梭鲈ho1基因的克隆及其低氧胁迫下表达分析

吉宇丹, 孙志鹏, 吕伟华, 鲁翠云, 曹顶臣, 刘天奇, 周佳, 郑先虎

吉宇丹, 孙志鹏, 吕伟华, 鲁翠云, 曹顶臣, 刘天奇, 周佳, 郑先虎. 梭鲈ho1基因的克隆及其低氧胁迫下表达分析[J]. 南方水产科学, 2023, 19(2): 98-106. DOI: 10.12131/20220187
引用本文: 吉宇丹, 孙志鹏, 吕伟华, 鲁翠云, 曹顶臣, 刘天奇, 周佳, 郑先虎. 梭鲈ho1基因的克隆及其低氧胁迫下表达分析[J]. 南方水产科学, 2023, 19(2): 98-106. DOI: 10.12131/20220187
JI Yudan, SUN Zhipeng, LYU Weihua, LU Cuiyun, CAO Dingchen, LIU Tianqi, ZHOU Jia, ZHENG Xianhu. Characterization and expression analysis of ho1 from Sander lucioperca under acute hypoxia stress[J]. South China Fisheries Science, 2023, 19(2): 98-106. DOI: 10.12131/20220187
Citation: JI Yudan, SUN Zhipeng, LYU Weihua, LU Cuiyun, CAO Dingchen, LIU Tianqi, ZHOU Jia, ZHENG Xianhu. Characterization and expression analysis of ho1 from Sander lucioperca under acute hypoxia stress[J]. South China Fisheries Science, 2023, 19(2): 98-106. DOI: 10.12131/20220187

梭鲈ho1基因的克隆及其低氧胁迫下表达分析

基金项目: 中国水产科学研究院黑龙江水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (HSY202009Q);国家重点研发计划项目 (2019YFD0900405);中央引导地方科技发展专项 (ZY21C03);国家淡水水产种质资源库项目 (FGRC18537)
详细信息
    作者简介:

    吉宇丹 (1997—),女,硕士研究生,研究方向为水产生物技术与遗传育种。E-mail: jiyudan1127@163.com

    通讯作者:

    郑先虎 (1982—),男,研究员,博士,研究方向为水产生物技术与遗传育种。E-mail: zhengxianhu@hrfri.ac.cn

  • 中图分类号: S 965.1

Characterization and expression analysis of ho1 from Sander lucioperca under acute hypoxia stress

  • 摘要: 梭鲈 (Sander lucioperca) 对低氧极敏感,在集约化养殖和苗种运输过程中易发生低氧应激和死亡现象。为探究血红素加氧酶1 (Heme oxygenase 1, HO1) 在梭鲈响应低氧过程中的调节作用,通过RACE (Rapid amplification of cDNA ends) 技术克隆了梭鲈ho1基因,其cDNA全长为1 256 bp,包含840 bp的开放阅读框 (Open reading frame, ORF)、162 bp的5'非编码区 (Untranslated region, 5'-UTR) 和254 bp的3'-UTR,编码279个氨基酸。多重序列比对显示,梭鲈HO1与翘嘴鳜 (Siniperca chuatsi)、舌齿鲈 (Dicentrarchus labrax) 和大口黑鲈 (Micropterus salmoides) 的氨基酸序列相似性分别为91.84%、88.69%和88.11%。实时荧光定量结果显示,ho1基因在所有检测组织中均有表达,其中在脑组织中高表达,其次是肾、肝、鳃等组织。低氧刺激前3 h,梭鲈ho1主要在皮肤、鳃中响应;低氧胁迫3 h后,ho1主要在心、肝、肾中发挥转录调控作用。复氧12 h,除肝脏外,梭鲈其他组织ho1的相对表达量均可恢复正常,低氧刺激对肝组织ho1的表达产生了较大影响。研究表明,ho1基因参与梭鲈响应低氧的分子调节机制并在其中发挥着重要的生物学功能,可为深入了解梭鲈低氧胁迫遗传机制提供理论参考。
    Abstract: Sander lucioperca is extremely sensitive to hypoxia, and is prone to hypoxia stress and death during intensive breeding and seedling transportation. In order to investigate the regulating effect of heme oxygenase 1 (HO1) in the response to hypoxia of S. lucioperca, we cloned the full-length cDNA sequence of ho1 gene by RACE (Rapid amplification of cDNA ends) technology. The results indicate that the cDNA length was 1 256 bp (840 bp ORF, 162 bp 5'-UTR and 254 bp 3'-UTR), encoding 279 amino acids. The multiple sequence alignment shows that the similarity of HO1 with Siniperca chuatsi, Dicentrarchus labrax and Micropterus salmoides was 91.84%, 88.69% and 88.11%, respectively. Real-time quantitative PCR discloses that ho1 was expressed in all the tested tissues, with the highest concentration in the brain, followed by the kidney, liver and gills. During the first 3-hour hypoxic stimulation of Pikeperch, ho1 primarily responded in the skin and gills, but mainly played transcriptional regulatory roles in the heart, liver and kidney after 3 h of hypoxic stress. At 12th hour of reoxygenation, the expression levels of ho1 in all the tissues except the liver returned to a normal level, and hypoxia stress had an enormous effect on the expression of ho1 in the liver. The study reveals that ho1 gene is involved in the molecular regulation mechanisms of S. lucioperca in response to hypoxia and plays an important biological role, which provides theoretical references for understanding the genetic mechanism of hypoxic stress.
  • 考洲洋位于广东省惠东县,是红海湾向内陆延伸的典型半封闭性浅水海湾,其自然地理条件独特,是粤东地区重要的水产增养殖海域之一[1]。此外,考洲洋还是惠东红树林主要分布区,红树林可为鸟类、昆虫、贝类等提供栖息地,其根系复杂,也是鱼类和甲壳动物等游泳动物重要的庇护和摄食场所[2];红树林与渔业资源的关系也十分紧密,对当地渔业资源产量有着显著的提升作用[3]。当前考洲洋牡蛎养殖过程中建设的大量养殖筏架在一定程度上也能起到人工鱼礁的作用,吸引鱼类聚集[4]。同时,双壳动物强烈的生物沉积作用可为底栖动物提供食物源,从而进一步影响食物网的能量传递[5]

