Nitrite uptake mechanism and the influencing factors of accumulation in aquatic animals
-
摘要:
亚硝酸盐是水产养殖系统中一种潜在的污染物,淡水鱼类通过鳃主动吸收亚硝酸盐,导致体内亚硝酸盐的浓度过高。海水鱼类对亚硝酸盐的敏感性较低,但仍可以通过肠和鳃吸收亚硝酸盐。影响亚硝酸盐在体内蓄积的因素很多,文章就亚硝酸盐在水生动物体内的吸收及蓄积的影响因素这2个方面进行了论述。
Abstract:Nitrite is a potential pollutant in aquatic culture systems.Freshwater fishes actively take up nitrite across the gills, leading to high concentrations accumulated within body.Marine fishes are less susceptible but do take up nitrite across intestine and gills.Many factors can influence nitrite accumulation.This paper gave a discussion about nitrite uptake mechanism and the influencing factors of accumulation in aquatic animals.
-
Keywords:
- nitrite /
- uptake mechanism /
- toxicity /
- accumulation
-
磷是微藻生长发育的必需元素,主要存在于单细胞藻的原生质和细胞核中,它作为底物或调节物直接参与光合作用的各个环节,包括光能吸收、同化力的形成、卡尔文循环、同化产物的运输以及对一些关键性酶的活性起调节作用等[1]。它参与植物生长发育过程中的各种代谢活动,在细胞膜结构、物质代谢以及信号传导等方面都起着极为重要的作用[2]。
当微藻受到环境胁迫时,光合作用受到抑制,光合效率降低,藻细胞吸收的过剩光能通过热量以及荧光的形式散发出去。因此,叶绿素荧光的变化可以在一定程度上反映环境因子对微藻的影响[3],通过对不同营养盐浓度下叶绿素荧光参数变化的分析,可深入了解磷浓度对微藻光合机构主要是PSII的影响。叶绿素荧光法具有快速、准确、对细胞无损伤、需要样品量少的优点,是检测微藻营养盐限制最有发展前景的方法[4-5]。
小球藻(Chlorella sp.)属于绿藻门,其蛋白质含量高达55%~65%,氨基酸组成均衡,含有大量的叶绿素,特别是含有生物活性物质糖蛋白、多糖体及高达13%的核酸等物质。小球藻中富含小球藻生长因子(Chlorella growth factor,CGF),能迅速恢复机体造成的损伤,是公认的健康食品。它不仅是轮虫(Brachionus plicatilis)[6]等水产动物的天然饵料,同时很多研究表明,在养殖水体接种小球藻可调节和优化浮游生物的群落结构,增加溶解氧,从而改善水体的化学环境条件[7-8]。因此,合理培养和利用小球藻在水产动物的健康养殖中具有重要意义。
迄今为止,国外已有一些有关叶绿素荧光法研究营养盐胁迫对微藻光合作用影响的报道[9-14],国内有关营养盐浓度对小球藻叶绿素荧光的影响尚未见报道。目前,通过叶绿素荧光法检测营养盐限制情况的主要方法有3种:(1)通过Fv/Fm(最大光能转化效率)比值的变化来检测。(2)通过营养添加后各荧光参数的瞬时变化(nutrient induced fluorescnce transients,NIFT反应)来检测。(3)通过在线叶绿素荧光的变化检测。此文结合前2种方法研究了不同磷浓度对小球藻各荧光参数的影响,并对其逆境反应的机理进行了初步研究,为其利用提供科学依据,推进了营养盐检测方法的发展和完善。
1. 材料与方法
1.1 材料
实验所用小球藻藻种取自中国海洋大学微藻种质库,编号为MACC/C95。
