Demographic analysis of scalloped hammerhead, Sphyrna lewini
-
摘要:
根据路氏双髻鲨Sphyrnalewini的平均性成熟年龄tα=5a、寿命tλ=15a、平均出生率b=6.4·a-1和自然死亡系数M=0.279·a-1, 估算在未开发状态下的内在瞬时增长率r0=0.265·a-1、世代生殖率R0=6.212、世代间期G=7·571 a和种群倍增时间tx2=2.616a;探讨了M对r0等种群统计参数的影响; 估算了不同开捕年龄tC时的临界捕捞死亡系数FC, 拟合了FC和tC的关系式, 证明FC随开捕年龄的增加而增加。当tC > 5a, 种群不会因捕捞而减少。
Abstract:Based on the mean age at first maturity tα=5 a, longevity tλ=15 a, average natality b=6.4·a -1, and natural mortality coefficient M=0.279·a -1, demographic analysis was used for estimating a population intrinsic increase coefficient (r0) of 0.265·a -1, a reproductive rate per generation (R0) of 6.212, a generation time (G) of 7.571 years and a population doubling time of 2.616 years under unfished. Demographic parameters such as r0 affected by M were discussed. FC at different first capture age were calculated, and relationship between FC and tC was fitted. The results indicated that FC increased with the first capture age. When tC > 5 a, the population will not decrease with capture.
-
Keywords:
- demographic analysis /
- Sphyrna lewini /
- scalloped hammerhead
-
-
表 1 未开发状态下各种自然死亡对种群统计参数的影响
Table 1 Demographic parameters influenced by different natural mortality under unexploited
编号
no.tα/a tλ/a b/a-1 M0/a-1 M1~M15/a-1 r0/a-1 R0 G/a tx2/a I/% 1 5 15 6.4 0.279 0.279 0.265 6.212 7.571 2.616 30.3 2 5 15 6.4 0.349 0.279 0.254 5.792 7.571 2.729 28.9 3 5 15 6.4 0.419 0.279 0.243 5.401 7.571 2.852 27.5 4 5 15 6.4 0.488 0.279 0.233 5.041 7.571 2.975 26.2 5 5 15 6.4 0.558 0.279 0.221 4.700 7.571 3.136 24.7 6 5 15 6.4 0.349 0.349 0.195 3.712 7.152 3.555 21.5 7 5 15 6.4 0.436 0.349 0.182 3.403 7.152 3.809 20.0 8 5 15 6.4 0.524 0.349 0.168 3.116 7.152 4.126 18.3 9 5 15 6.4 0.611 0.349 0.154 2.857 7.152 4.501 16.6 10 5 15 6.4 0.698 0.349 0.141 2.619 7.152 4.916 15.1 -
[1] CAILLIETG M. Demography of the central California population of the leopard shark (Triakis semifasciate)[J]. Aust J Mar Freshw Res, 1992, 43(1): 183-193. doi: 10.1071/MF9920183
[2] AUD W, Smith S E. Ademographic method with population densi-ty compensation for estimating productivity and yield per recruit of the leopard shark (Triakis semifasciata)[J]. Can J Fish Aquat Sci, 1997, 54(2): 415-420. doi: 10.1139/f96-288
[3] SMINKEY TR, MUSICK J A. Demographic analysis of the sandbar shark, Carcharhinus plumbeus, in the western North Atlantic[J]. Fish Bull, 1996, 94(2): 341-347.
[4] BEERKIRCHER L, SHIVJI M, CORTÉS E. A Monte Carlo demo-graphic analysis of the silky shark (Carcharhinus falciformis): im-plications of gear selectivity[J]. Fish Bull, 2003, 101(1): 168-174.
[5] HOENIG J M, GRUBER S H. Life history patterns in the elasmo-branchs: implications for fisheries management[M] //Pratt HL, Jr., Gruber S H, Taniuchi T. Elasmobranchs as living resources: Advances in the biology, ecology systematics, and the status of the fisheries. [S.l. ]: US Dep Commer, NOAA Tech Rep NMFS, 1990, 90: 1-16.
[6] SIMPFENDORFER C A. Mortality estimates and demographic anal-ysis for the Australian sharpnose shark, Rhizoprionodon taylori, from northern Australia[J]. Fish Bull, 1999, 97(4): 978-986.
[7] CORTÉS E. Demographic analysis of the Atlantic sharpnose shark Rhiyoprionodon terraenovaein the Gulf of Mexico[J]. Fish Bull, 1995, 93(1): 57-66.
[8] LIUK M, CHEN C T. Demographic analysis of the scalloped ham-merhead Sphyrna lewini, in the Northwestern Pacific[J]. Fish Sci, 1999, 65(2): 218-223. doi: 10.2331/fishsci.65.218
[9] CORTÉS E, PARSONS R. Comparative demography of two popula-tions of the bonnethead shark (Sphyrna tiburo)[J]. Can J Fish Aquat Sci, 1996, 53(4): 709-718. doi: 10.1139/f95-240
[10] XIAO Y, WALKER T L. Demographic analysis of gummy shark (Mustelus antarcticus) and school shark (Galeorhinus galeus) off southern Australia by applying a generalized Lotka equation and its dual equation[J]. Can J Fish Aquat Sci, 2000, 57(1): 214-222. doi: 10.1139/f99-224
[11] CAILLIETG M, MOLLETHF, PITTENGER G P, et al. Growth and demography of the Pacific angel shark (Squatina California), based upon tag returns off California[J]. Aust J Mar Freshw Res, 1992, 43(5): 1313-1330. doi: 10.1071/MF9921313
[12] SMITHS E, AU D W, SNOW C. Intrinsic rebound potentials of26species of Pacific sharks[J]. Aust J Mar FreshwRes, 1998, 49(8): 663-678. doi: 10.1071/MF97135
[13] BRANSTETTER S. Age, growth and reproductive biology of the silky shark, Carcharhinus falciformis, and the scalloped hammer-head, Sphyrna lewini, from the northwestern Gulf of Mexico[J]. Environ Biol Fishes, 1987, 19(3): 161-173. doi: 10.1007/BF00005346
[14] CHEN C T, LEU T C, JOUNG S J, et al. Age and growth of the scalloped hammerhead, Sphyrna lewini, in northeastern Taiwan waters[J]. Pacific Sci, 1990, 44(1): 156-170.
[15] CHEN C T, LEU T C, JOUNG S J. Notes on reproduction in the scalloped hammerhead, Sphyrna lewini, in northeastern Taiwan waters[J]. Fish Bull, 1988, 86(2): 398-393.
[16] CLARKE T A. The ecology of the scalloped hammerhead shark, Sphyrna lewini[J]. Pacific Sci, 1971, 25(1): 133-144.
[17] HOENIG J M. Empirical use of longevity data to estimate mortality rates[J]. Fish Bull, 1983, 81(4): 898-903.
[18] SOUTHWOOD TR E. Ecological methods with particular reference to the study of insect population[M]. [S.l. ]: The English Language Book Society and Chapman and Hall, 1978: 524. doi: 10.1007/978-94-009-1225-0