Citation: | CHEN Weizhou, ZHONG Zhihai, JIN Yulin, HUANG Zhongjian. Effects of light intensity, temperature and salinity on growth and biochemical constituents of Hypnea cervicornis[J]. South China Fisheries Science, 2014, 10(2): 48-53. DOI: 10.3969/j.issn.2095-0780.2014.02.007 |
We investigated the effects of different light intensities (2 000 lx, 4 000 lx, 7 500 lx, 10 000 lx, 15 000 lx), temperatures (15 ℃, 20 ℃, 25 ℃, 30 ℃, 35 ℃) and salinities (5, 10, 15, 20, 25, 30, 35) on the growth and biochemical constituents of Hypnea cervicornis. The suitable conditions for the growth of H.cervicornis were light intensity of 2 000~4 000 lx, 20~30 ℃ and salinity of 25~35;the optimum conditions were light intensity of 4 000 lx, 25℃ and salinity of 30, under which H.cervicornis obtained the maximum relative growth rate (RGR) and the lowest SOD activity. The contents of soluble protein (SP), chlorophyll a (Chl-a) and carotiniod (Car) decreased while those of phycoerythrin(PE) and phycocyanin(PC) increased with increasing light intensity within light intensity of 4 000~15 000 lx. Under conditions of 25~35 ℃ and salinity of 30~35, the contents of soluble protein, chlorophyll a, carotiniod, phycoerythrin and phycocyanin decreased with increasing temperature and salinity, which indicates that optimum temperature and salinity can promote the accumulation of biochemical components of H.cervicornis.
[1] |
周军平, 关雄泰, 梁统, 等. 沙菜属经济藻类氨基酸与微量元素研究[J]. 广东微量元素科学, 1996, 3(10): 59-64.
|
[2] |
夏邦美. 中国海藻志, 红藻门, 伊谷藻目, 杉藻目, 红皮藻目[M]. 北京: 科学出版社, 1999: 78-81. https://book.douban.com/subject/1550210/
|
[3] |
SHIN W G, BOO S M. A systematic study on the genus Hypnea (Gigartinales, Rhodophyta) in Korea[J]. Kor J Phycol, 1994, 9(1): 7-20. https://www.semanticscholar.org/paper/A-Systematic-Study-on-the-Genus-Hypnea-(-%2C-)-in-Sin-Bu/359f866ee6fc7286599fb58c84b8a95dbc955007
|
[4] |
FIGUEIREDO J G, BITENCOURT F S, CUNHA T M, et al. Agglutinin isolated from the red marine alga Hypnea cervicornis J. Agardh reduces inflammatory hypernociception: involvement of nitric oxide[J]. Pharmacol Biochem Behav, 2010, 96(4): 371-377. doi: 10.1016/j.pbb.2010.06.008
|
[5] |
YAMAGISHI Y, MASUDA M. A taxonomic revision of a Hypnea charoides-valentiae complex (Rhodophyta, Gigartinales) in Japan, with a description of Hypnea flexicaulis nov. sp. [J]. Phycol Res, 2000, 48(1): 27-35. doi: 10.1111/j.1440-1835.2000.tb00127.x
|
[6] |
KONG C S L, ANG P O J R. Seasonal occurrence and reproduction of Hypnea charoides (Rhodophyta) in Tuing Ping Chau, N.T., Hong Kong SAR, China[J]. Hydrobiologia, 2004, 512(1): 63-78. doi: 10.1023/B:HYDR.0000020311.42410.84
|
[7] |
TAKO M, QI Z Q, YOZA E, et al. Synergistic interaction between k-carrageenan isolated from Hypnea charoides Lamouroux and galactomannan on its gelation[J]. Food Res Int, 1998, 31(8): 543-548. doi: 10.1016/S0963-9969(99)00022-8
|
[8] |
张峻甫, 夏恩湛, 夏邦美. 钩沙菜和冻沙菜的比较研究[J]. 海洋与湖沼, 1963, 5(1): 35-43.