1.2 微藻培养
实验在500 mL的三角烧瓶中进行,除磷浓度外,其它营养盐均采用f/2培养基[15]。磷设4个浓度梯度,分别为0(缺磷组)、10(低磷组)、36.3(对照组)和290.4 μM(高磷组)。每个浓度3个平行组,培养温度为20±1℃,盐度为31,光照强度为100 μmol · m-2 · s-1。培养过程中不充气,每日随机调换三角瓶并摇动2~3次。培养时间为7 d,每天定时取样,进行叶绿素荧光参数、细胞密度、叶绿素含量的测定。
1.3 叶绿素荧光参数的测定
用Water-PAM水样叶绿素荧光仪(Walz,Effectnich,Germany)测定叶绿素荧光参数。测量前将微藻样品暗适应15 min,叶绿素荧光参数Fv/Fm、ΦPSII(实际光能转化效率)、ETR(电子传递效率)、qP(光化学淬灭)、qN(非光化学淬灭)和NPQ(非光化学淬灭)可通过叶绿素荧光仪直接读出。
1.4 叶绿素含量的测定
用Water-PAM水样叶绿素荧光仪测定叶绿素含量,原理是由于瞬间荧光产量(F值)与叶绿素含量在一定范围内成正比,通过校正可测出叶绿素含量。为避免校正过程中可能产生的误差,文中的叶绿素含量用相对含量(每天测得的叶绿素含量与接种时叶绿素含量的比值)表示。
1.5 细胞密度的测定
每天定时取样,用血球计数板测定细胞密度。
1.6 NIFT反应
培养基中,磷的添加量为0,其它营养盐采用f/2培养基。实验的第3、第5和第7天定时取3 mL样品于石英杯中,测定光强为150 μmol · m-2 ·s-1,每30 s进行瞬时荧光、ΦPSII、qP、NPQ的测定,样品稳定10 min后,向样品中迅速添加30 μL磷源(PO43--P),再测定10 min。根据ROBERTS[16]的研究,此测定光强以及磷源的添加量足够引起NIFT反应。
1.7 恢复实验
微藻在不同磷浓度条件下培养7 d后,分别向缺磷组、低磷组和对照组中添加磷至f/2培养基的浓度,培养条件同1.2。每2 h取样测定叶绿素荧光参数,测量方法同1.3。
1.8 数据处理
用SigmaPlot 10.0软件作图。用SPSS 11.5软件分别进行单因子方差分析和多重比较。P < 0.05表示差异显著。
2. 结果
2.1 磷浓度对小球藻叶绿素荧光参数的影响
磷浓度对小球藻叶绿素荧光参数的影响见图 1-a~f,随着培养时间的延长,Fv/Fm、ΦPSⅡ、ETR、qP总体上呈下降趋势。缺磷组下降幅度最大,其中Fv/Fm值从接种时的0.643下降到0.35,接种后第2天开始到实验结束qP均处于最低水平。高磷组的Fv/Fm值从0.643下降到0.455,下降的幅度仅次于缺磷组。单因子方差分析以及多重比较的结果表明,一次性培养过程中,磷浓度对小球藻的叶绿素荧光参数均有显著影响(P < 0.05)。接种后第1天起到实验结束,缺磷组的Fv/Fm、ΦPSⅡ、ETR均显著低于对照组(P < 0.05),高磷组的ΦPSⅡ、ETR、qP以及低磷组的ΦPSⅡ、ETR均显著低于对照组(P < 0.05)。接种后第3天到实验结束,高磷组的Fv/Fm均显著低于对照组(P < 0.05)。高磷组的qN、NPQ随着培养时间的延长不断下降,从接种后第2天开始到实验结束始终处于最低水平。
磷浓度对小球藻细胞密度的影响见图 1-g,随着培养时间的增加,各组细胞密度不断增长,生长速率按大小顺序为对照组>低磷组>高磷组>缺磷组。单因子方差分析及多重比较的结果表明,磷浓度对小球藻的细胞密度有显著影响(P < 0.05)。
磷浓度对叶绿素相对含量的影响见图 1-h,随着培养时间的延长,各组叶绿素相对含量不断增长,增加速率按大小顺序为对照组>高磷组>低磷组>缺磷组。单因子方差分析及多重比较的结果表明,磷浓度对小球藻的叶绿素相对含量有显著影响(P < 0.05)。
2.2 磷添加后各荧光参数的NIFT反应
磷源添加后小球藻各荧光参数的NIFT反应见图 2-a~d,磷添加后实验第3天,荧光的变化不明显,第5和第7天荧光迅速下降随后有一定的恢复但始终低于磷添加前的水平。实验第3天,ΦPSII的变化不显著,第5和第7天ΦPSII迅速上升随后又很快恢复至磷添加前的水平。实验第3和第5天qP的变化不显著,而第7天qP不断大幅度上升。整个实验过程中,NPQ在磷添加后不断上升,实验第7天的上升幅度最大。
