Citation: | SUN Yongxu, DONG Hongbiao, WANG Wenhao, CAO Ming, DUAN Yafei, LI Hua, LIU Qingsong, ZHANG Jiasong. Effects of periodic hypoxia stress on intestinal microflora structure of Lateolabrax maculatus[J]. South China Fisheries Science, 2019, 15(4): 46-52. DOI: 10.12131/20190021 |
Based on the technology of Illumina MiSeq high throughput sequencing, we analyzed the effects of periodic hypoxia stress on intestinal microflora structure of Lateolabrax maculatus, so as to provide references for the study of the adaptation mechanism of intestinal flora of the juveniles to environmental hypoxia. The results show that hypoxia caused a significant increase in the diversity and richness of intestinal microflora (P<0.05). The species richness was rather different between the two groups. The operational taxonomic units (OTUs) of hypoxic group were significantly more than those of normoxic group (P<0.05). At the level of Class classification, the dominant bacteria of both groups were Proteobacteria, Firmicutes and Bacteroidetes. Compared with the normoxic group, the relative abundance of Proteobacteria decreased significantly in hypoxic group, while that of Bacteroidetes increased significantly (P<0.05). At the level of Genus classification, the relative abundance of Alphaproteobacteria and Bacilli in hypoxic group decreased significantly, while those of Clostridia, Gammaproteobacteria and Bacteroidia increased significantly (P<0.05). Periodic hypoxia stress also led to an increase of relative abundance of anaerobes or facultative anaerobes (Anaerolineaceae, Lachnospiraceae and Ruminococcaceae) and oxygen-producing bacteria (Chlorobiaceae) in the intestine of L. maculatus.
[1] |
李富祥, 王鹏飞, 闫路路, 等. 花鲈irak4基因cDNA的克隆与表达分析[J]. 南方水产科学, 2018, 14(5): 70-79.
|
[2] |
TURNBAUGH P J, BACKHED F, FULTON L, et al. Marked alterations in the distal gut microbiome linked to diet-induced obesity[J]. Cell Host Microbe, 2008, 3(4): 213-223. doi: 10.1016/j.chom.2008.02.015
|
[3] |
YANG L, LIU S, DING J, et al. Gut microbiota co-microevolution with selection for host humoral immunity[J]. Front Microbiol, 2017, 8: 1243. doi: 10.3389/fmicb.2017.01243
|
[4] |
JIA W, LI H, ZHAO L, et al. Gut microbiota: a potential new territory for drug targeting[J]. Nat Rev Drug Discov, 2008, 7(2): 123-129. doi: 10.1038/nrd2505
|
[5] |
SAMPSON T R, MAZMANIAN S K. Control of brain development, function, and behavior by the microbiome[J]. Cell Host Microb, 2015, 17(5): 565-576. doi: 10.1016/j.chom.2015.04.011
|
[6] |
张家松, 段亚飞, 张真真, 等. 对虾肠道微生物菌群的研究进展[J]. 南方水产科学, 2015, 11(6): 114-119. doi: 10.3969/j.issn.2095-0780.2015.06.016
|
[7] |
GIVENS C E. A fish tale: comparison of the gut microbiome of 15 fish species and the influence of diet and temperature on its composition[D]. Athens: University of Georgia, 2012: 14-35.
|
[8] |
SULLAM K E, ESSINGER S D, LOZUPONE C A, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis[J]. Mol Ecol, 2012, 21(13): 3363-3378. doi: 10.1111/j.1365-294X.2012.05552.x
|
[9] |
戚晓舟. 氨氮胁迫对鲫免疫系统及肠道菌群结构的影响[D]. 杨陵: 西北农林科技大学, 2017: 23-40.
|
[10] |
SHINGLES A, MCKENZIE D J, CLAIREAUX G, et al. Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity[J]. Physiol Biochem Zool, 2005, 78(5): 744-755. doi: 10.1086/432143
|
[11] |
REES B B, MATUTE L A. Repeatable interindividual variation in hypoxia tolerance in the gulf killifish, Fundulus grandis[J]. Physiol Biochem Zool, 2018, 91(5): 1046-1056. doi: 10.1086/699596
|
[12] |
吴鑫杰. 低氧对团头鲂细胞凋亡及抗氧化酶活性的影响[D]. 武汉: 华中农业大学, 2015: 10-20.
