YU Jing, HU Qiwei, YUAN Huarong, CHEN Pimao. Effect assessment of summer fishing moratorium in Daya Bay based on remote sensing data[J]. South China Fisheries Science, 2018, 14(3): 1-9. DOI: 10.3969/j.issn.2095−0780.2018.03.001
Citation: YU Jing, HU Qiwei, YUAN Huarong, CHEN Pimao. Effect assessment of summer fishing moratorium in Daya Bay based on remote sensing data[J]. South China Fisheries Science, 2018, 14(3): 1-9. DOI: 10.3969/j.issn.2095−0780.2018.03.001

Effect assessment of summer fishing moratorium in Daya Bay based on remote sensing data

More Information
  • Received Date: September 12, 2017
  • Revised Date: January 26, 2018
  • Available Online: January 07, 2019
  • Based on the data of satellite remote sensing and trawl surveys, we analyzed the variation in sea surface temperature (SST), chlorophyll a (Chl-a) concentration, catch per unit effort (CPUE) of total catch, biodiversity, species composition, body length and mass of total catch during the pre-SFM (May in 2015) and post-SFM (August in 2015) in Daya Bay, to assess the maintenance effect of summer fishing moratorium (SFM) in that area. Results show that the major variation range of CPUE increased from 0−10 kg·h–1 in the pre-SFM to 0−40 kg·h–1 in the post-SFM. The average body length and mass increased, indicating that the growth rate of total catch accelerated. In the post-SFM, the indices of Shannon-Wiener and Pielou increased by 0.36 and 0.14, respectively, which shows that the community structure was improved. The biomass spectra of the fishery resource community shows that the slopes of normalized biomass spectra in the post-SFM was over –1, and the biomass of fishery resources increased with the increase of the individual body mass in the post-SFM. SFM alleviated the fishing intensity, recovered and conserved the fishery resources in Daya Bay. In order to improve the SFM system and promote sustainable development of coastal fishery resources, it is suggested to prolong the time of SFM appropriately, reduce the number of coastal fishing boats, and enforce the conservation of fish resources.
  • [1]
    晏磊, 谭永光, 杨炳忠, 等. 基于张网渔业休渔前后的黄茅海河口渔业资源群落比较[J]. 南方水产科学, 2016, 12(6): 1-8.
    [2]
    吴壮. 南海休渔十年的回顾与思考[J]. 中国水产, 2008, 8(8): 4-6.
    [3]
    程家骅. 伏季休渔制度实践的回顾之三:现行伏季休渔制度的局限性分析及展望[J]. 中国水产, 2008(8): 17-19.
    [4]
    史赟荣, 李永振, 孙冬芳, 等. 从资源变化、生态保护、经济效益和社会影响分析南海伏季休渔十年效果[J]. 中国水产, 2008(9): 14-16.
    [5]
    YU J, HU Q W, YUAN H R, et al. Effects assessment of summer fishing moratorium in Daya Bay in the Northern South China Sea[J]. J Geosci Environ Prot, 2017, 5(7): 96-108.
    [6]
    JIANG T, CHEN F, YU Z, et al. Size-dependent depletion and community disturbance of phytoplankton under intensive oyster mariculture based on HPLC pigment analysis in Daya Bay, South China Sea[J]. Environ Pollut, 2016, 219(11): 804-814.
    [7]
    CHEN P, QIN C, YU J, et al. Evaluation of the effect of stock enhancement in the coastal waters of Guangdong, China[J]. Fish Manag Ecol, 2015, 22(2): 172-180.
    [8]
    JIANG Y Z, CHENG J H, LI S F. Temporal changes in the fish community resulting from a summer fishing moratorium in the northern East China Sea[J]. Mar Ecol Prog Ser, 2009, 387: 265-273.
    [9]
    邹建伟, 王强哲, 黄俊秀, 等. 南海北部大陆架渔场年伏季休渔效果评价[J]. 水产科技情报, 2016, 43(6): 318-323.
    [10]
    李斌, 陈国宝, 郭禹, 等. 南海中部海域渔业资源时空分布和资源量的水声学评估[J]. 南方水产科学, 2016, 12(4): 28-37.
    [11]