    近年来由于考洲洋海域的人工养殖密度逐渐上升,加之其周边是重要的皮革产区,大量污染物质被排入湾内,导致海水环境质量不断降低,水产品质量安全受到威胁[6-7]的同时,也对考洲洋内物种组成带来了负面影响[1]。此外,由于之前考洲洋内围网和地笼的大量投放,也会严重影响湾内渔业群落的分布和资源更新。针对考洲洋环境和渔业资源现状,自2014年起,有关部门对湾内违规养殖设施以及围网、拦网等网具进行了拆除清理,仅保留刺网作业,并启动红树林生态修复工程,有效地改善了考洲洋的海水环境质量[8]。目前关于考洲洋的研究主要集中在水质条件[9]、沉积物[10]、重金属污染[11]、有机污染物[12]等环境质量监控方面,而对于考洲洋海域的渔业资源状况仍无较为系统的认识。准确了解考洲洋的生态系统渔业资源状况,可为科学评价生态保护和修复工程的实际效果提供客观翔实的基础数据,因此有必要对考洲洋的渔业生物资源群落结构及其时空分布特征进行更全面的调查分析。

    由于不同的网具对物种和个体的选择性往往存在一定差异,网具的选择对渔获资源结果也会造成一定影响[13]。不同网具对鱼类的长期选择作用也会影响鱼类的生活史特征,不当的选择范围会对渔业资源造成不可恢复的负面影响[14]。对于类似的封闭型内湾(如广东流沙湾),资源调查常使用定置张网或刺网等方式[15],考虑到考洲洋复杂的底质环境和水深变化,加之考洲洋内大量养殖筏架的存在,为保证调查准确性,本研究采用刺网和地笼2种方式,对当前考洲洋的自然渔业资源状况进行系统调查,分析其资源季节动态及空间分布,为考洲洋渔业资源的科学管理与生物多样性保护提供科学支撑,并为其他地理环境类似的内湾渔业资源调查提供参考。

    考洲洋地处稔平半岛(114°52'E~114°56'E, 22°43'N~22°45'N),总面积44.7 km2,海岸线长65.3 km,通过一条狭长的水道与外界相连,最窄处仅253 m。考洲洋的海底较平坦,平均水深2.2 m,大部分水域水深0.3~1.0 m,受不规则半日潮影响,日平均潮差约为2.31 m。该地平均气温22.1 ℃,年平均雨量 1 944.3 mm,4—10 月为雨季,降雨量可占全年的 82.8%。考洲洋中部区域大部分被牡蛎吊养竹筏覆盖。

    本研究于2017年11月和2018年1月、4月、7月,分秋、冬、春、夏四季分别对考洲洋渔业资源状况进行调查。由湾外至湾内,均匀布设5个站点(图1)。

    图  1  考洲洋调查站点布设示意图
    Figure  1.  Sketch map of sampling stations in Kaozhouyang Bay

    本研究分别采用刺网、地笼方式采集渔获物样品,规格和设置具体为:

    刺网每张高1.5 m、长35 m,分为3层,每层网目尺寸分别为42 mm、48 mm和52 mm。刺网放置时间为1 h,每个站点各放置4组重复,每个重复2张刺网。

    地笼每个共5节,每节规格10 m,总长50 m。每个地笼网衣分为3层,每层网目均为55目。每个站点放置5个地笼作为重复,放置时间为一个潮水周期 (12 h)。

    在每个站点同时使用便携式温度计、盐度计、pH计及溶氧仪对海水理化因子进行测量。采样完成后,对全部渔获物进行种类组成鉴定、分类,计数、称质量,并对渔获物进行生物学测定,包括其体长、全长、体质量、头胸甲长和宽等指标。采用单位捕捞努力量渔获量(catch per unit effort,CPUE)和单位捕捞努力量渔获个体数(number of catches per unit effort,NPUE)作为渔获资源量的指标,计算公式为:

    $$ {\rm CPUE} = \frac{C}{{XT}} $$ (1)
    $$ {\rm NPUE} = \frac{N}{{XT}} $$ (2)

    式中C为渔获量,N为捕捞个体数,X为网数,T为放网时间。

    水样采集和分析按照《海洋监测规范》(GB/T 17378.4—2007)进行,动物样品处理、保存等按照《海洋调查规范》(GB/T 12763.4—2007)进行,物种所有个体鉴定到种,物种鉴定和生态特征参照《中国海洋鱼类》[16]检索。

    采用Pinkas等[17]提出的相对重要性指数(IRI)来确定群落的优势种。IRI指数计算公式为:

    $$ {\rm IRI} = \left( {N + W} \right) \times F $$ (3)

    其中N为某物种丰度占总丰度的百分比;W为某一种类的生物量占总生物量的比例;F为该物种出现的频率。

    一般而言,IRI大于1 000为优势种;IRI大于100且小于1 000为重要种;IRI大于10且小于100为一般种;IRI小于10为稀有种。

    分别采用Margalef物种丰富度指数(D)、Shannon-Wiener指数(H′)、Pielou均匀度指数(J′)来研究群落的多样性。为

    Margalef丰富度[18]

    $$ D = \frac{{S - 1}}{{\ln N}} $$ (4)

    Shannon-Wiener指数[19]

    $$ H{\rm {'}} = - \sum\limits_{i = 1}^S {{P_i}{\rm ln}{P_i}} $$ (5)

    Pielou均匀度指数[20]

    $$ J{\rm{{'}}} = \frac{{H'}}{{\ln S}} $$ (6)

