Citation: | SUN Huiyan, ZHOU Yanbo, MA Shengwei, TIAN Ji, XU Jingchun, LIU Zhiying, BI Jieting, WU Qia'er. Fishing characteristics of light fishing vessels in open South China Sea based on Beidou position data[J]. South China Fisheries Science, 2023, 19(2): 21-30. DOI: 10.12131/20220254 |
Light falling-net is one of the main fishing operations in the open South China Sea. In order to strengthen the monitoring of the production of light falling-nets in the open South China Sea and the effective management of fishing activities of fishing vessels, we had analyzed the positioning time, longitude and latitude and other characteristics based on the Beidou position data of the open South China Sea light fishing vessels from February to May 2017. Combined with the operation time, contour line, etc., we applied the multi-layer filtration method to determine the operation state of the fishing vessels. Then we filtered the fishing vessel operating locations and time by threshold, used the filter window correction method to correct the state of vessels, calculated the operation time of fishing vessels, and compared with the fishing logbook recorded by fishermen. The results show that the error between the extracted results by Beidou position data and the actual results recorded by fishmen was small. The voyage accuracy operation was 100%, and the accuracy of voyage days was 94.30%. The accuracy rate of the same fishing date was 92.72%. The total average absolute error of the operation time was 1.12 h, and the average relative error was 2.1% with good consistency. The methods of judging the state of the light fishing-net vessels, determining the operation location, extracting the operation time and calculating the fishing effort provide new ideas for the analysis of the light fishing-net vessel and the quantification of its fishing intensity.
[1] |
张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037
|
[2] |
邹建伟, 陈立峰, 林蒋进, 等. 南海外海灯光罩网主要渔场分布及变动研究——基于广西渔船的生产监测统计[J]. 南方水产科学, 2014, 10(4): 78-84. doi: 10.3969/j.issn.2095-0780.2014.04.013
|
[3] |
关欢欢, 黄海广, 姜思宁. 基于VMS轨迹数据分析的渔业船舶行为划分研究[J]. 中国渔业经济, 2020, 38(2): 119-126. doi: 10.3969/j.issn.1009-590X.2020.02.014
|
[4] |
季民, 靳奉祥, 李云岭, 等. 远洋渔船动态监控系统研究[J]. 测绘科学, 2005(5): 92-94. doi: 10.3771/j.issn.1009-2307.2005.05.033
|
[5] |
WEI Z K, XIE X L, LYU W H. Self-adaption vessel traffic behaviour recognition algorithm based on multi-attribute trajectory characteristics[J]. Ocean Eng, 2020, 198(C): 106995.
|
[6] |
GALOTTO-TEBAR M M, POMARES-PADILLA A, CZERWINSKI I A, et al. Is the vessel fishing? Discrimination of fishing activity with low-cost intelligent mobile devices through traditional and heuristic approaches[J]. Expert Syst Appl, 2022, 200: 117091. doi: 10.1016/j.eswa.2022.117091
|
[7] |
DENG R, DICHMONT C, MILTON D, et al. Can vessel monitoring system data also be used to study trawling intensity and population depletion? The example of Australia's northern prawn fishery[J]. Can J Fish Aquat Sci, 2005, 62(3): 611-622. doi: 10.1139/f04-219
|
[8] |
BASTARDIE F, NIELSEN J R, ULRICH C, et al. Detailed mapping of fishing effort and landings by coupling fishing logbooks with satellite-recorded vessel geo-location[J]. Fish Res, 2010, 106(1): 41-53. doi: 10.1016/j.fishres.2010.06.016
|
[9] |
UTAMA F W, HOENNER X, HARDESTY B D, et al. Estimating fishing effort and spatio-temporal distribution of longline vessels in the Indian Ocean[J]. Front Mar Sci, 2021, 8: 671036. doi: 10.3389/fmars.2021.671036
|
[10] |
MUENCH A, DEPIPER G S, DEMAREST C. On the precision of predicting fishing location using data from the vessel monitoring system (VMS)[J]. Can J Fish Aquat Sci, 2017, 75(7): 1036-1047.
|
[11] |
LI G D, LI D J, XIONG Y, et al. Changes in the resource distribution of Acetes chinensis and patterns of species replacement in Haizhou Bay in summer based on Beidou VMS data[J]. Reg Stud Mar Sci, 2022, 56: 102655.