|
[9] |
陈素珍, 关雄泰, 徐美亦, 等. 沙菜属三种经济藻类氨基酸与微量元素含量及其意义[J]. 广东微量元素科学, 1999, 6(8): 48-51. doi: 10.3969/j.issn.1006-446X.1999.08.013
|
[10] |
廖小建, 徐石海, 杨剑萍, 等. 长枝沙菜的化学成分研究[J]. 中草药, 2008, 39(1): 7-9. doi: 10.3321/j.issn:0253-2670.2008.01.003
|
[11] |
黄家康, 蔡鹰, 李思东, 等. 沙菜卡拉胶漂白工艺研究[J]. 广东化工, 2009, 19 (36): 31-33. doi: 10.3969/j.issn.1007-1865.2009.04.012
|
[12] |
PORRA R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b[J]. Photosynth Res, 2002, 73(1/2/3): 149-156. doi: 10.1023/A:1020470224740
|
[13] |
PARSONS T R, STRICKLAND J D H. Discussion of spectrophotometric determination of marine plant pigments, with revised equation for ascertaining chlorophylls and carotenoids[J]. J Mar Res, 1963, 21(3): 155-163. https://www.semanticscholar.org/paper/Discussion-of-spectrophotometric-determination-of-Parsons-Strickland/5cce5cee4e7c3ba73055511ba7d25f678e6ecbb4
|
[14] |
BEER S, ESHEL A. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J]. Aus J Mar Freshw Res, 1985, 36(6): 785-792. doi: 10.1071/MF9850785
|
[15] |
张志良, 瞿伟菁. 植物生理学实验指导[M]. 3版. 北京: 高等教育出版社, 2002: 158-160. https://xueshu.baidu.com/usercenter/paper/show?paperid=1a89c0ab0feda63609ca2fac333d9b6d&site=xueshu_se
|
[16] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 184-185. https://xueshu.baidu.com/usercenter/paper/show?paperid=9451ba3beb65814b9b02a7667177c1b5&site=xueshu_se&hitarticle=1
|
[17] |
GANESAN M, THIRUPPATHI S, BHAVANATH J H A. Mariculture of Hypnea musciformis (Wulfen) Lamouroux in Southeast coast of India[J]. Aquaculture, 2006, 256(1): 201-211. doi: 10.1016/J.AQUACULTURE.2006.01.039
|
[18] |
阳成伟, 彭长连, 陈贻竹. 植物光破坏防御机制的研究进展[J]. 植物学通报, 2003, 20(4): 495-500. doi: 10.3969/j.issn.1674-3466.2003.04.014
|
[19] |
李伟新, 朱仲嘉, 刘凤贤. 海藻学概论[M]. 上海: 上海科学技术出版社, 1982: 224-225. https://xueshu.baidu.com/usercenter/paper/show?paperid=3c0ab084aada15a0212db544dd9ead88&site=xueshu_se
|
[20] |
郭翠, 陈伟洲, 曹会彬, 等. 不同龙须菜品系在高温胁迫下的生理响应比较[J]. 南方水产科学, 2011, 7(3): 14-19. doi: 10.3969/j.issn.2095-0780.2011.03.003
|
[21] |
金玉林, 吴文婷, 陈伟洲. 不同温度和盐度条件对脆江蓠生长及其生化组分的影响[J]. 南方水产科学, 2012, 8(2): 51-57.
|
[22] |
赵建刚, 叶长鹏. 温度和营养盐胁迫对龙须菜氨氮吸收速率及生长速率的影响[J]. 水生态学杂志, 2011, 32(6): 57-60. doi: 10.3969/j.issn.1003-1278.2011.06.011
|
[23] |
郑兰红. 冈村枝管藻培养及实验生态学基础研究[D]. 青岛: 中国海洋大学, 2004. 10.7666/d.y647237
|
[24] |
林贞贤, 宫相忠, 李大鹏. 光照和营养盐胁迫对龙须菜生长及生化组成的影响[J]. 海洋科学, 2007, 31(11): 22-26. doi: 10.3969/j.issn.1000-3096.2007.11.006
|
[25] |
郑蔚然. 坛紫菜R-藻红蛋白的分离纯化及其稳定性研究[D]. 杭州: 浙江工业大学, 2008. 10.7666/d.y1341365
|
[26] |
李映霞. 三种红藻光合作用色素系统的比较研究[D]. 青岛: 中国科学院研究生院, 2007. https://xueshu.baidu.com/usercenter/paper/show?paperid=10b14970cd420a63386405edf68f7a2e&site=xueshu_se&hitarticle=1
|
[27] |
PALLITT K E, YOUNG A J, ALSCHER R G. Antioxidants in higher plants[M]. Boca Raton: CRC Press, 1992: 59-60.
|
[28] |
马旭俊, 朱大海. 植物超氧化物歧化酶(SOD)的研究进展[J]. 遗传, 2003, 25(2): 225-231. doi: 10.3321/j.issn:0253-9772.2003.02.025
|