    其中S为各站点物种种类总数,N为各站点捕捞个体数,Pi为某一种类生物量占总生物量的比例。

    根据渔获生物量(kg·h–1)数据,经平方根转化后,得到Bray-Curtis相似性系数[21]矩阵,并根据矩阵使用非度量多维标度分析(NMDS)方法分析考洲洋各站点之间的群落结构差异。采用单因子相似性分析(ANOSIM)检验不同站点之间的显著性,并采用stress压力系数来衡量NMDS结果可信度,stress系数小于0.1说明排序较好;stress系数小于0.05说明图形具有很好的代表性[22]。采用Primer 7.0进行上述分析[23]

    水生生物粒径谱(size spectrum)模型是常用于反映水生生态系统生物量分布的模型。本文以经过以2为底的对数转换后的个体体质量数据作为个体尺寸特征,渔获生物量(kg·h–1)按照Sprules和Barth[24]的示例标准化。按对数转换后的个体尺寸分类聚合后,对个体尺寸(x轴)和生物量(y轴)作关系图,得出不同尺寸个体的生物量分布情况。

    采用双因素方差分析对资源量(CPUE、NPUE)和多样性指数进行显著性检验,自变量为季节、站点。P值显著性水平为0.05。使用LSD法进行事后检验。采用IBM SPSS 25.0软件进行上述分析。

    调查结果显示,考洲洋海域的理化环境指标季节变化较大(表1)。考洲洋调查水深为0.88~2.45 m,温度14.9~31.5 ℃,盐度8.93~32.0,pH 6.35~8.6。整体上,不同站点间的水深、盐度差异较大,不同季节间的温度、pH差异较大。

    表  1  考洲洋四季各站点环境因子
    Table  1.  Hydrological environmental variables in Kaozhouyang Bay during four seasons
    季节
    season
    站点
    station
    深度
    depth
    温度
    temperature
    盐度
    salinity
    pH
    春季
    autumn
    S1 2.00 24.3 28.7 8.1
    S2 1.96 24.6 28.5 8.0
    S3 1.41 24.5 22.1 8.0
    S4 1.60 24.0 19.1 8.2
    S5 1.20 23.9 19.9 7.9
    冬季
    winter
    S1 0.90 17.1 26.6 6.9
    S2 1.35 16.5 24.5 6.8
    S3 1.17 15.5 20.6 6.9
    S4 1.22 17.0 24.1 6.9
    S5 0.76 14.9 18.5 6.9
    春季
    spring
    S1 1.46 24.6 32.0 6.9
    S2 1.92 24.5 31.1 6.7
    S3 1.73 24.0 27.8 6.8
    S4 2.06 24.7 31.0 6.6
    S5 1.63 23.9 25.7 6.4
    夏季
    summer
    S1 0.88 31.5 22.5 8.3
    S2 2.45 31.5 20.6 8.2
    S3 1.41 31.5 13.7 8.2
    S4 1.10 31.5 17.4 8.4
    S5 1.10 30.5 8.9 8.6
    下载: 导出CSV 
    | 显示表格

    4个季度调查共记录到渔获物种类2门2纲13目36科93种,其中鱼类11目32科60种,占总物种数的64.52%;甲壳类2目6科33种,占总物种数的35.48% (表2)。其中鲈形目出现种类最多[42种(45.16%)];其次为十足目[29种(31.18%)]、鲱形目[7种(7.52%)]。鱼类物种中,绝大部分(96.7%)为暖水性鱼类。