2.3 磷添加后各荧光参数24 h内的变化情况
磷添加后各荧光参数24 h内的变化情况见图 3-a~f,添加磷后,缺磷组的Fv/Fm、ΦPSⅡ、ETR、qP呈明显上升的趋势,低磷组的ΦPSⅡ、ETR也呈上升的趋势。恢复24 h后,缺磷组的Fv/Fm从0.350上升到0.526,ΦPSⅡ从0.114上升到0.246,ETR从5.7上升到12.4。对照组的Fv/Fm变化不明显,ΦPSⅡ、ETR在磷添加后12 h后呈现下降的趋势,其Fv/Fm、ΦPSⅡ、ETR最终大小分别为0.610、0.233、11.7。
各组的qN、NPQ在磷添加4 h以后呈现上升的趋势,缺磷组的上升速率最快、上升幅度最大,低磷组及对照组的qN、NPQ也有所上升,但是上升幅度不大。缺磷组、低磷组、对照组的最终qN分别为1.048、0.373、0.517,最终NPQ分别为1.230、0.260、0.469。
3. 讨论
叶绿素荧光与光合作用的各个反应过程紧密相关,任何胁迫对光合作用产生的影响都可以通过体内叶绿素荧光诱导动力学变化反映出来。因此,叶绿素荧光参数可作为胁迫条件下微藻抗逆反应的指标,较好地反映微藻的实际光合状况。
胁迫条件下,Fv/Fm、ΦPSⅡ、ETR、qP都明显下降。此实验中,缺磷、低磷、高磷组的Fv/Fm、ΦPSⅡ、ETR、qP都显著低于对照组。培养7 d后缺磷组Fv/Fm降低的幅度最大,从接种时的0.643下降到0.350,高磷组的Fv/Fm值从0.643下降到0.455。LIPPEMEIER等[11]对微小亚历山大藻(Alexandrium minutum)的研究表明,磷限制条件下培养9 d后,Fv/Fm值从0.67下降到0.42,而对照组的则保持在0.67左右,这和此实验的结果相一致。Fv/Fm下降表明,磷限制使小球藻PSⅡ反应中心受损,阻碍了光合电子传递的过程,抑制光合作用的原初反应[17]。ΦPSⅡ的降低,说明磷胁迫阻止藻细胞同化力(NADPH,ATP)的形成,从而影响对碳的固定与同化。qP的下降表明,电子由PSⅡ的氧化侧向PSⅡ反应中心的传递受阻,用于进行光合作用的电子减少,以热或其它形式耗散的光能增加,这与ΦPSⅡ的下降是吻合的。非光化学淬灭处在较低的水平,说明藻细胞的卡尔文循环活跃,能量利用率高。缺磷胁迫下小球藻的qN逐渐增加,表明其卡尔文循环的活性受抑制的程度增大,PSⅡ的潜在热耗散增加,对藻体本身是一种保护作用。高磷组的qN、NPQ不断下降,表明小球藻的正常生理功能受到严重伤害,对热能的耗散能力不断丧失。
磷缺乏会影响到微藻光合作用中的卡尔文循环,从而影响到叶绿素的合成和细胞的分裂,此时微藻对外界胁迫的适应性减小,其生长速率下降,最终导致细胞停止分裂。此实验结果表明,缺磷组培养2 d后,细胞分裂处于停滞状态,叶绿素的合成受到阻碍。低磷组的最终细胞密度以及叶绿素含量也显著低于对照组。LIPPEMEIER等[11]研究表明,磷限制的条件下,微小亚历山大藻培养20 d后的细胞密度仅为15.6×103,而磷充足的条件下,其最终密度为240×103,这和此实验的结果相一致。氮是合成蛋白质的主要物质基础,磷的缺乏同时影响了微藻对氮的吸收利用,从而严重阻碍了叶绿素的合成。高磷胁迫也会影响微藻的生长,此实验表明,高磷浓度下小球藻的细胞密度以及叶绿素的最终含量显著低于对照组。
此实验中,缺磷培养的小球藻在磷添加后各荧光参数会出现相应的NIFT反应,YOUNG和BEARDALL[10]的研究表明,杜氏藻(Dunaliella tertiolecta)在氮限制后添加NO3-,荧光在15 s内迅速下降,随后上升到最大值再下降至稳定水平,NPQ在前20 s内随着荧光的下降而下降,ΦPSⅡ、qP都有小幅度的变化,而添加蒸馏水则无此现象。HOLLAND等[18]的研究也表明颤藻(Oscillatoria sp.)以及浮水小球藻(C.emersonii)在磷限制后添加PO43-,荧光以及ΦPSⅡ都迅速下降至更低的水平并保持稳定。这和此实验的结果相一致,小球藻在添加磷源后,荧光也出现瞬时下降的现象。HOLLAND等的研究还表明,从自然海区取回的样品并无NIFT反应,经过实验室缺磷培养后,才出现NIFT反应。结果表明,微藻在受到营养盐限制的情况下,重新添加的瞬间会出现NIFT反应,这为后人检测水体中营养盐的限制情况提供一定的依据。
