianwu, SONG Yi, LIU Yongtao, DONG Jing, WU Yunan, AI Xiaohui. Identification of antibacterial substances from Bacillus amyloliquefaciens HE and analysis of antibacterial characteristics[J]. South China Fisheries Science, 2019, 15(3): 41-49. DOI: 10.12131/20190054
Citation: XIA Jingjin, CHEN Jianwu, SONG Yi, LIU Yongtao, DONG Jing, WU Yunan, AI Xiaohui. Identification of antibacterial substances from Bacillus amyloliquefaciens HE and analysis of antibacterial characteristics[J]. South China Fisheries Science, 2019, 15(3): 41-49. DOI: 10.12131/20190054

Identification of antibacterial substances from Bacillus amyloliquefaciens HE and analysis of antibacterial characteristics

More Information
  • Received Date: March 11, 2019
  • Revised Date: March 26, 2019
  • Accepted Date: April 07, 2019
  • Available Online: April 18, 2019
  • To investigate the antibacterial substances from Bacillus amyloliquefaciens HE and antibacterial characteristics, we synthetized the genes related to lipopeptides synthesis by PCR detection according to the stability of B. amyloliquefaciens fermentation broth, and further analyzed the active substances by UPLC-Q-TOF-MS. Then we applied the inhibition zone method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of lipopeptide against Aeromonas hydrophila, whose antimicrobial activity was discussed from the microscopic structure. The antimicrobial active substances were stable against high temperature, acid, acid-base and protease. The PCR with four primer pairs were cloned and sequenced. The BLAST analysis shows that the ituA, fenB, sfP and mycB genes existed in the genome of B. amyloliquefaciens HE. Three kinds of lipopetides (Surfactin, Iturin and Fengycin) were identified in the antimicrobial extract by mass spectrum analysis. The MIC and MBC of antimicrobial lipopetides against A. hydrophila were both 137.97 μg·mL−1 by inhibition zone method. The microscopic characteristics indicate that lipopeptides can cause membrane collapse and holes in A. hydrophila cells. The results provide references for the structural identification and safety evaluation of active metabolites of B. amyloliquefaciens.