    表  2  考洲洋四季渔获游泳动物物种名录
    Table  2.  List of swimming species caught in Kaozhouyang Bay during four seasons
    种名 Species种名 Species
    辐鳍鱼纲 Actinopterygii  新月锦鱼 Thalassoma lunare
     鳗鲡目 Anguilliformes  弯棘䲗 Callionymus curvicornis
      大鳍虫鳗 Muraenichthys macropterus  褐篮子鱼 Siganus fuscescens
     海鲢目 Elopiformes  嵴塘鳢 Butis butis
      海鲢 Elops saurus  犬牙缰鰕虎鱼 Amoya caninus
     鲱形目 Clupeiformes  斑纹舌鰕虎鱼 Glossogobius olivaceus
      圆吻海鰶 Nematalosa nasus  拟矛尾鰕虎鱼 Parachaeturichthys polynema
      日本海鰶 Nematalosa japonica  孔鰕虎鱼 Trypauchen vagina
      花鰶 Clupanodon thrissa  裸项纹缟鰕虎鱼 Tridentiger nudicervicus
      黑尾小沙丁 Sardinella melanura  双斑舌鰕虎鱼 Psammogobius biocellatus
      康氏小公鱼 Stolephorus commersonnii  尖鳍寡鳞鰕虎鱼 Oligolepis acutipinnis
      汉氏棱鳀 Thryssa hamiltonii  眼瓣沟鰕虎鱼 Oxyurichthys ophthalmonema
     鲇形目 Siluriformes  小鳞沟鰕虎鱼 Oxyurichthys microlepis
      线纹鳗鲶 Plotosus lineatus  红狼牙鰕虎鱼 Odontamblyopus rubicundus
     鲻形目 Mugiliformes 鲽形目 Pleuronectiformes
      长鳍骨鲻 Osteomugil cunnesius  卵鳎 Solea ovata
      棱鮻 Liza carinata  东方箬鳎 Brachirus orientalis
     银汉鱼目 Atheriniformes 鲀形目 Tetraodontiformes 
      白氏银汉鱼 Hypoatherina valenciennei  纹腹叉鼻鲀 Arothron hispidus
     颌针鱼目 Beloniformes甲壳纲 Crustacea 
      日本下鱵鱼 Hyporhamphus sajori 十足目 Decapoda 
     鲉形目 Scorpaeniformes  近缘新对虾 Metapenaeus affinis
      鲬 Platycephalus indicus  斑节对虾 Penaeus monodon
      粗蜂鲉 Vespicula trachinoides  宽突赤虾 Metapenaeopsis mogiensis
     鲈形目 Perciformes  中型新对虾 Metapenaeus intermedius
      罗非鱼 Oreochromis sp.  刀额新对虾 Metapenaeus ensis
      倒牙魣 Sphyraena putnamae  日本对虾 Marsupenaeus japonicus
      眶棘双边鱼 Ambassis gymnocephalus  沙栖新对虾 Metapenaeus joyneri
      日本花鲈 Lateolabrax japonicus  短沟对虾 Penaeus scmisulcatus
      多鳞 Sillago sihama  墨吉对虾 Penaeus merguiensis
      珍鲹 Caranx ignobilis  周氏新对虾 Metapenaeus joyneri
      金带细鲹 Selaroides leptolepis  长毛对虾 Penaeus penicillatus
      高体若鲹 Caranx equula  秀丽白虾 Palaemon modestus
      勒氏枝鳔石首鱼 Dendrophysa russelii  脊尾白虾 Exopalaemon carinicauda
      短吻鲾 Leiognathus brevirostris  日本沼虾 Macrobrachium nipponense
      颈斑鲾 Nuchequula nuchalis  底栖短桨蟹 Thalamita prymna
      短棘鲾 Leiognathus equulus  武士蟳 Charybdis miles
      长吻银鲈 Gerres longirostris  日本蟳 Charybdis japonica
      长棘银鲈 Gerres filamentosus  近亲蟳 Charybdis affinis
      日本十棘银鲈 Gerres japonicus  锐齿蟳 Charybdis acuta
      短棘银鲈 Gerres lucidus  拟穴青蟹 Scylla paramamosain
      金焰笛鲷 Lutjanus fulviflamma  少刺短桨蟹 Thalamita danae
      勒氏笛鲷 Lutjanus russellii  远海梭子蟹 Portunus pelagicus
      黄鳍鲷 Acanthopagrus latus  双额短桨蟹 Thalamita sima
      灰鳍棘鲷 Acanthopagrus berda  香港蟳 Charybdis hongkongensis
      平鲷 Rhabdosargus sarba  变态蟳 Charybdis variegata
      黑鲷 Acanthopagrus schlegelii  悦目大眼蟹 Macrophthalmus erato
      胡椒鲷 Plectorhinchus pictus  强壮大眼蟹 Macrophthalmus crassipes
      细鳞䱨 Terapon jarbua  四齿大额蟹 Metopograpsus quadridentatus
      列牙䱨 Pelates quadrilineatus  字纹弓蟹 Varuna litterata
      尖突吻䱨 Rhynchopelates oxyrhynchus 口足目 Stomatopoda
      黑斑绯鲤 Upeneus tragula  断脊拟虾蛄 Oratosquillina interrupta
      金钱鱼 Scatophagus argus  口虾蛄 Squilla orarotia
    下载: 导出CSV 
    | 显示表格

    考洲洋四季优势种组成见表3,其中刺网四季优势种组成基本为鱼类,地笼四季优势种中也包含部分甲壳类。

    表  3  考洲洋各季节优势种组成 (IRI > 1 000)
    Table  3.  Dominant species composition in Kaozhouyang Bay in different season
    网具
    gear
    秋季
    autumn
    冬季
    winter
    春季
    spring
    夏季
    summer
    种类
    species
    IRI 种类
    species
    IRI 种类
    species
    IRI 种类
    species
    IRI
    地笼 cage 墨吉对虾 6 156.4 短吻鲾 4 706.7 黄鳍鲷 6 779.4 短吻鲾 4 706.7
    底栖短桨蟹 2 281.2 长鳍骨鲻 2 648.0 沙栖新对虾 2 083.9 长鳍骨鲻 2 648.0
    短吻鲾 1 312.4 黄斑鲾 2 066.1 黄斑鲾 2 066.1
    眼瓣沟鰕虎鱼 1 008.3
    刺网 gill net 圆吻海鰶 8 254.4 圆吻海鰶 5 680.9 花鰶 3 531.4 花鰶 4 508.4
    花鰶 2 816.3 长鳍骨鲻 2 023.5 尖突吻䱨 2 006.4 褐篮子鱼 2 949.6
    圆吻海鰶 1 854.7
    墨吉对虾 1 620.6
    少刺短桨蟹 1 385.7
    黄鳍鲷 1 356.4
    平鲷 1 191.2
    下载: 导出CSV 
    | 显示表格

    优势种四季出现情况见表4。刺网渔获物中,秋季优势种为圆吻海鰶 (Nematalosa nasus)、花鰶(Clupanodon thrissa);冬季优势种为圆吻海鰶、长鳍骨鲻(Osteomugil cunnesius);春季优势种为花鰶、尖突吻䱨 (Rhynchopelates oxyrhynchus);夏季优势种为花鰶、褐篮子鱼(Siganus fuscescens)、圆吻海鰶、墨吉对虾(Banana prawn)、少刺短桨蟹(Thalamita danae)、黄鳍鲷(Acanthopagrus latus)、平鲷(Rhabdosargus sarba)等7种。

    表  4  考洲洋四季优势种类出现情况
    Table  4.  Occurrence of seasonal dominant species in Kaozhouyang Bay
    分层
    layer
    种名
    species
    秋季
    autumn
    冬季
    winter
    春季
    spring
    夏季
    summer
    刺网 gill net 墨吉对虾
    少刺短桨蟹
    花鰶
    圆吻海鰶
    长鳍骨鲻
    平鲷
    黄鳍鲷
    尖突吻䱨
    褐篮子鱼
    地笼 cage 墨吉对虾
    沙栖新对虾
    底栖短桨蟹
    短吻鲾
    黄斑鲾
    长鳍骨鲻
    黄鳍鲷
    眼瓣沟鰕虎鱼
    眼瓣沟鰕虎鱼
    下载: 导出CSV 
    | 显示表格