实验结果显示,磷添加后24 h内,小球藻缺磷组和低磷组的叶绿素荧光参数值都有一定恢复,而对照组的变化不明显。LIPPEMEIER等[11]的研究表明,微小亚历山大藻在磷限制9 d后,重新添加磷培养3 d后其Fv/Fm从0.42恢复到0.67,而未重新添加磷的组Fv/Fm继续下降。YOUNG和BEARDALL[13]对杜氏藻的研究也表明,限制性营养盐氮重新添加后24 h内,Fv/Fm从0.4恢复到0.7。这是因为营养盐限制的条件下,微藻处于“饥饿”状态,重新添加营养盐后出现“奢侈性吸收”。
过低或过高的磷浓度都会限制微藻的生长和光合作用,影响微藻的基本生理功能,此实验结果表明,小球藻生长和进行光合作用的最适磷浓度为36.3 μM(即对照组的磷浓度)。微藻受到营养盐限制后,叶绿素荧光会发生相应的变化。限制性营养盐重新添加后,荧光参数是否出现NIFT反应、NIFT反应的大小、是否能够恢复以及恢复的程度和微藻的种类以及营养盐限制的程度有着密切的联系。因此,可以根据营养盐限制条件下叶绿素荧光参数的变化情况、限制性营养盐添加瞬间各荧光参数的NIFT反应以及营养盐重新添加后各荧光参数的恢复情况来判断微藻营养盐限制的情况,研究其对营养盐限制条件的适应性。
-
[1] JENSEN F B. Nitrite disrupts multiple physiological functions in aquatic animals[J]. Comp Biochem Physiol, 2003, 135A(1): 9-24. doi: 10.1016/S1095-6433(02)00323-9
[2] YILDIZ H Y, BENLI A C K. Nitrite toxicity to crayfish, Astacus leptodactylus, the effects of sublethal nitrite exposure on hemolymph nitrite, total hemocyte counts, and hemolymph glucose[J]. Ecotoxicol Environ Saf, 2004, 59(3): 370-375. doi: 10.1016/j.ecoenv.2003.07.007
[3] TEADU FERREIRA DA COSTA O, DOS SANTOS FERREIRA D J, LO PRESTI MENDONCA F, et al. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite[J]. Aquac, 2004, 232(1/4): 627-636. doi: 10.1016/S0044-8486(03)00524-6
[4] 余瑞兰, 聂湘平, 魏泰莉, 等. 分子氦和亚硝酸盐对鱼类的危害及其对策的研究[J]. 中国水产科学, 1999, 6(3): 73-77. doi: 10.3321/j.issn:1005-8737.1999.03.017 [5] 谭树华, 罗少安, 梁芳, 等. 亚硝酸钠对鲫鱼肝脏过氧化氢酶活性的影响[J]. 淡水渔业, 2005, 35(5): 16-18. https://qikan.cqvip.com/Qikan/Article/Detail?id=20218046 [6] DVORAK P. Selected specificity of aquarium fish disease(in Czech)[J]. Bull VURH Vodnany, 2004, 40(3): 101-108.