  • [1]
    CHEN X H, KOUMOUTSI A, SCHOLZ R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nat Biotechnol, 2007, 25(9): 1007-1014. doi: 10.1038/nbt1325
    [2]
    张荣胜, 王晓宇, 罗楚平, 等. 解淀粉芽孢杆菌Lx-11产脂肽类物质鉴定及表面活性素对水稻细菌性条斑病的防治作用[J]. 中国农业科学, 2013, 46(10): 2014-2021. doi: 10.3864/j.issn.0578-1752.2013.10.006
    [3]
    GENILLOUD O. The re-emerging role of microbial natural products in antibiotic discovery[J]. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol, 2014, 106(1): 173-188. doi: 10.1007/s10482-014-0204-6
    [4]
    艾炎军, 邹叶茂, 汤文浩, 等. 微生态制剂对泥鳅生长性能、体成分和免疫活性的影响[J]. 淡水渔业, 2013, 43(1): 81-84. doi: 10.3969/j.issn.1000-6907.2013.01.016
    [5]
    鞠守勇, 李金山. 枯草芽孢杆菌对草鱼生长性能、肠道消化酶及抗氧化酶活性的影响[J]. 淡水渔业, 2018, 48(5): 99-105. doi: 10.3969/j.issn.1000-6907.2018.05.016
    [6]
    王亚军, 魏文娟, 潘厚军, 等. 斑点叉尾鮰“腹水症”病原的分离鉴定及体外芽孢杆菌拮抗试验[J]. 淡水渔业, 2018, 48(3): 72-77. doi: 10.3969/j.issn.1000-6907.2018.03.012
    [7]
    CALDEIRA A T, SANTOS ARTEIRO J M, COELHO A V, et al. Combined use of LC-ESI-MS and antifungal tests for rapid identification of bioactive lipopeptides produced by Bacillus amyloliquefaciens CCMI 1051[J]. Process Biochem, 2011, 46(9): 1738-1746. doi: 10.1016/j.procbio.2011.05.016
    [8]
    KOUMOUTSI A, CHEN X H, HENNE A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. J Bacteriol, 2004, 186(4): 1084-1096. doi: 10.1128/JB.186.4.1084-1096.2004
    [9]
    ONGENA M, JACQUES P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol[J]. Trends Microbiol, 2008, 16(3): 115-125. doi: 10.1016/j.tim.2007.12.009
    [10]
    RAAIJMAKERS J M, de BRUIJN I, NYBROE O, et al. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics[J]. Fems Microbiol Rev, 2010, 34(6): 1037-1062. doi: 10.1111/j.1574-6976.2010.00221.x
    [11]
    DELEU M, PAQUOT M, NYLANDER T. Fengycin interaction with lipid monolayers at the air-aqueous interface: implications for the effect of fengycin on biological membranes[J]. J Colloid Interface Sci, 2005, 283(2): 358-365. doi: 10.1016/j.jcis.2004.09.036
    [12]
    ONGENA M, JOURDAN E, ADAM A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environ Microbiol, 2007, 9(4): 1084-1090. doi: 10.1111/emi.2007.9.issue-4
    [13]
    王英国, 王军华, 权春善, 等. 解淀粉芽孢杆菌抗菌活性物质的分离纯化及抑菌活性研究[J]. 中国生物工程杂志, 2007, 27(12): 41-45.
    [14]
    KALAI-GRAMI L, KARKOUCH I, NAILI O, et al. Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila[J]. J Basic Microbiol, 2016, 56(8): 864-871. doi: 10.1002/jobm.201500683
    [15]
    BAYSAL O, CALISKAN M, YESILOVA O. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp radicis-lycopersici[J]. Physiol Mol Plant Pathol, 2008, 73(1-3): 25-32. doi: 10.1016/j.pmpp.2008.11.002
    [16]
    庄国宏. 产抗菌脂肽GD菌株筛选及脂肽分离、鉴定与应用研究[D]. 扬州: 扬州大学, 2014: 19-24.
    [17]
    WANG X, GONG X, LI P, et al. Structural diversity and biological activities of cyclic depsipeptides from fungi[J]. Molecules, 2018, 23(1): 169-170. doi: 10.3390/molecules23010169
    [18]
    SINGH A K, CAMEOTRA S S. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil[J]. Environ Sci Pollut Res, 2013, 20(10): 7367-7376. doi: 10.1007/s11356-013-1752-4
    [19]
    ROMERO J, GLORIA FEIJOO C, NAVARRETE P. Antibiotics in aquaculture: use, abuse and alternatives [M]. Santiago de Chile: Universidad de Chile, 2012: 159-198.
    [20]
    WANG M, LIU G, LU M, et al. Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia[J]. Aquacult Res, 2017, 48(6): 3163-3173. doi: 10.1111/are.2017.48.issue-6
    [21]
    董靖, 阮晶, 胥宁, 等. 一株有抑菌活性解淀粉芽孢杆菌的鉴定[J]. 吉林农业大学学报, 2016, 38(4): 410-415.
    [22]
    王帅, 高圣风, 高学文, 等. 枯草芽孢杆菌脂肽类抗生素发酵和提取条件[J]. 中国生物防治, 2007, 23(4): 342-347. doi: 10.3969/j.issn.2095-039X.2007.04.009
    [23]
    姬曼, 金良韵, 赵君朋. 一种游离细胞扫描电镜的样品制备方法[J]. 电子显微学报, 2019, 38(1): 72-74. doi: 10.3969/j.issn.1000-6281.2019.01.012
    [24]
    胡陈云, 李勇, 刘敏, 等. 枯草芽孢杆菌ge25对两种人参病原菌的抑制作用及脂肽类抑菌代谢产物的鉴定[J]. 中国生物防治学报, 2015, 31(3): 386-393.
    [25]
    胡陈云, 李勇, 刘敏, 等. 枯草芽孢杆菌ge25菌株发酵及其抑菌活性成分的初步研究[J]. 中国中药杂志, 2014, 39(14): 2624-2628.
    [26]
    王启军. 枯草芽胞杆菌B6-1产脂肽和聚-γ-谷氨酸及抗几种植物病原菌的研究 [D]. 武汉: 华中农业大学, 2008: 49-71.
    [27]
    CAMEOTRA S S, MAKKAR R S. Recent applications of biosurfactants as biological and immunological molecules[J]. Curr Opin Microbiol, 2004, 7(3): 262-266. doi: 10.1016/j.mib.2004.04.006
    [28]
    邓建良. 解淀粉芽孢杆菌YN-1抑制植物病原真菌活性物质研究 [D]. 武汉: 华中农业大学, 2009: 21-29.
    [29]
    杨丽莉, 吕凤霞, 别小妹, 等. 枯草芽孢杆菌抗菌脂肽对嗜水气单胞菌抑菌效果[J]. 食品科学, 2011, 32(1): 193-198.
    [30]
    黄现青. Bacillus subtilis fmbJ产生的脂肽抗微生物效果及安全性评价 [D]. 南京: 南京农业大学, 2006: 40-53.
    [31]
    ROBINSON J A, SHANKARAMMA S C, JETTERA P, et al. Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I[J]. Bioorg Med Chem, 2005, 13(6): 2055-2064. doi: 10.1016/j.bmc.2005.01.009
    [32]
    BEVEN L, CASTANO S, DUFOURCQ J, et al. The antibiotic activity of cationic linear amphipathic peptides: lessons from the action of leucine/lysine copolymers on bacteria of the class Mollicutes[J]. Eur J Biochem, 2003, 270(10): 2207-2217. doi: 10.1046/j.1432-1033.2003.03587.x
    [33]
    杨丽莉. 枯草杆菌脂肽抗嗜水气单胞菌的机理和应用研究[D]. 南京: 南京农业大学, 2010: 19-28.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return