    地笼渔获物中,秋季优势种为墨吉对虾、底栖短桨蟹(T. prymna)、短吻鲾(Leiognathus brevirostris)、眼瓣沟鰕虎鱼(Oxyurichthys ophthalmonema)等4种;冬季为短吻鲾、长鳍骨鲻、黄斑鲾(Photopectoralis bindus)等3种;春季优势种为黄鳍鲷、沙栖新对虾(Metapenaeus joyneri);夏季优势种为短吻鲾、长鳍骨鲻、黄斑鲾。

    资源量调查结果显示,基于刺网与地笼调查的CPUE皆表现出明显的季节性(图2)。夏季[地笼0.014 kg·(h·网)–1,刺网0.128 kg·(h·网)–1]>春季[地笼0.010 kg·(h·网)–1,刺网0.121 kg·(h·网)–1]>秋季[地笼0.007 kg·(h·网)–1,刺网0.091 kg·(h·网)–1]>冬季[地笼0.006 kg·(h·网)–1,刺网0.068 kg·(h·网)–1]。

    图  2  考洲洋各站点间单位捕捞努力量渔获量和单位努力量渔获个体量
    Figure  2.  Catch per unit effort and number of catches per unit effort at different stations in four seasons

    单位时间渔获个体数方面,刺网的季节趋势与渔获率相同,表现出夏季[平均4.5 个·(h·网)–1]>春季[平均2.8 个·(h·网)–1]>秋季[平均2.7 个·(h·网)–1]>冬季秋季[平均1.9 个·(h·网)–1]。地笼同样是夏季最高,平均达到1.96 个·(h·网)–1,其次是冬季[平均1.1 个·(h·网)–1]、春季[平均0.73 个·(h·网)–1]、秋季[平均0.73 个·(h·网)–1]。以季节、站点作自变量,采用双因素方差分析对资源量进行显著性检验。结果显示,季节和站点对CPUE、NPUE影响不显著。

    各个季节刺网与地笼群落结构皆不存在站点之间的显著差异 (图3)。除去冬季底层的stress值为0.02外,其余NMDS的stress值皆为0,说明图形具有很好的代表性。因此可以认为,考洲洋各站点之间渔业资源群落结构无显著差异,可以看作一个整体进一步分析多样性变化。

    图  3  考洲洋四季各站点群落结构NMDS分析
    Figure  3.  NMDS analysis of community structure in Kaozhouyang Bay in four seasons

    基于刺网的中上层调查中,群落多样性呈现出明显的季节动态。其中D以秋季最高(2.34),其次是冬季(2.20)、春季(1.49)、夏季(0.81);群落H′仍是秋季最高(1.90),其次是冬季(1.18),春季(0.81)与夏季(0.82)接近;J′,秋季、冬季、春季相近,分别为1.69、1.58、1.69,夏季最低(0.79)。

    基于地笼的底层调查中,多样性指数变化与中上层略有差异。其中春、秋季的D较高,分别达到3.33、3.63;冬、夏季则分别为2.24、2.93;对于群落H′而言,四季差异较小,但仍以春(2.02)、秋季(2.03)较高,冬季(1.78)和夏季(1.52)较低;J′由秋季至夏季逐渐下降,分别为0.73、0.71、0.68、0.55。

    采用双因子方差分析进行显著性检验,结果显示,不同季节、站点之间的D、H′、J′皆无显著性差异(P > 0.05,图4)。

    图  4  基于刺网与地笼调查的多样性指数
    ns. 四季多样性无显著性差异(P>0.05)
    Figure  4.  Diversity indices of gill net and cage
    ns. insignificant difference in four seasons (P>0.05)

    考洲洋渔获个体的粒径谱基本呈现双峰的形态,第一峰介于0~8 g,第二峰介于8~64 g (图5)。以第一峰而言,夏季标准化生物量波峰高于其他三季,春、冬季相近,秋季第一峰最弱。各季节波峰个体尺寸基本一致,约为2 g。

    图  5  考洲洋群落粒径谱
    Figure  5.  Size spectrum of community in Kaozhouyang Bay

    以第二峰而言,夏季标准化生物量波峰仍高于其他三季,其次是冬、春、秋季。波峰所处的个体尺寸以冬季最高(32 g),其他三季约为16 g。

    考洲洋是粤东地区重要的内洋,为周边惠东地区带来了大规模的水产养殖产业(如牡蛎养殖),也为大量物种提供了关键的生态栖息环境。本次调查的考洲洋内的物种组成以鱼类和甲壳类为主,其中绝大部分鱼类为暖水性鱼类,以鲈形目和鲱形目居多,物种种类与南海其他海域物种较接近[16,25]。考洲洋优势种基本集中在短吻鲾、花鰶、圆吻海鰶、墨吉对虾等物种间,大部分物种都生活在内湾、咸淡水、近海海域内,与考洲洋的海水环境一致。大部分渔获个体质量在100 g以内,鲜有超过500 g的个体。资源量上,考洲洋渔获的平均CPUE不超过0.15 kg·(h·网)–1, 平均个体数不超过5 ind·(h·网)–1,整体渔业资源量较低,仅靠野生渔获难以产生较高的经济价值。但是考洲洋的经济物种数达到96种,物种丰富度最高达到3.63,目前湾内总体的多样性处于较高水平,推测与周边大面积的红树林湿地有一定关系。考洲洋湾内各个站点间的资源量分布均匀,群落结构相似度高,推测原因是考洲洋类似的小型封闭式海湾受潮汐影响较大,因而整体资源分布趋于均匀。

    季节是渔业资源非常重要的影响因素之一。鱼类的季节性洄游会对物种组成和生物量造成直接影响[26];在春、夏产卵季节,一年生的小鱼(如考洲洋的鲾科鱼类)快速发育,对生物量也会有较大改变[27];此外,秋、冬季的藻类和浮游生物有限,对整个生态系统提供的能量输入也较低[28],会导致渔业资源量下降。而且,季节变化也与人类的捕捞强度相关(例如夏季的禁渔期),从而影响考洲洋的渔业资源量。