[7] SVOBODOVA Z, MACHOVA J, POLESZCZUK G, et al. Nitrite poisoning of fish in aquaculture facilities with water-recirculating systems: three case studies[J]. Acta Vet Brno, 2005, 74(1): 129-137. doi: 10.2754/avb200574010129
[8] 赵玉宝, 袁宝山. 生态管理与暴发性鱼病[J]. 淡水渔业, 1994, 24(1): 23-25. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg5RSzE5OTQwMDA0NjA3MBoIN3JqbWo4eGY%3D [9] 蒋艾青, 杨四秀, 郑陶生, 等. 池塘鱼类暴发性疾病与主要水化因子关系研究[J]. 水利渔业, 2005, 25(5): 104-105. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg9zc3R4enoyMDA1MDUwNDEaCGQ1azhncTJu [10] MARTINEZ C B R, SOUZA M M. Acute effects of nitrite on ion regulation in two neotropical fish species[J]. Comp Biochem Physiol, 2002, 133(1): 151-160. doi: 10.1016/S1095-6433(02)00144-7
[11] WANG Weina, WANG Anli, ZHANG Yajuan, et al. Effects of nitrite on lethal and immune response of Macrobrachium nipponense[J]. Aquac, 2004, 232(1/4): 679-686. doi: 10.1016/j.aquaculture.2003.08.018
[12] SVOBODOVA Z, KOLAROVA J. A review of the diseases and contaminant related mortalities of tench (Tinca tinca L. )[J]. Vet Med-Czech, 2004, 49(1): 19-34. doi: 10.17221/5671-VETMED
[13] SIIKAVUOPIOA S I, DALEA T, CHRISTIANSEN J S, et al. Effects of chronic nitrite exposure on gonad growth in green sea urchin Strongylocentrotus droebachiensis[J]. Aquac, 2004, 242(1/4): 357-363. doi: 10.1016/j.aquaculture.2004.09.007
[14] SIIKAVUOPIO S I, SÆETHER B S. Effects of chronic nitrite exposure on growth in juvenile Atlantic cod, Gadus morhua[J]. Aquac, 2006, 255 (1/4): 351-356. doi: 10.1016/j.aquaculture.2005.11.058
[15] GROSELL M, JENSEN F B. Uptake and effects of nitrite in the marine teleosts fish Platichthys flesus[J]. Aquat Toxicol, 2000, 50(1/2): 97-107. doi: 10.1016/S0166-445X(99)00091-0
[16] MASSER M P, RAKOCY J, LOSORDO T M. Recirculating aquaculture tank production systems management of recirculating systems[J]. SRAC Publication, 1999, 452(94): 1-12. https://freshwater-aquaculture.extension.org/wp-content/uploads/2019/08/Recirculating_Aquaculture_Tank_Production_Systems_Management_of_Recirculating_Systems.pdf#:~:text=To%20provide%20a%20suitable%20environment%20for%20intensive%20fish,and%20air%2Foxygen%29%2C%20fixed%20water%20levels%2C%20and%20uninterrupted%20operation.