    YU J, TANG D L, OH I S, et al. Response of harmful algal blooms to environmental changes in Daya Bay, China[J]. Terr Atmos Ocean Sci, 2007, 18(5): 1011-10247.
    [12]
    YU J, TANG D L, WANG S F, et al. Changes of water temperature and algal bloom in Daya Bay in the northern South China Sea[J]. Mar Sci Bull, 2007, 9(2): 25-33.
    [13]
    余景, 胡启伟, 李纯厚, 等. 西沙-中沙海域春季鸢乌贼资源与海洋环境的关系[J]. 海洋学报, 2017, 39(6): 62-73.
    [14]
    王政权. 地统计学及在生态学中的应用[M]. 北京:科学出版社, 1999: 35-82.
    [15]
    HILBORN R, WALTERS C J. Quantitative fisheries stock assessment[M]. London:Chapman and Hall, 1992:177-178.
    [16]
    PARZEN E. On estimation of a probability density function and mode[J]. Ann Stat, 1962, 33(3): 1065-1076.
    [17]
    WILSON J, SHEAVES M. Short-term temporal variations in taxonomic composition and trophic structure of a tropical estuarine fish assemblage[J]. Mar Biol, 2001, 139(4): 787-796.
    [18]
    周林滨, 谭烨辉, 黄良民, 等. 水生生物粒径谱/生物量谱研究进展[J]. 生态学报, 2010, 30(12): 3319-3333.
    [19]
    PLATT T, DENMAN K. Organisation in the pelagic ecosystem[J]. Helgoländer Wissenschaftliche Meeresuntersuchungen, 1977, 30(1/2/3/4): 575-581.
    [20]
    朱玉贵.中国伏季休渔效果研究——一种制度分析视角[D]. 青岛:中国海洋大学, 2009:12-85.
    [21]
    林昭进, 王雪辉, 江艳娥. 大亚湾鱼卵数量分布及种类组成特征[J]. 中国水产科学, 2010, 17(3): 543-550.
    [22]
    余景, 毛江美, 袁华荣, 等. 深圳鹅公湾水域渔业资源季节变动分析[J]. 南方农业学报, 2017, 48(6): 1106-1112.
    [23]
    MAO J M, YUAN H R, YU J, et al. GLM-based analysis on seasonal variation of fishery resources in Dapeng Bay, China[J]. J Geosci Environ Prot, 2017, 5: 32-45.
    [24]
    侯秀琼, 陈春亮, 孙省利, 等. 伏季休渔深圳市海域鱼类资源调查研究[J]. 海洋开发与管理, 2009, 26(1): 106-112.
    [25]
    陈春亮, 曲念东, 侯秀琼, 等. 伏季休渔深圳海域渔业资源调查分析[J]. 水产科学, 2008, 27(12): 648-651.
    [26]
    YU J, CHEN P M, TANG D L, et al. Ecological effects of artificial reefs in Daya Bay of China observed from satellite and in situ measurements[J]. Adv Space Res, 2015, 55(9): 2315-2324.
    [27]
    YU J, CHEN P M, ZHAO M.Satellite remote sensing assessment of ecological effects of artificial reefs in Daya Bay, China[C]//BREBBIA C. Remote sensing and smart city. UK: WIT Press, 2014: 269-275.
    [28]
    YU J, TANG D L, YAO L J, et al. Long-term water temperature variations in Daya Bay, China using satellite and in situ observations[J]. Terr Atmos Ocean Sci, 2010, 21(2): 393-399.
    [29]
    王雪辉, 杜飞雁, 邱永松, 等. 年大亚湾鱼类物种多样性、区系特征和数量变化[J]. 应用生态学报, 2010, 21(9): 2403-2410.
    [30]
    WANG Y S, LOU Z P, SUN C C, et al. Ecological environment changes in Daya Bay, China, from 1982 to 2004[J]. Mar Pollut Bull, 2008, 56(11): 1871-1879.
    [31]
    廖秀丽, 陈丕茂, 马胜伟, 等. 大亚湾杨梅坑海域投礁前后浮游植物群落结构及其与环境因子的关系[J]. 南方水产科学, 2013, 9(5): 109-119.
    [32]
    范江涛, 陈作志, 张俊, 等. 基于海洋环境因子和不同权重系数的南海中沙西沙海域鸢乌贼渔场分析[J]. 南方水产科学, 2016, 12(4): 57-63.
    [33]
    李斌, 陈国宝, 郭禹, 等. 南海中部海域渔业资源时空分布和资源量的水声学评估[J]. 南方水产科学, 2016, 12(4): 28-37.
    [34]
    陈应华.大亚湾大辣甲南人工鱼礁区的生态效应分析[D]. 广州:暨南大学, 2009:36-78.
    [35]
    佟飞, 秦传新, 余景, 等. 粤东柘林湾溜牛人工鱼礁建设选址生态基础评价[J]. 南方水产科学, 2016, 12(6): 25-32.
    [36]
    MOLONY B W, LENANTON R, JACKSON G, et al. Stock enhancement as a fisheries management tool[J]. Rev Fish Biol Fishe, 2003, 13(4): 409-432.
    [37]
    林金邋, 陈琳, 郭金富, 等. 大亚湾真鲷标志放流技术的研究[J]. 热带海洋学报, 2001, 20(2): 75-79.
    [38]
    MASUDA R, TSUKAMOTO K. Stock enhancement in Japan: review and perspective[J]. Bull Mar Sci, 1998, 62(2): 337-358.
    [39]
    梁君. 海洋渔业资源增殖放流效果的主要影响因素及对策研究[J]. 中国渔业经济, 2013, 31(5): 122-134.
  • Related Articles