    考洲洋的季节变化体现在资源量、优势种、多样性、个体尺寸分布等4个方面。资源量方面,刺网与地笼的趋势基本一致,夏季CPUE和平均渔获个体数都最高,其次是春季、秋季和冬季,这与长江口海域趋势一致[29]。优势种方面,除夏季刺网外,各季节的优势种基本为2~3种,其中秋季和夏季地笼群落以墨吉对虾等甲壳类为主要优势种,而春、冬季则以短吻鲾、长鳍骨鲻等鱼类为主要优势种;这与单秀娟等[30]的结果一致,黄海海域也以夏、秋季的甲壳类相对资源密度较高。群落多样性方面,春、秋两季的DH′均高于夏、冬两季。其中冬季的H′和D与环境因子关系较大,冬季水温低,个体基本迁徙或停止产卵,生物量较低[31];而夏季的均匀度最低,因而推测与优势种生物量的爆发有关。生物粒径谱方面,四季的模式较为相似,基本可以按照个体大小分为两大类:1) 以短吻鲾为主的小型个体或幼鱼,集中在5 g以下;2) 以圆吻海鰶、底栖短桨蟹等为主的较大体型的成熟个体,集中在15~60 g。考洲洋夏季的生物量明显较高,因此2个波峰也高于其余三季。这与单秀娟等[32]构建的生物量谱相似。

    目前,渔业调查方式趋于多元化,除拖网、刺网、地笼、定置张网等传统作业方式外,还有声学探测设备等新兴监测技术,以及针对特定种类的方式(如鼓线用作捕鲨[33])。不同网具对种类和个体大小的选择性不同,调查结果也会存在差异[13],不同的网具和尺寸都会对结果造成一定影响,因此网具的选择对渔业资源调查的准确度十分重要。目前同时使用地笼和刺网进行比较调查的研究较少。徐胜南等[4]利用刺网和地笼分别对人工鱼礁附近的渔获组成、资源量、多样性进行了比较,发现刺网渔获组成主要为鱼类,而地笼的渔获组成则更加均衡。这与本文结果一致,刺网捕获的优势种基本为鱼类(如花鰶、圆吻海鰶),而地笼的优势种则包含数种甲壳类(如墨吉对虾、沙栖新对虾)。除渔获组成外,2种调查方式的资源量也有较大差异,刺网的CPUE和平均渔获个体数都要显著高于地笼,这与徐胜南等[4]调查得到刺网的生物量最高的结果也一致,同时在本次调查中也可能与刺网的调查时间较短有关。群落多样性方面,刺网和地笼的丰富度和多样性指数都没有显著差异,但刺网J′显著高于地笼,这可能因为地笼渔获的总体生物量虽然更高,但是优势种占了大部分,而2种调查方式皆能反映出考洲洋的多样性情况。

    相同的网具,不同的尺寸对结果也有影响。国内外多个研究对不同尺寸、结构的刺网作比对,发现网目尺寸影响较大,不同网目的刺网之间的渔获种类、个体数都有差异,但多样性差异较小[34-37]。影响网具对鱼类选择性的因素复杂,除去网目尺寸外,还包括网线缠绕厚度、悬挂率等因素[38]。因此,在开展渔业资源调查以及制定渔获政策时,要充分考虑网具选择及网具结构、尺寸的影响,高选择性的网具可能会降低调查结果的准确度,而过小的网目尺寸则不利于当地渔业的长期发展[33]

    在渔业资源调查中,一般以多样性指数作为描述群落结构多样性的参数,而生物量和个体数都可以用作计算多样性指数[39]。陈国宝等[39]的研究显示2种计算方式的结果显著相关,但是部分研究则认为两者无显著相关[36,40]。虽然这2种计算方式的关系很可能与特定的区域环境有关,但各海域间比较多样性高低时,可能因此产生误解。以距考洲洋较近的大亚湾海域为例,孙宝权等[41]计算的H′多样性指数为0.09~2.57,平均1.65;而王雪辉等[25]的结果为2.40~3.82,平均3.15,两文都以2004—2005年的底拖网数据为基础,但结果差异较大,很可能由计算方式不同导致。同理,物种丰富度也会受到影响。以珠江口水域的研究为例,晏磊等[36]D为3.60~6.73,而袁梦等[42]D为0~1.93,两者差异较大。虽然结果如上文所讨论,多样性结果和作业方式有一定关系,但是无论是由网具差异还是计算方式导致,结果都不利于海域间的比较;且在以生物量为计算单位时,生物量的标准化也存在不同。谢旭等[43]使用kg·h–1的方式来描述渔获率或生物量大小,有的研究[30]使用kg·m–2或kg·km–2,孙鹏飞等[29]使用CPUE,不利于对不同海域之间的生物量、多样性进行比较。笔者认为,对于刺网、地笼等被动式捕获且不便于计算面积的调查方式,可以使用kg·h–1或CPUE作为资源量单位;对于底拖网、双拖网等主动式的调查方式,则可以使用kg·m–2或kg·km–2作为资源量单位。

    基于刺网、地笼2种网具的调查,本文首次对考洲洋进行了四季的渔业资源调查分析。结果显示,考洲洋总体渔业资源量较低,呈现出夏、春高,秋、冬低的趋势,物种丰富度、群落多样性、群落均匀度也存在较大的季节波动,且湾内资源总体空间分布较均匀。本文还通过对比刺网与地笼2种网具的结果,分析了网具选择对渔业资源调查准确度和制定长期渔获管理政策的影响。未来的研究应明确计算方式、统一计量单位,以便于不同海域之间的比较。