[17] WICKINS J F, LEE D O'C. Crustacean farming ranching and culture[M]. Oxford: Second Edition Blackwell Science, 2002, 446: 1-480.
[18] LIN Yongchin, CHEN Jiannchu. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels[J]. Aquac, 2003, 224(1/4): 193-201. doi: 10.1016/S0044-8486(03)00220-5 Get rights and content
[19] DEANE E E, WOO N Y S. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba[J]. Aquat Toxicol, 2007, 82(2): 85-93. doi: 10.1016/j.aquatox.2007.02.004
[20] AVNIMELECH Y, WEBER B, HEPHER B, et al. Studies in circulated fish ponds: organic matter recycling and nitrogen transformation[J]. Aquac Fish Manag, 1986, 17(13): 231-242. doi: 10.1111/j.1365-2109.1986.tb00109.x
[21] KAMSTRA A, SPAN J A, VAN WEERD J H. The acute toxicity and sublethal effects of nitrite on growth and feed utilization of European eel, Anguilla anguilla (L. )[J]. Aquac Res, 1996, 27(2): 903-911. doi: 10.1046/J.1365-2109.1996.T01-1-00820.X
[22] KROUPOVA H, MACHOVA J, SVOBODOVA Z. Nitrite influence on fish: a review[J]. Vet Med-Czech, 2005, 50(11): 461-471. doi: 10.17221/5650-VETMED
[23] 姚传付. 养鱼慎防亚硝酸盐[J]. 北京水产, 2006, 11(2): 44. https://d.wanfangdata.com.cn/periodical/bjsc200602019 [24] EVANS D H, PIERMARINI P M, CHOE K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 2005, 85(1): 97-177. doi: 10.1152/physrev.00050.2003
[25] ONKEN H, PUTZENLECHNER M. A V-ATPase drives active, electrogenic and Na+-independent clyabsorption across the gills of Eriocheir sinensis[J]. J Exp Biol, 1995, 198(2): 767-774. doi: 10.1242/jeb.198.3.767
[26] ZARE S, GREENAWAY P. The effect of moulting and sodium depletion on sodium transport and the activities of Na+-K+ATPase, and V-ATPase in the freshwater crayfish Cherax destructor (Crustacea: Parastacidae)-Potential energization by a V-type H+-ATPase[J]. Comp Biochem Physiol, 1998, 119A(7): 739-745.
[27] JENSEN L J, WILLUMSEN N J, LARSEN E H. Proton pump activity is required for active uptake of chloride in isolated amphibian skin exposed to freshwater[J]. J Comp Physiol, 2002, 172B(6): 503-511. doi: 10.1007/s00360-002-0276-x
[28] BRAUNER C J, SUVAJDZIC K, NILSSON G, et al. Fish physiology, toxicology, and water quality[C]. Proceedings of the Ninth International Symposium, Capri, Italy. Athens, Georgia: Ecosystems Research Division, 2006: 120-121.
