WANG Lun, WANG Chongyi, LIU Jianyong. Evaluation of genetic parameters for growth and comprehensive stress tolerance traits of Litopenaeus vannamei[J]. South China Fisheries Science, 2022, 18(4): 95-102. DOI: 10.12131/20210252
Citation: WANG Lun, WANG Chongyi, LIU Jianyong. Evaluation of genetic parameters for growth and comprehensive stress tolerance traits of Litopenaeus vannamei[J]. South China Fisheries Science, 2022, 18(4): 95-102. DOI: 10.12131/20210252

Evaluation of genetic parameters for growth and comprehensive stress tolerance traits of Litopenaeus vannamei

More Information
  • Received Date: September 01, 2021
  • Revised Date: November 08, 2021
  • Accepted Date: November 24, 2021
  • Available Online: December 09, 2021
  • To enrich the growth and stress resistance database of Litopenaeus vannamei, and to provide scientific references for the genetic improvement of its growth and comprehensive stress tolerance. We took five L. vannamei populations with different genetic backgrounds as parents, among which "Xinghai 1" (GS-01-007-2017) was the core population and the other four populations were introduced from Thailand and the United States. Eighty full-sib families had been obtained through mating and 38 families finally retained. We then used multi-trait animal model and ASReml 4 software to estimate the variance components and genetic parameters of growth and comprehensive stress tolerance of L. vannamei at 105 age old under the combined stress of high salt (35), low pH (6±0.1), and high ammonia nitrogen (70 mg·L−1). The results show that the heritability of growth traits was high (0.37±0.09)−(0.51±0.10), and the heritability of comprehensive stress tolerance traits was medium (0.21±0.06). The results show that it is feasible to improve the growth traits and comprehensive stress tolerance traits by breeding. The genetic correlation of growth traits (Including body mass, body length, head breastplate length, and full length of the abdomen) was generally high, ranging from (0.54±0.13)−(0.99±0.01) (P<0.01). The extremely significant correlation between growth traits shows that any growth trait could be replaced by other growth traits for indirect selection. The genetic correlation between growth traits and comprehensive stress tolerance traits was low to medium positive correlation (0.11±0.23)−(0.39±0.19), indicating that the comprehensive stress tolerance traits can also be indirectly improved when breeding with growth traits as the main selection target.
  • [1]
    HU D X, PAN L Q, ZHAO Q, et al. Transcriptomic response to low salinity stress in gills of the Pacific white shrimp, Litopenaeus vannamei[J]. Mar Genom, 2015, 24(3): 297-304.
    [2]
    陶飞燕, 潘创, 陈胜军, 等. 基于高通量测序技术分析微冻凡纳滨对虾的微生物[J]. 南方水产科学, 2021, 17(2): 104-113. doi: 10.12131/20200211
    [3]
    张嘉晨. 凡纳滨对虾选育群体生长、存活和耐低溶氧性状遗传参数的估计[D]. 湛江: 广东海洋大学, 2016: 1.
    [4]
    农业农村部渔业渔政管理局. 2021年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 17-22.
    [5]
    ZHANG J C, CAO F J, LIU J Y, et al. Genetic parameters for growth and hypoxic tolerance traits in Pacific white shrimp Litopenaeus vannamei at different ages[J]. N Am J Aquac, 2017, 79(1): 75-83. doi: 10.1080/15222055.2016.1194923
    [6]
    YUAN R P, HU Z G, LIU J Y, et al. Genetic parameters for growth-related traits and survival in Pacific white shrimp, Litopenaeus vannamei under conditions of high ammonia-N concentrations[J]. Turk J Fish Aquat Sc, 2018, 18(1): 37-47.
    [7]
    ANDRIANTAHINA F, LIU X L, HUANG H, et al. Response to selection, heritability and genetic correlations between body weight and body size in Pacific white shrimp, Litopenaeus vannamei[J]. Chin J Oceanol Limn, 2012, 30(2): 200-205. doi: 10.1007/s00343-012-1066-2
    [8]
    ELVINGSON P, JOHANSSON K. Genetic and environmental components in body traits of rainbow trout (Oncorhynchus mykiss) in relation to age[J]. Aquaculture, 1993, 118(3/4): 191-204.
    [9]
    LU X, LUAN S, LUO K, et al. Genetic analysis of the Pacific white shrimp (Litopenaeus vannamei): heterosis and heritability for harvest body weight[J]. Aquac Res, 2015, 11(47): 3365-3375.
