水东湾春、秋季浮游植物群落结构特征

粟丽, 黄梓荣, 陈作志

粟丽, 黄梓荣, 陈作志. 水东湾春、秋季浮游植物群落结构特征[J]. 南方水产科学, 2015, 11(4): 27-33. DOI: 10.3969/j.issn.2095-0780.2015.04.004
引用本文: 粟丽, 黄梓荣, 陈作志. 水东湾春、秋季浮游植物群落结构特征[J]. 南方水产科学, 2015, 11(4): 27-33. DOI: 10.3969/j.issn.2095-0780.2015.04.004
SU Li, HUANG Zirong, CHEN Zuozhi. Characteristics of phytoplankton community in Shuidong Bay in spring and autumn[J]. South China Fisheries Science, 2015, 11(4): 27-33. DOI: 10.3969/j.issn.2095-0780.2015.04.004
Citation: SU Li, HUANG Zirong, CHEN Zuozhi. Characteristics of phytoplankton community in Shuidong Bay in spring and autumn[J]. South China Fisheries Science, 2015, 11(4): 27-33. DOI: 10.3969/j.issn.2095-0780.2015.04.004

水东湾春、秋季浮游植物群落结构特征

基金项目: 

公益性行业(农业)科研专项经费项目 201403008

农业部财政专项 20141005

中央级公益性科研院所基本科研业务费专项资金(中国水产科学研究院南海水产研究所)资助项目 2013YD05

详细信息
    作者简介:

    粟丽(1985-),女,研究实习员,从事海洋浮游植物生态研究。E-mail:suli@scsfri.ac.cn

    通讯作者:

    陈作志(1978-),男,博士,副研究员,从事渔业资源和海洋生态研究。E-mail:zzchen2000@163.com

  • 中图分类号: Q948.885.3

Characteristics of phytoplankton community in Shuidong Bay in spring and autumn

  • 摘要:

    根据2013年4月和10月2个航次的调查数据,对水东湾海域浮游植物种类组成、时空分布及多样性等群落特征进行了分析。共鉴定浮游植物4门69种,其中硅藻类59种,占85.51%;甲藻类8种,占11.59%;蓝藻和金藻类各1种,分别占1.45%。浮游植物丰度秋季(203.10×104个· m-3)是春季(22.89×104个· m-3)的8.87倍;春季湾外各站位高,秋季则湾内高。水东湾浮游植物优势度极高,春、秋两季均以中肋骨条藻(Skeletonema costatum)为第一优势种,优势度(Y)分别高达0.64和0.54。两季Shannon-Wiener多样性指数(H′)、Pielou均匀度指数(J′)春季(2.38,0.66)高于秋季(1.72,0.43),Margalef物种丰富度指数(D)均低于1。水东湾海域水质状况的生物多样性指数评价显示,该海域生态环境受到了一定程度的污染。

    Abstract:

    Based on the survey data collected from Shuidong Bay in April and October, 2013, we analyzed the species composition, spatial and temporal distribution and diversity of phytoplankton. A total of 69 species of phytoplankton belonging to four phylums were identified (59 species of Bacillariophyta, accounting for 85.51%;8 species of Pyrrophyta, accounting for 11.59%;1 species of Cyanobacteria and 1 species of Chrysophyta, accounting for 1.45%). The abundance of phytoplankton in autumn (203.10×104 ind ·m-3) was 8.87 times higher than that in spring (22.89×104 ind · m-3), and the abundances obtained from the sampling stations outside the bay and inside the bay in spring and autumn were high. Skeletonema costatum was the first dominant species in spring and autumn, and the dominances were 0.64 and 0.54, respectively. Shannon-Wiener diversity index (H′) and Pielou evenness index (J′) were higher in spring (2.38, 0.66) than in autumn (1.72, 0.43). Margalef richness index (D) was lower than 1.00 in the two seasons. It is concluded that the Shuidong Bay had been polluted.