[29] AVILEZ I M, ALTRAN A E, AGUIAR L H, et al. Hematological responses of the Neotropical teleost matrinx(Brycon cephalus) to environmental nitrite[J]. Comp Biochem Physiol, 2004, 139C(1/3): 135-139. doi: 10.1016/j.cca.2004.10.001
[30] JENSEN F B. Nitrite and red cell function in carp: control factors for nitrite entry, membrane potassium ion permeation, oxygen affinity and methaemoglobin formation[J]. J Exp Biol, 1990, 152(1): 149-166. doi: 10.1242/jeb.152.1.149
[31] MAY J M, QU Z C, XIA L, et al. Nitrite uptake and metabolism and oxidant stress in human erythrocytes[J]. Am J Physiol Cell Physiol, 2000, 279(6): 1 946-1 954. doi: 10.1152/ajpcell.2000.279.6.C1946
[32] JENSEN F B. Influence of haemoglobin conformation, nitrite and eicosanoids on K+ transport across the carp red blood cell membrane[J]. J Exp Biol, 1992, 171(1): 349-371. doi: 10.1242/jeb.171.1.349
[33] WILLAMS E M, EDDY F B. Chloride uptake in freshwater teleosts and its relationship to nitrite uptake and toxicity[J]. J Comp Physiol, 1986, 156B(6): 867-872. doi: 10.1007/BF00694263
[34] EDDY F B, WILLIAMS E M. Nitrite and freshwater fish[J]. Chem Ecol, 1987, 13(1): 31-38. doi: 10.1080/02757548708070832
[35] CHEN Jiannchu, CHENG Shayen. Recovery of Penaeus monodon from functional anaemia after exposure to sublethal concentration of nitrite at different pH levels[J]. Aquat Toxicol, 2000, 50(1/2): 73-83. doi: 10.1016/S0166-445X(99)00093-4
[36] 乔顺风. 水体氨氮转化形式与调控利用的研究[J]. 饲料工业, 2005, 26(12): 44-46. doi: 10.3969/j.issn.1001-991X.2005.12.015 [37] MARGIOCCO C, ARILLO A, MENSI P, et al. Nitrite bioaccumulation in Salmo gairdneri Rich and hematological consequences[J]. Aquat Toxicol, 1983, 3(2): 261-270. doi: 10.1016/0166-445X(83)90046-2
[38] CHEN Jiannchu, LEE Yuh. Effects of nitrite on mortality, ion regulation and acid-base balance of Macrobrachium rosenbergii at different external chloride concentrations[J]. Aquat Toxicol, 1997, 39(15): 291-305. doi: 10.1016/S0166-445X(97)00029-5
[39] BOUDREAUX P J, FERRARA A M, FONTENOT Q C. Chloride inhibition of nitrite uptake for non-teleost Actinopterygiian fishes[J]. Comp Biochem Physiol, 2007, 147A(2): 420-423. doi: 10.1016/j.cbpa.2007.01.016
[40] TOMASSO J R, SIMCC B A, DAVIS K B. Chloride inhibition of nitrite-induced methemoglobinemia in channel catfish (Ictalurus punctatus)[J]. J Fish Res Board Canada, 1979, 36: 1 141-1 144. doi: 10.1139/f79-160
[41] TOMASSO J R. Comparative toxicity of nitrite to freshwater fishes[J]. Aquat Toxicol, 1986, 8: 129-137. doi: 10.1016/0166-445X(86)90059-7
[42] ATWOOD H L, TOMASSO J R J, SMITH T I J. Nitrite toxicity to southern flounder Paralichthys lethostigma in fresh and brackish water[J]. J World Aquac Soc, 2001, 32(3): 348-351. doi: 10.1111/j.1749-7345.2001.tb00459.x
[43] ATWOOD H L, FONTENOT Q C, TOMASSO J R, et al. Toxicity of nitrite to Nile tilapia: effect of fish size and environmental chloride[J]. N Am J Aquac, 2001, 63(1): 49-51. doi: 10.1577/1548-8454(2001)063<0049:TONTNT>2.0.CO;2
[44] MAZIK P M, HINMAN M L, WINKELMANN D A, et al. Influence of nitrite and chloride concentrations on survival and hematological profiles of striped bass[J]. Trans Am Fish Soc, 1991, 120(2): 247-254. doi: 10.1577/1548-8659(1991)120<0247:IONACC>2.3.CO;2
[45] FONTENOT Q C, ISELY J J, TOMASSO J R. Characterization and inhibition of nitrite uptake in shortnose sturgeon fingerlings[J]. J Aquat Anim Health, 1999, 11(1): 76-80. doi: 10.1577/1548-8667(1999)011<0076:CAIONU>2.0.CO;2
[46] SIPA BA T L H, BOYD C E. Possible effects of sodium chloride treatment on quality of effluents from Alabama channel catfish ponds[J]. J World Aquac Soc, 2003, 34(2): 217-222. doi: 10.1111/j.1749-7345.2003.tb00059.x
[47] EVANS D H. The physiology of fishes[J]. Rev Fish Biol Fish, 1994, 4(2): 261-262.
