Citation: | HAN Tingting, QI Zhanhui, DAI Ming, LIAO Xiuli, WU Fengxia, GONG Xiuyu, FU Guiquan, HUANG Honghui. Study on urea concentration and urease activity of phytoplankton in different areas of Dapeng Cove[J]. South China Fisheries Science, 2016, 12(2): 7-12. DOI: 10.3969/j.issn.2095-0780.2016.02.002 |
Based on the data of the cruise that was carried out in Dapeng Cove, mainly including thermal discharge area from nuclear power plant, artificial reef area, aquaculture area and three main estuarine areas into Dapeng Cove, Nanyong River, Longqi River and Wangmu River in Aug., 2014 (summer), we investigated the urea concentration (expressed by nitrogen, Urea-N) and urease activity of phytoplankton together with the other environmental parameters to discuss the bioavailability of urea for phytoplankton. Obvious difference between the bay and the estuary with average urea concentrations ranging from 0.28 to 1.21 μmol·L-1 and 0.38 to 3.50 μmol·L-1, respectively, and the urea concentration was 6.30%~24.31% of DIN in the bay and 3.13%~6.77% of DIN in the estuary, resulting in inorganic nitrogen source for phytoplankton in Dapeng Cove. Urea concentration reached the maximum at Longqi estuary and Wangmu estuary, followed by aquaculture area. The urease activity of phytoplankton in the bay and the estuary ranged from 0.61 to 1.03 μmol·(L·h)-1 and 0.82 to 1.07 μmol·(L·h)-1, respectively. Urease activity was positively related with urea concentration, and was also affected by inorganic nutrient and phytoplankton biomass. In the artificial reef area, aquaculture area and Nanyong estuary without N and P limitation, high Chl-a concentration could promote urease activity; in the aquaculture area, urea was the main nitrogen source for phytoplankton, and Chl-a had very significant positive correlation with urease activity; in the thermal discharge area (Longqi estuary and Wangmu estuary), P limitation resulted in inhibitory regulation of urease activity.
[1] |
GLIBERT P M, HARRISON J, HEI C A, et al. Escalating worldwide use of urea: a global change contributing to coastal eutrophication[J]. Biogeochemistry, 2006, 77(3): 441-463. doi: 10.1007/s10533-005-3070-5
|
[2] |
SINHA A K, RASOLONIRIANA R, DASAN A F, et al. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities[J]. Aquat Toxicol, 2015, 160: 39-56. doi: 10.1016/j.aquatox.2015.01.005
|
[3] |
周毅, 杨红生, 何义朝, 等. 四十里湾几种双壳贝类及污损动物的氮、磷排泄及其生态效应[J]. 海洋与湖沼, 2002, 33(4): 424-431. doi: 10.3321/j.issn:0029-814X.2002.04.012
|
[4] |
黄爽, 石晓勇, 张传松, 等. 2010年春季杭州湾邻近海域尿素浓度及平面分布[J]. 海洋环境科学, 2012, 31(1): 58-61. doi: 10.3969/j.issn.1007-6336.2012.01.013
|
[5] |
黄凯旋, 张云, 欧林坚, 等. 春季海南岛近岸海域尿素与浮游生物的脲酶活性[J]. 生态学报, 2013, 33(15): 4575-4582. doi: 10.5846/stxb201205150717
|
[6] |
赖海燕, 徐宁, 段舜山. 大亚湾裸甲藻种群动态及其关键调控因子[J]. 生态环境学报, 2011, 31(2): 307-315. doi: 10.3969/j.issn.1674-5906.2011.03.020
|
[7] |
张云, 黄凯旋, 欧林坚, 等. 大亚湾海域尿素与浮游生物脲酶活性研究[J]. 热带海洋学报, 2014, 33(1): 90-96. doi: 10.3969/j.issn.1009-5470.2014.01.012
|
[8] |
孙丽华, 陈浩如, 彭云辉, 等. 大亚湾大鹏澳周边河流中营养盐的分布及入海通量的估算[J]. 台湾海峡, 2003, 22(2): 211-217. doi: 10.3969/j.issn.1000-8160.2003.02.014
|
[9] |
黄洪辉, 林钦, 王文质, 等. 大鹏澳海水鱼类网箱养殖对水环境的影响[J]. 南方水产, 2005, 1(3): 9-17. doi: 10.3969/j.issn.2095-0780.2005.03.002
|
[10] |
黄洪辉, 林钦, 甘居利, 等. 大鹏澳海水鱼类网箱养殖对沉积环境的影响[J]. 农业环境科学学报, 2007, 26(1): 75-80. doi: 10.3321/j.issn:1672-2043.2007.01.014