|
[12] |
于杰, 周艳波, 唐振朝, 等. 基于北斗卫星船位监控系统数据的南海双拖渔船作业特征研究[J]. 海洋科学, 2021, 45(10): 40-48.
|
[13] |
张荣瀚, 张胜茂, 陈雪忠, 等. 基于北斗船位数据的流刺网网次和方向提取方法研究[J]. 海洋渔业, 2019, 41(2): 169-178.
|
[14] |
裴凯洋, 张胜茂, 樊伟, 等. 基于VMS的张网渔船捕捞努力量与网位坐标提取方法[J]. 上海海洋大学学报, 2021, 30(1): 179-188. doi: 10.12024/jsou.20190502647
|
[15] |
谢恩阁, 周艳波, 冯菲, 等. 中国南海外海鸢乌贼灯光罩网渔业CPUE标准化研究[J]. 大连海洋大学学报, 2020, 35(3): 439-446.
|
[16] |
温利红, 张衡, 方舟, 等. 不同捕捞方式下印度洋北部鸢乌贼渔场时空分布差异[J]. 上海海洋大学学报, 2021, 30(6): 1079-1089. doi: 10.12024/jsou.20210103264
|
[17] |
张胜茂, 杨胜龙, 戴阳, 等. 北斗船位数据提取拖网捕捞努力量算法研究[J]. 水产学报, 2014, 38(8): 1190-1199.
|
[18] |
GERRITSEN H, LORDAN C. Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution[J]. ICES J Mar Sci, 2011, 68(1): 245-252. doi: 10.1093/icesjms/fsq137
|
[19] |
KATARA I, SILVA A. Mismatch between VMS data temporal resolution and fishing activity time scales[J]. Fish Res, 2017, 188: 1-5. doi: 10.1016/j.fishres.2016.11.023
|
[20] |
张荣瀚, 张胜茂, 樊伟, 等. 基于北斗船位数据的浙江省流刺网捕捞努力量特征分析[J]. 海洋渔业, 2021, 43(5): 618-625. doi: 10.3969/j.issn.1004-2490.2021.05.011
|
[21] |
JOO R, BERTRAND S, CHAIGNEAU A, et al. Optimization of an artificial neural network for identifying fishing set positions from VMS data: an example from the Peruvian anchovy purse seine fishery[J]. Ecol Model, 2010, 222(4): 1048-1059.
|
[22] |
de SOUZA E N, BOERDER K, MATWIN S, et al. Improving fishing pattern detection from satellite AIS using data mining and machine learning.[J]. PLoS One, 2017, 11(7): e0158248.
|
[23] |
郑巧玲, 樊伟, 张胜茂, 等. 基于神经网络和VMS的渔船捕捞类型辨别[J]. 南方水产科学, 2016, 12(2): 81-87. doi: 10.3969/j.issn.2095-0780.2016.02.012
|
[24] |
杨胜龙, 张胜茂, 周为峰, 等. 采用AIS计算中西太平洋延绳钓渔船捕捞努力量[J]. 农业工程学报, 2020, 36(3): 198-203. doi: 10.11975/j.issn.1002-6819.2020.03.024
|
[25] |
谢恩阁. 基于海洋环境因子南海外海鸢乌贼渔情预报研究[D]. 上海: 上海海洋大学, 2020: 35-38.