    [10]
    李波波, 栾生, 柴展, 等. 低密度养殖模式下中国明对虾社会交互效应的遗传分析[J]. 水产学报, 2020, 44(12): 1987-1996.
    [11]
    熊大林, 段亚飞, 徐敬明, 等. 凡纳滨对虾鳃组织对高温和氨氮胁迫的生理响应[J]. 南方农业学报, 2020, 51(9): 2296-2303. doi: 10.3969/j.issn.2095-1191.2020.09.031
    [12]
    戴习林, 杨展昆, 朱其建. 凡纳滨对虾室内养殖密度和简易水质调控措施对水质及养殖效果的影响[J]. 上海海洋大学学报, 2018, 27(6): 894-906.
    [13]
    CHEN J C, LIU P C, LIN Y T, et al. Super intensive culture of red-tailed shrimp Penaeus penicillatus[J]. J World Aquac Soc, 1988, 19(3): 127-131. doi: 10.1111/j.1749-7345.1988.tb00940.x
    [14]
    HAINES T A. Acidic precipitation and its consequences for aquatic ecosystems: a review[J]. T Am Fish Soc, 1981, 110(6): 669-707. doi: 10.1577/1548-8659(1981)110<669:APAICF>2.0.CO;2
    [15]
    周龙龙. 铜围网大黄鱼(Pseudosciaena crocea)养殖附近海域浮游生物群落结构特征[D]. 舟山: 浙江海洋大学, 2018: 15-16.
    [16]
    COLOMBANI N, GIAMBASTIANI B M S, MASTROCICCO M. Impact of climate variability on the salinization of the coastal wetland-aquifer system of the Po Delta, Italy[J]. J Water Supply Res, 2017, 66(7): 430-441.
    [17]
    CUI Y T, REN X Y, LI J, et al. Effects of ammonia-N stress on metabolic and immune function via the neuroendocrine system in Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2017, 64(6): 270-275.
    [18]
    JOSEPH A, PHILIP R. Immunocompetence of Penaeus monodon under acute salinity stress and pathogenicity of Vibrio harveyi with respect to ambient salinity[J]. Fish Shellfish Immunol, 2020, 106: 555-562. doi: 10.1016/j.fsi.2020.07.067
    [19]
    YU Q R, XIE J, HUANG M X, et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei[J]. Aquac Rep, 2020, 16(3): 100280.
    [20]
    梁彩凤, 刘建勇. pH对日本囊对虾的急性毒性初步研究[J]. 渔业现代化, 2019, 46(1): 41-45.
    [21]
    赵玉超, 王仁杰, 敏沈, 等. 高盐对凡纳滨对虾仔虾生长、渗透调节及免疫相关酶活性的影响[J]. 水产学报, 2019, 43(4): 833-840.
    [22]
    胡志国, 刘建勇, 袁瑞鹏, 等. 3个凡纳滨对虾引进群体对温度和盐度耐受力的配合力分析[J]. 海洋科学, 2016, 40(1): 25-31. doi: 10.11759/hykx20141009003
    [23]
    胡志国, 刘建勇, 袁瑞鹏, 等. 凡纳滨对虾高氨氮和低溶氧抗逆性状的杂交配合力分析[J]. 南方水产科学, 2016, 12(1): 43-49. doi: 10.3969/j.issn.2095-0780.2016.01.007
    [24]
    赵先银, 李健, 陈萍, 等. pH胁迫对3种对虾存活率、离子转运酶和免疫酶活力的影响[J]. 上海海洋大学学报, 2011, 20(5): 720-728.
    [25]
    熊大林, 段亚飞, 陈成勋, 等. 高温与氨氮复合胁迫对凡纳滨对虾渗透调节的影响[J]. 水产科学, 2021, 40(4): 475-482.
    [26]
    袁瑞鹏, 刘建勇, 张嘉晨, 等. 凡纳滨对虾生长与高氨氮耐受性的遗传力及选择反应研究[J]. 南方水产科学, 2017, 13(3): 83-89. doi: 10.3969/j.issn.2095-0780.2017.03.011
    [27]
    袁瑞鹏. 凡纳滨对虾生长、繁殖及高氨氮耐受性的选择育种研究[D]. 湛江: 广东海洋大学, 2016: 16-17.