|
[11] |
陈丕茂, 袁华荣, 贾晓平, 等. 大亚湾杨梅坑人工鱼礁区渔业资源变动初步研究[J]. 南方水产科学, 2013, 9(5): 100-108. doi: 10.3969/j.issn.2095-0780.2013.05.016
|
[12] |
丘耀文, 王肇鼎, 朱良生. 大亚湾海域营养盐与叶绿素浓度的变化趋势及其对生态环境的影响[J]. 台湾海峡, 2005, 24(2): 131-139. doi: 10.3969/j.issn.1000-8160.2005.02.001
|
[13] |
TURNER M F. Nutrition of some marine microalgae with special reference to vitamin requirements and utilization of nitrogen and carbon sources[J]. J Mar Biol Assoc UK, 1979, 59(3): 535-552. doi: 10.1017/S0025315400045550
|
[14] |
KILLBERG-THORESON L, MULHOLLAND M R, HEIL C A, et al. Nitrogen uptake kinetics in filed populations and cultured strains of Karenia brevis[J]. Harmful Algae, 2014, 38: 73-85. doi: 10.1016/j.hal.2014.04.008
|
[15] |
LINDEHOFF E, GRANÉLI E, GLIBERT P M. Nitrogen uptake kinetics of Prymnesium parvum (Haptophyte)[J]. Harmful Algae, 2011, 12: 70-76. doi: 10.1016/j.hal.2011.09.001
|
[16] |
SOLOMON C M, ALEXANDER J A, GLIBERT P M. Measuring urease activity in aquatic environmental samples[J]. Limnol Oceanogr-Meth, 2007, 5(9): 280-288. doi: 10.4319/lom.2007.5.280
|
[17] |
SOLOMON C M, GLIBERT P M. Urease activity in five phytoplankton species[J]. Aquat Microb Ecol, 2008, 52(2): 149-157.
|
[18] |
FAN C, GLIBER P M, BURKHOLDE J M. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures[J]. Harmful Algae, 2003, 2(4): 283-299. doi: 10.1016/S1568-9883(03)00047-7
|
[19] |
GOBLER C J, BURSON A, KOCH F, et al. The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA)[J]. Harmful Algae, 2012, 17: 64-74. doi: 10.1016/j.hal.2012.03.001
|
[20] |
蒋汉明, 高坤山. 氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响[J]. 水生生物学报, 2004, 28(5): 545-551. doi: 10.3321/j.issn:1000-3207.2004.05.015
|
[21] |
胡章喜, 徐宁, 段舜山, 等. 尿素对中国近海3种典型赤潮藻生长的影响[J]. 环境科学学报, 2010, 30(6): 1265-1270. https://cstj.cqvip.com/Qikan/Article/Detail?id=33993190&from=Qikan_Article_Detail
|
[22] |
孙耀, 宋云利. 虾塘养殖水环境中氮磷营养盐的存在特征与行为[J]. 水产学报, 1998, 22(2): 117-123. https://www.china-fishery.com/scxuebao/article/abstract/19980204
|
[23] |
于锡军, 黄道建, 郭振仁, 等. 大亚湾大辣甲水域叶绿素a及营养盐的垂直分布与季节变化[J]. 生态科学, 2013, 32(1): 78-83. doi: 10.3969/j.issn.1008-8873.2013.01.014
|
[24] |
李柱, 郭伟杰, 成水平, 等. 南淝河叶绿素a时空分布特征及环境因子影响分析[J]. 水生生物学报, 2014, 38(2): 342-350. doi: 10.7541/2014.49
|
[25] |
JUSTIC D, RABALAIS N N, TURNER R E. Coupling between climate variability and coastal eutrophication: evidence and outlook for the northern Gulf of Mexico[J]. J Sea Res, 2005, 54(1): 25-35. doi: 10.1016/j.seares.2005.02.008
|
[26] |
YUAN M L, WANG Z H, LI Y F. Effects of nitrogen and phosphorus limitation on the growth of Chattonella marina[J]. Acta Ecologica Sinica, 2008, 28(1): 430-436. doi: 10.3321/j.issn:1000-0933.2008.01.050
|
[27] |
DORTCH Q. The interaction between ammonium and nitrate uptake in phytoplankton[J]. Mar Ecol Progr Ser, 1990, 61(1/2): 183-201. doi: 10.3354/meps061183
|
[28] |
彭欣, 宁修仁, 孙军, 等. 南海北部浮游植物生长对营养盐的响应[J]. 生态学报, 2006, 26(12): 3959-3968. doi: 10.3321/j.issn:1000-0933.2006.12.006
|
[29] |
郭永坚, 罗昭林, 朱长波, 等. 水产养殖对流沙湾浮游植物群落特征的影响[J]. 南方水产科学, 2015, 11(2): 57-65. doi: 10.3969/j.issn.2095-0780.2015.02.008
|
[30] |
LIU J Z, VYVERMAN W. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions[J]. Bioresour Technol, 2015, 179: 234-242. doi: 10.1016/j.biortech.2014.12.028
|