    [1]Cover & Content[J]. South China Fisheries Science, 2022, 18(1): 1-3.
    [2]Cover & Content[J]. South China Fisheries Science, 2021, 17(3).
    [3]Cover & Content[J]. South China Fisheries Science, 2021, 17(2).
    [4]Cover & Content[J]. South China Fisheries Science, 2020, 16(6).
    [5]Cover & Content[J]. South China Fisheries Science, 2020, 16(5).
    [6]Cover & Content[J]. South China Fisheries Science, 2019, 15(4).
    [7]Cover & Content[J]. South China Fisheries Science, 2019, 15(2).
    [8]Cover & Content[J]. South China Fisheries Science, 2019, 15(1).
    [9]Content & Cover[J]. South China Fisheries Science, 2018, 14(6).
    [10]Content & Cover[J]. South China Fisheries Science, 2018, 14(5).

Catalog

    Recommendations
    基于基尔霍夫近似模型的南海大黄鱼声学目标强度研究
    王文卓 et al., 南方水产科学, 2024
    广西银滩南部海域海洋牧场渔业资源评估
    牛麓连 et al., 南方水产科学, 2024
    珠海外伶仃海洋牧场春季渔业资源生物碳储量初探
    魏文迪 et al., 南方水产科学, 2024
    广西银滩南部海域海洋牧场鱼类群落结构特征及其与环境因子的关系
    于杰 et al., 南方水产科学, 2024
    中西太平洋主要金枪鱼产量回顾性分析
    ZHENG Linbin et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
    基于node-gam模型的太平洋中部大眼金枪鱼cpue时空分布及其与环境因子的关系
    周淑婷 et al., 广东海洋大学学报, 2025
    Temperature induced biological alterations in the major carp, rohu (labeo rohita): assessing potential effects of climate change on aquaculture production
    Mridul, Md. Monirul Islam et al., AQUACULTURE REPORTS, 2024
    Time series prediction of sea surface temperature based on bilstm model with attention mechanism
    Zrira, Nabila et al., JOURNAL OF SEA RESEARCH, 2024
    Dependence of daily precipitation and wind speed over coastal areas: evidence from china's coastline
    HYDROLOGY RESEARCH, 2023
    Hybrid model approach for hilly sub-watershed prioritization using morphometric parameters: a case study from bakkhali river watershed in cox’s bazar, bangladesh
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Powered by
    Article views (1836) PDF downloads (519) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return