|
[26] |
高明远, 张胜茂, 汤先峰, 等. 中国近海捕捞机动渔船航次特征数据挖掘[J]. 大连海洋大学学报, 2021, 36(1): 147-154. doi: 10.16535/j.cnki.dlhyxb.2019-335
|
[27] |
张胜茂, 程田飞, 王晓璇, 等. 基于北斗卫星船位数据提取拖网航次方法研究[J]. 上海海洋大学学报, 2016, 25(1): 135-141. doi: 10.12024/jsou.20150501433
|
[28] |
张胜茂, 樊伟, 张衡, 等. 基于北斗船位数据的海南省渔船航次动态监测与分析[J]. 南方水产科学, 2018, 14(5): 1-10. doi: 10.3969/j.issn.2095-0780.2018.05.001
|
[29] |
李国东, 仲霞铭, 熊瑛, 等. 基于北斗船位数据的渔业信息解译与应用研究——以中国毛虾限额捕捞管理为例[J]. 海洋与湖沼, 2021, 52(3): 746-753. doi: 10.11693/hyhz20201000288
|
[30] |
张胜茂, 唐峰华, 靳少非, 等. 基于北斗卫星数据的拖网渔船状态与网次提取[J]. 渔业信息与战略, 2015, 30(3): 205-211. doi: 10.13233/j.cnki.fishis.2015.03.008
|
[31] |
张胜茂, 张衡, 唐峰华, 等. 基于船位监控系统的拖网捕捞努力量提取方法研究[J]. 海洋科学, 2016, 40(3): 146-153. doi: 10.11759/hykx20140217002
|
[32] |
晏磊, 张鹏, 杨吝, 等. 月相对南海灯光罩网鸢乌贼渔获率的影响分析[J]. 南方水产科学, 2015, 11(3): 16-21. doi: 10.3969/j.issn.2095-0780.2015.03.003
|
[33] |
谢恩阁, 吴洽儿, 周艳波, 等. 基于北斗船位数据灯光罩网渔船作业状态特征的提取和验证[J]. 上海海洋大学学报, 2020, 29(3): 392-400.
|
[34] |
史慧敏, 樊伟, 张涵, 等. 基于渔船轨迹的阿根廷滑柔鱼捕捞强度空间分析[J]. 南方水产科学, 2021, 17(6): 1-11. doi: 10.12131/20210010
|
[35] |
陈森, 张鹏, 晏磊, 等. 南海新建钢质罩网渔船渔获组成及渔场分析[J]. 南方水产科学, 2015, 11(5): 125-131. doi: 10.3969/j.issn.2095-0780.2015.05.015
|
1. |
孙良娟,李红权,蔡润斌,庄姜云,唐庆强,唐媛媛,钟键,黄武. 高效液相色谱-串联质谱法测定水产品中9种禁用染料类药物残留. 分析测试学报. 2023(01): 89-95 .
![]() | |
2. |
李涛,贾立平,李锋刚,王绿洲. 亚甲基蓝在鲤体内消除规律研究. 水产科技情报. 2022(02): 99-105 .
![]() | |
3. |
黄宣运,杨光昕,孔聪,黄冬梅,蔡友琼. 间接竞争酶联免疫法测定鱼体中的亚甲基蓝. 食品安全质量检测学报. 2020(22): 8235-8239 .
![]() | |
4. |
余玮玥,黄冬梅,史永富,孔聪,田良良,韩峰,张政权. 液相色谱-串联质谱法测定水产品中亮绿、亚甲基蓝及其代谢物残留量. 分析测试学报. 2019(01): 58-63 .
![]() | |
5. |
施雅. 淡水鱼中亚甲基蓝、孔雀石绿类药物残留检测. 广州化工. 2019(14): 131-133 .
![]() | |
6. |
高平,杨曦,莫彩娜,陈日檬,曾丹丹,刘唤明,洪鹏志,周凯,陈营寿. 通过式固相萃取净化/高效液相色谱-串联质谱法快速测定水产品中6种麻醉剂残留. 分析测试学报. 2019(09): 1059-1065 .
![]() | |
7. |
杨卫军,张静余,严敏鸣. 亚甲基蓝检测方法及代谢动力学研究进展. 食品安全质量检测学报. 2018(10): 2419-2425 .
![]() | |
8. |
Jin Fan,Zhi-Hai Xie,Xiao-Xiao Teng,Yu Zhang. Determination of methylene blue by resonance light scattering method using silica nanoparticles as probe. Chinese Chemical Letters. 2017(05): 1104-1110 .
![]() |
|
9. |
梁楠,胡鲲,刘腾飞,吴映捷,杨先乐. 亚甲基蓝及其代谢物在异育银鲫体内分布及消除规律的研究. 南方水产科学. 2017(01): 19-25 .
![]() | |
10. |
龙举,李子孟,喻亮,李佩佩,严忠雍,张小军. 高效液相色谱法测定养殖水体中的亚甲基蓝. 安徽农业科学. 2015(24): 5-6+16 .
![]() |