  • 图  1   梭鲈各组织总RNA电泳图

    Figure  1.   Electrophoresis of total RNA in tissues of S. lucioperca

    图  2   梭鲈ho1基因PCR扩增产物电泳图

    Figure  2.   Electrophoresis of PCR products of ho1 in S. lucioperca

    图  3   梭鲈ho1基因cDNA全长序列及推导的氨基酸序列

    Figure  3.   Nucleotide and predicted protein sequences of ho1 of S. lucioperca

    图  4   梭鲈与其他物种HO1氨基酸同源性比对

    Figure  4.   Multiple alignment of HO1 amino acid sequences between S. lucioperca and other species

    图  5   基于不同物种HO1氨基酸序列构建的系统发育进化树 (NJ法)

    Figure  5.   Phylogenetic tree based on HO1 amino acid sequences of different species (Neighbor-Joining method)

    图  6   梭鲈ho1在各组织的相对表达量

    注:图中数值为“平均值±标准差”(N=3),不同字母表示组间差异极显著(P<0.01),后图同此。

    Figure  6.   Relative expression of ho1 in different tissues of S. lucioperca

    Note: The values are "$ { {\overline X } \pm {\minifont \rm{SD}}}$" (N=3). Different letters indicate extremely significant differences among the tissues (P<0.01). The same below.

    图  7   急性低氧胁迫与常氧恢复下梭鲈ho1在组织中表达变化

    Figure  7.   Expression of ho1 in S. lucioperca under acute hypoxia stress and normoxia recovery

    表  1   引物序列

    Table  1   Primers used in this study

    基因
    Gene
    目的
    Purpose
    引物
    Primer
    引物序列 (5'—3')
    Primer sequence (5'–3')
    退火温度
    Annealing temperature/℃
    ho1 ORF扩增 ho1-F1 GGAGCCAGAGAAGAAGACTCAG 59.8
    ho1-R1 TGCAGCTCGTTTTCAGTGAC 60.2
    ho1 RACE扩增 5'GSP ACACCGGGGAAGGCGAAGAATGAC 72.0
    5'nGSP CACTGGGGTGGTTGGAGTTCCTGTC 70.9
    3'GSP GAGGGCAGGTCCTGGGTCGAATC 71.2
    3'nGSP ATGGGGCTAAAGGGCAGCGAAGGTC 73.2
    ho1 RT-PCR ho1-F1 CTGTGCTCGCTGTATGAGGT 59.1
    ho1-R1 CCAGTCCTGGCCATAGAAGT 59.2
    gapdh RT-PCR gapdh1-F ATGTTCGTCATGGGCGTCAA 60.0
    gapdh1-R CAGGCCCTCAATGATGACGA 60.0
    下载: 导出CSV
  • [1]

    PO L K, YUAN W S, WOEI L J, et al. Hypoxia causes transgenerational impairment of ovarian development and hatching success in fish[J]. Environ Sci Technol, 2019, 53(7): 3917-3928. doi: 10.1021/acs.est.8b07250

    [2]

    MAGNONI L J, EDING E, LEGUEN I, et al. Hypoxia, but not an electrolyte-imbalanced diet, reduces feed intake, growth and oxygen consumption in rainbow trout (Oncorhynchus mykiss)[J]. Sci Rep, 2018, 8(1): 4965. doi: 10.1038/s41598-018-23352-z

    [3]

    NADINE S, JAN M, ALEXANDER R, et al. Effects of chronic hypoxia on the immune status of pikeperch (Sander lucioperca Linnaeus, 1758)[J]. Biology, 2021, 10(7): 649. doi: 10.3390/biology10070649

    [4]

    XIAO W H. The hypoxia signaling pathway and hypoxic adaptation in fishes[J]. Sci China Life Sci, 2015, 58(2): 148-155. doi: 10.1007/s11427-015-4801-z

    [5]

    GOZZELINO R, JENEY V, SOARES M P. Mechanisms of cell protection by heme oxygenase-1[J]. Annu Rev Pharmacol, 2010, 50(1): 323-354. doi: 10.1146/annurev.pharmtox.010909.105600

    [6] 陶文庭, 王琳琳, 侯少丰, 等. 斑马鱼HO1基因的表达特征及功能研究[J]. 水生生物学报, 2014, 38(2): 209-215. doi: 10.7541/2014.31
    [7]

    PREVOT A N, PIERRE S, GAILLARD S, et al. cDNA sequencing and expression analysis of Dicentrarchus labrax heme oxygenase-1[J]. Cell Mol Biol, 2008, 54: 1046-1054.

    [8]

    XIE J, HE X, FANG H, et al. Identification of heme oxygenase-1 from golden pompano (Trachinotus ovatus) and response of Nrf2/HO-1 signaling pathway to copper-induced oxidative stress[J]. Chemosphere, 2020, 253: 126654. doi: 10.1016/j.chemosphere.2020.126654

    [9]

    GUAN W Z, GUO D D, SUN Y W, et al. Characterization of duplicated heme oxygenase-1 genes and their responses to hypoxic stress in blunt snout bream (Megalobrama amblycephala)[J]. Fish Physiol Biochem, 2017, 43(2): 641-651. doi: 10.1007/s10695-016-0318-z

    [10]

    RASHID I, BAISVAR V S, SINGH M, et al. Isolation and characterization of hypoxia inducible heme oxygenase 1 (HMOX1) gene in Labeo rohita[J]. Genomics, 2020, 112(3): 2327-2333. doi: 10.1016/j.ygeno.2020.01.004

    [11]

    WANG D, ZHONG X P, QIAO Z X, et al. Inductive transcription and protective role of fish heme oxygenase-1 under hypoxic stress[J]. J Exp Biol, 2008, 211(16): 2700-2706. doi: 10.1242/jeb.019141

    [12]

    JIN X, HAN Q, WANG H, et al. The effect of bimel on gill remodeling of goldfish (Carassius auratus) aquaculture[J]. Aquaculture, 2018, 500: 469-476.