    [28]
    FU S, LIANG C F, LI Z M, et al. Characterization and functional analysis of MjChi4 from the kuruma shrimp Marsupenaeus japonicus under the environmental stresses low pH and high ammonia[J]. Aquac Res, 2021, 52(11): 5350-5365. doi: 10.1111/are.15405
    [29]
    DUAN Y F, WANG Y, LIU Q S, et al. Changes in the intestine barrier function of Litopenaeus vannamei in response to pH stress[J]. Fish Shellfish Immunol, 2019, 88: 142-149. doi: 10.1016/j.fsi.2019.02.047
    [30]
    李明栋, 李吉涛, 史鲲鹏, 等. 脊尾白虾耐盐碱性状遗传力和遗传相关的估计[J]. 渔业科学进展, 2021, 42(1): 117-123.
    [31]
    董丽君. 对虾耐低温性状遗传参数分析及相关基因筛选[D]. 上海: 上海海洋大学, 2018: 9-10.
    [32]
    周发林, 杨其彬, 黄建华, 等. 斑节对虾耐氨氮和淡水应激性状的遗传参数估计[J]. 南方水产科学, 2019, 15(5): 63-68. doi: 10.12131/20190091
    [33]
    LYU D, YU Y, ZHANG Q, et al. Estimating genetic parameters for resistance to Vibrio parahaemolyticus with molecular markers in Pacific white shrimp[J]. Aquaculture, 2020, 527(15): 735439.
    [34]
    LU X, LUAN S, CAO B X, et al. Estimation of genetic parameters and genotype by environment interactions related to acute ammonia stress in Pacific white shrimp (Litopenaeus vannamei) juveniles at two different salinity levels[J]. PLOS ONE, 2017, 17(3): e0173835.
    [35]
    GILMOUR A R, GOGEL B J, CULLIS B R, et al. ASReml user guide release 4.1 structural specification[M]. Hemel Hempstead: VSN International Ltd. , 2015: 110-148.
    [36]
    寇红岩, 冼健安, 郭惠, 等. 亚硝酸盐对虾类毒性影响的研究进展[J]. 海洋科学, 2014, 38(2): 107-115.
    [37]
    CHEN J C, CHEN K W. Oxygen uptake and ammonia-N excretion of juvenile Penaeus japonicus during depuration following one-day exposure to different concentrations of saponin at different salinity levels[J]. Aquaculture, 1997, 156: 77-83. doi: 10.1016/S0044-8486(97)00085-9
    [38]
    CAMACHO-JIMENEZ L, DIAZ F, SANCHEZ-CASTREJON E, et al. Effects of the recombinant crustacean hyperglycemic hormones rCHH-B1 and rCHH-B2 on the osmo-ionic regulation of the shrimp Litopenaeus vannamei exposed to acute salinity stress[J]. J Comp Physiol B, 2018, 188(4): 565-579. doi: 10.1007/s00360-018-1151-8
    [39]
    张嘉晨, 曹伏君, 刘建勇, 等. 凡纳滨对虾(Litopenaeus vannamei)生长和耐低溶氧性状的遗传参数估计和遗传获得评估[J]. 海洋与湖沼, 2016, 47(4): 869-875. doi: 10.11693/hyhz20160400084
    [40]
    THODESEN J, MORTEN R, WANG Y X, et al. Genetic improvement of tilapias in China: genetic parameters and selection responses in growth of Nile tilapia (Oreochromis niloticus) after six generations of multi-trait selection for growth and fillet yield[J]. Aquaculture, 2011, 322: 51-64.
    [41]
    BENTSEN H B, GJERDE B, NGUYEN N H, et al. Genetic improvement of farmed tilapias: genetic parameters for body weight at harvest in Oreochromis niloticus during five generations of testing in multiple environments[J]. Aquaculture, 2012, 338/339/340/341: 56-65.
    [42]
    CASTILLO-JUAREZ H, CASARES J C Q, CAMPOS-MONTES G, et al. Heritability for body weight at harvest size in the Pacific white shrimp, Penaeus (Litopenaeus) vannamei, from a multi-environment experiment using univariate and multivariate animal models[J]. Aquaculture, 2007, 273(1): 42-49. doi: 10.1016/j.aquaculture.2007.09.023
  • Cited by

    Periodical cited type(1)

    1. 田思泉,柳晓雪,花传祥,王寅,杜涣洋. 南海渔业资源状况及其管理挑战. 上海海洋大学学报. 2024(03): 786-798 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return