[48] TOMASSO J R, GROSELL M. Physiological basis for large differences in resistance to nitrite among freshwater and freshwater-acclimated euryhaline fishes[J]. Environ Sci Technol, 2005, 39(1): 98-102. https://www.semanticscholar.org/paper/Physiological-basis-for-large-differences-in-to-and-Tomasso-Grosell/22ebed0fbedc8530901a0efd82e0daf7299c2839#:~:text=Differences%20in%20Cl-%20uptake%20mechanisms%20among%20groups%20of,the%20wide%20range%20of%20sensitivity%20to%20environmental%20NO2-.
[49] HUERTAS M, GISBERT E, RODRÍGUEZ A, et al. Acute exposure of Siberian sturgeon (Acipenser baeri, Brandt) yearlings to nitrite: median-lethal concentration (LC50) determination, haematological changes and nitrite accumulation in selected tissues[J]. Aquat Toxicol, 2002, 57(4): 257-266. doi: 10.1016/S0166-445X(01)00207-7
[50] JEBERG M V, JENSEN F B. Extracellular and intracellular ionic changes in crayfish Astacus astacus exposed to nitrite at two acclimation temperatures[J]. Aquat Toxicol, 1994, 29(1/2): 65-72. doi: 10.1016/0166-445X(94)90048-5
[51] JENSEN F B. Sublethal physiological changes in freshwater crayfish, Astacus astacus, exposed to nitrite: haemolymph and muscle tissue electrolyte status, and haemolymph acid-base balance and gas transport[J]. Aquat Toxicol, 1990b, 18(2): 51-60. doi: 10.1016/0166-445X(90)90035-N
[52] HARRIS R R, COLEY S. The effects of nitrite on chloride regulation in the crayfish Pacifastacus leniusculus Dana (Crustacea: Decapoda)[J]. J Comp Physiol, 1991, 161B(2): 199-206. doi: 10.1007/BF00262884
[53] PATRICK L, PÄRT P, MARSHALL W S, et al. Characteristics of ion and acid-base transport in the freshwater adapted mummichog (Fundulus heteroclitus)[J]. J Exp Zool, 1997, 279(3): 208-219. doi: 10.1002/(SICI)1097-010X(19971015)279:3<208::AID-JEZ2>3.0.CO;2-R
[54] STOMER J, JENSEN F B, RANKIN J C. Uptake of nitrite, nitrate, and bromide in rainbow trout, Oncorhynchus mykiss: effects on ionic balance[J]. Can J Fish Aquat Sci, 1996, 53(9): 1 943-1 950. https://www.semanticscholar.org/paper/Uptake-of-nitrite%2C-nitrate%2C-and-bromide-in-rainbow-Stormer-Jensen/b286b4b3551037c58fb30d5721ebfd0b86e37e39
[55] AGGERGAARD S, JENSEN F B. Cardiovascular changes and physiological response during nitrite exposure in rainbow trout[J]. J Fish Biol, 2001, 59(1): 13-27. doi: 10.1111/j.1095-8649.2001.tb02335.x
[56] ZACHARIASEN F. Intraspecific differences in nitrite tolerance of rainbow trout. The role of gill and kidney[D]. Odense: Institute of Biology, University of Southern Denmark, 2001.
[57] GISBERT E, RODRÍGUEZ A, CARDONA L, et al. Recovery of Siberian sturgeon yearlings after an acute exposure to environmental nitrite: changes in the plasmatic ionic balance, Na+-K+ATPase activity, and gill histology[J]. Aquac, 2004, 239(1/4): 141-154. doi: 10.1016/j.aquaculture.2004.03.019