|
[13] |
吴小峰, 赵庆新. 关于草鱼肠炎微生态调节的研究[J]. 微生物学杂志, 2003, 23(4): 23-24. doi: 10.3969/j.issn.1005-7021.2003.04.008
|
[14] |
KORMAS K A, MEZITI A, MENTE E, et al. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata)[J]. Microbiologyopen, 2014, 3(5): 718-728. doi: 10.1002/mbo3.2014.3.issue-5
|
[15] |
李建柱, 侯杰, 张鹏飞, 等. 鱼菜共生模式中不同鱼类肠道微生物群落结构的比较[J]. 南方水产科学, 2016, 12(6): 42-50. doi: 10.3969/j.issn.2095-0780.2016.06.006
|
[16] |
RAY A K, GHOSH K, RINGO E. Enzyme-producing bacteria isolated from fish gut: a review[J]. Aquacult Nutr, 2012, 18(5): 465-492. doi: 10.1111/anu.2012.18.issue-5
|
[17] |
SWANK G M, DEITCH E A. Role of the gut in multiple organ failure: bacterial translocation and permeability changes[J]. World J Surg, 1996, 20(4): 411-417. doi: 10.1007/s002689900065
|
[18] |
Van DOAN H, DOOLGINDACHBAPORN S, SUKSRI A. Effects of low molecular weight agar and Lactobacillus plantarum on growth performance, immunity, and disease resistance of basa fish (Pangasius bocourti, Sauvage 1880)[J]. Fish Shellfish Immun, 2014, 41(2): 340-345. doi: 10.1016/j.fsi.2014.09.015
|
[19] |
LOPETUSO L R, PETITO V, GRAZIANI C, et al. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: time for microbial marker of gastrointestinal disorders?[J]. Digest Dis, 2018, 36(1): 56-65. doi: 10.1159/000477205
|
[20] |
HALE V L, JERALDO P, CHEN J, et al. Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers[J]. BioRxiv, 2018: 346510.
|
[21] |
REVECO F E, ØVERLAND M, ROMARHEIM O H, et al. Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2014, 420(1): 262-269.
|
[22] |
潘艳艳. 饥饿及恢复喂食对鲈鱼肠道菌群多样性的影响[D]. 宁波: 宁波大学, 2015: 22-35.
|
[23] |
DUAN Y, LIU Q, WANG Y, et al. Impairment of the intestine barrier function in Litopenaeus vannamei exposed to ammonia and nitrite stress[J]. Fish Shellfish Immun, 2018, 78: 279-288. doi: 10.1016/j.fsi.2018.04.050
|
[24] |
BATES J M, MITTGE E, KUHLMAN J, et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation[J]. Dev Biol, 2006, 297(2): 374-386. doi: 10.1016/j.ydbio.2006.05.006
|
[25] |
郁维娜, 戴文芳, 陶震, 等. 健康与患病凡纳滨对虾肠道菌群结构及功能差异研究[J]. 水产学报, 2018, 42(3): 399-409.
|
[26] |
刘敏. 应用PCR-DGGE技术分析长江口低氧区和黄海冷水团的细菌群落组成[D]. 青岛: 中国科学院海洋研究所, 2007: 27-44.
|
[27] |
SAKATA T, SUGITA H, MITSUOKA T, et al. Characteristics of obligate anaerobic bacteria in the intestines of freshwater fish[J]. Bull Jpn Soc Sci Fish, 1981, 47(3): 421-427. doi: 10.2331/suisan.47.421
|
[28] |
杨坤杰, 王欣, 熊金波, 等. 健康和患病凡纳滨对虾幼虾消化道菌群结构的比较[J]. 水产学报, 2016, 40(11): 1765-1773.
|
[29] |
LARSEN A M, MOHAMMED H H, ARIAS C R. Characterization of the gut microbiota of three commercially valuable warmwater fish species[J]. J Appl Microbiol, 2014, 116(6): 1396-1404. doi: 10.1111/jam.2014.116.issue-6
|
[30] |
RINGØ E, ZHOU Z, VECINO J L G, et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story?[J]. Aquacult Nutr, 2016, 22(2): 219-282. doi: 10.1111/anu.2016.22.issue-2
|
[31] |
RAMIREZ R F, DIXON B A. Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma)[J]. Aquaculture, 2003, 227(1/2/3/4): 417-426.
|
[32] |
徐鈜绣, 姜丽晶, 李少能, 等. 南大西洋深海热液区可培养硫氧化微生物多样性及其硫氧化特性[J]. 微生物学报, 2016, 56(1): 88-100.
|