    [13] 李艳丽, 徐功玉, 肖金文, 等. 血红素加氧酶1在斑马鱼低氧应激中的保护作用研究[J]. 水生生物学报, 2017, 41(1): 43-49. doi: 10.7541/2017.6
    [14] 韩迎雪, 林婉玲, 杨少玲, 等. 5种鲈形目淡水鱼肌肉脂肪酸及磷脂组成的研究[J]. 南方水产科学, 2019, 15(1): 85-92. doi: 10.12131/20180184
    [15]

    SAISA M, SALMINEN M, KOLJONEN M L, et al. Coastal and freshwater pikeperch (Sander lucioperca) populations differ genetically in the baltic sea basin[J]. Hereditas, 2010, 147(5): 205-214. doi: 10.1111/j.1601-5223.2010.02184.x

    [16]

    POLICAR T, MIROSLAV B, KRISTAN J, et al. Comparison of production efficiency and quality of differently cultured pikeperch (Sander lucioperca L.) juveniles as a valuable product for ongrowing culture[J]. Aquaculture, 2016, 24(6): 1607-1626.

    [17]

    BAEKELANDT S, REDIVO B, MANDIKI S N M, et al. Multifactorial analyses revealed optimal aquaculture modalities improving husbandry fitness without clear effect on stress and immune status of pikeperch Sander lucioperca[J]. Gen Comp Endocrinol, 2018, 258: 194-204. doi: 10.1016/j.ygcen.2017.08.010

    [18]

    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262

    [19]

    MAHIN D, MAINES, PETER E M, et al. 30 some years of heme oxygenase: from a "molecular wrecking ball" to a "mesmerizing" trigger of cellular events[J]. Biochem Biophys Res Commun, 2005, 338(1): 568-577. doi: 10.1016/j.bbrc.2005.08.121

    [20]

    LIN Q, SEBASTIAN W, YANG G, et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress[J]. J Biol Chem, 2007, 282(28): 20621-20633. doi: 10.1074/jbc.M607954200

    [21]

    ZHANG X L, SUN Y W, CHEN J, et al. Gene duplication, conservation and divergence of heme oxygenase 2 genes in blunt snout bream (Megalobrama amblycephala) and their responses to hypoxia[J]. Gene, 2017, 610: 133-139. doi: 10.1016/j.gene.2017.02.017

    [22]

    BAUER I, WANNER G A, RENSING H, et al. Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and stress-exposed rat liver[J]. Hepatology, 1998, 27(3): 829-838. doi: 10.1002/hep.510270327

    [23]

    RYTER S W, ALAM J, CHOI A M K. Heme oxygenase-1/carbon monoxide: from basic science to the rapeutic applications[J]. Physiol Rev, 2006, 86(2): 583-650. doi: 10.1152/physrev.00011.2005

    [24]

    LU Z J, ZHAN F B, YANG M X, et al. The immune function of heme oxygenase-1 from grass carp (Ctenopharyngodon idellus) in response to bacterial infection[J]. Fish Shellfish Immunol, 2021, 112: 168-178. doi: 10.1016/j.fsi.2020.08.050

    [25]

    TZANEVA V, PERRY S F. Heme oxygenase-1 (HO-1) mediated respiratory responsesto hypoxia in the goldfish, Carassius auratus[J]. Resp Physiol Neurobi, 2014, 199: 1-8. doi: 10.1016/j.resp.2014.04.006

    [26]

    LI C J, WANG T F, WANG G C, et al. Physicochemical changes in liver and Hsc70 expression in pikeperch Sander lucioperca under heat stress[J]. Ecotoxicol Environ Saf, 2019, 181: 130-137. doi: 10.1016/j.ecoenv.2019.05.083

    [27] 陈付菊, 赵宇田, 付生云, 等. 溶解氧水平对青海湖裸鲤体肾组织结构及抗氧化酶活性的影响[J]. 水生生物学报, 2022, 46(5): 679-686.
    [28] 张美东, 凌晨, 沙航, 等. 低氧-复氧胁迫对鲢抗氧化酶活性及Cu/Zn-SODMn-SOD基因表达的影响[J]. 水生生物学报, 2022, 46(4): 498-506.
    [29]

    MAR B B, FOLCO G, ALESSANDRO R, et al. Concurrent environmental stressors and jellyfish stings impair caged European sea bass (Dicentrarchus labrax) physiological performances[J]. Sci Rep, 2016, 6: 27929. doi: 10.1038/srep27929

    [30] 陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹鳃器官的影响[J]. 南方水产科学, 2017, 13(1): 124-130. doi: 10.3969/j.issn.2095-0780.2017.01.016
    [31] 沈杰. 血红素氧合酶-1促AMPK/mTORC1的磷酸化上调自噬是铅暴露肾损伤减轻的重要机制[D]. 上海: 中国人民解放军海军军医大学, 2021: 60.
    [32] 彭钊. HO-1调控细胞自噬在DON致肝毒性中的作用及机制研究[D]. 武汉: 华中科技大学, 2020: 131.
    [33]

    MENG Z T, WANG L L, LIAO X X, et al. The protective effect of Heme oxygenase-1 on liver injury caused by DON-induced oxidative stress and cytotoxicity[J]. Toxins, 2021, 13(10): 732. doi: 10.3390/toxins13100732

    [34]

    RUI L Y. Brain regulation of energy balance and body weight[J]. Rev Endocr Metab Dis, 2013, 14(4): 387-407. doi: 10.1007/s11154-013-9261-9

    [35] 陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志, 2016, 51(6): 1049-1058.
    [36] 郭志雄. 低氧环境对军曹鱼幼鱼生化指标、相关基因表达的影响及其转录组学分析[D]. 湛江: 广东海洋大学, 2020: 97.
    [37] 王慧娟. 低氧对团头鲂生理生化指标及低氧应答基因表达的影响[D]. 武汉: 华中农业大学, 2015: 62.
  • 期刊类型引用(0)

    其他类型引用(1)

图(7)  /  表(1)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  120
  • PDF下载量:  49
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-08-15
  • 录用日期:  2022-08-29
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2023-04-04

目录

/

返回文章
返回