  • 长鳍金枪鱼(Thunnus alalunga)是南太平洋延绳钓金枪鱼渔业的重要目标种类,也是中国金枪鱼延绳钓渔船的主捕对象之一[1]。联合国粮农组织(FAO)2010年统计数据显示,南太平洋海域长鳍金枪鱼产量为15.29×104 t,占当年全球长鳍金枪鱼总产量的63%,中国渔船于1998年开始进入该海域进行长鳍金枪鱼延绳钓作业,近年来其产量和作业规模总体呈现出波动增长的趋势[2-3]。相关资源评估报告表明,目前南太平洋长鳍金枪鱼资源状态总体较好,仍具有一定的开发潜力[4]。远洋性鱼类,尤其是金枪鱼,为捕食深海散射层(deep scattering layer,DSL)生物,都具有“昼潜夜浮”的特性[5]。ZAGAGLIA等[6]认为这种垂直方向上的昼夜移动,会使得金枪鱼垂直活动水层与次表层水温的关系更为密切。DOMOKOS等[7]通过在美属萨摩亚群岛附近海域进行成年长鳍金枪鱼标志放流研究发现,长鳍金枪鱼在18~30 ℃水层均有分布,其中65%~70%的时间在20~25 ℃水层活动。延绳钓调查也得出相似结论,林显鹏等[8]在南太平洋所罗门群岛以及杨嘉樑等[9]在东太平洋库克群岛附近海域进行延绳钓调查得出,长鳍金枪鱼适宜栖息水温分别为20~26 ℃以及20~25 ℃。上述研究结果表明,水温垂直结构对长鳍金枪鱼垂直活动水层的分布有直接影响,同时也是长鳍金枪鱼渔场形成过程中极为重要的因素之一。因此,分析南太平洋长鳍金枪鱼的垂直活动水层分布特征,了解其适宜的垂直活动水层深度范围十分有必要。以往对长鳍金枪鱼垂直活动水层的研究主要依靠标志放流和延绳钓调查,但标志放流和延绳钓调查的区域跨度小且在时间上不连续,无法大面积、长时间序列的监测海洋次表层环境变化对长鳍金枪鱼资源分布的影响。该研究根据前人标志放流和延绳钓调查所得结论,采用Argo数据重构了南太平洋次表层20 ℃和25 ℃等温线深度场,结合2010年~2012年中水集团长鳍金枪鱼延绳钓生产统计数据,分析了南太平洋长鳍金枪鱼的垂直分布特征,并采用数值方法计算其适宜的垂直活动水层深度,以期为南太平洋延绳钓长鳍金枪鱼捕捞作业、资源保护和管理提供参考。

    渔业数据来源于中水集团南太平洋长鳍金枪鱼延绳钓船队的21艘延绳钓渔船渔捞日志,数据包括作业时间、作业位置、渔获量、渔获尾数、下钩数等信息,时间为2010年~2012年,空间范围为5°S~21°S、155°E~180°E,具体研究区域见图 1。在实际分析统计中,以1°×1°为空间统计单元,并按月计算各1°×1°渔区网格内的单位捕捞努力量渔获量(catch per unit effort,CPUE)。

    图  1  南太平洋长鳍金枪鱼渔场范围示意图
    Figure  1.  Map of fishing ground of albacore tuna in the South Pacific Ocean

    CPUE计算公式如下[10]

    $$ \operatorname{CPUE}_{(i, j)}=\frac{N_{f is h(i, j)} \times 1\;000}{N_{h o o k(i, j)}} $$ (1)

    式中CPUE(i, j)Nfish(i, j)Nhook(i, j)分别是第i个经度、第j个纬度所处渔区网格内的CPUE(尾·千钩-1)、渔获尾数和实际下钩数。随后计算2010年~2012年各月各渔区网格内所有CPUE值的四分位数(Q1~Q3),并将所有大于Q3(第3个四分位点)的CPUE称为高值CPUE,其所属渔区定义为南太平洋长鳍金枪鱼的中心渔场[11]。2010年~2012年按月统计的1°×1°渔区网格内CPUE样本数共1 939个,其中高值CPUE样本485个,CPUE的四分位数划分如下:Q1=7.27尾·千钩-1,Q2=11.23尾·千钩-1,Q3=15.78尾·千钩-1

    综合前人标志放流和延绳钓调查所得结论,选取20 ℃和25 ℃分别作为南太平洋长鳍金枪鱼适宜栖息水温的下界和上界,用于分析其垂直活动水层分布特征及适宜的垂直活动水层深度范围。2010年~2012年南太平洋次表层20 ℃和25 ℃等温线深度数据来源于中国Argo实时数据中心(http://www.argo.org.cn/)。文章采用杨胜龙等[12]的方法将离散分布的Argo剖面深度数据,等距插值到规则等温线层上,垂直等距间隔为1 m。将2010年~2012年所有Argo数据按月进行分组,分别提取20 ℃和25 ℃等温面上离散分布的深度值,并采用Kriging插值方法将其插值到1°×1°网格节点上。

    将2010年~2012年南太平洋次表层20 ℃和25 ℃等温线深度数据与长鳍金枪鱼CPUE数据按月进行空间匹配,采用空间分析软件Arcgis绘制20 ℃和25 ℃等温线深度与CPUE空间叠加分布图。根据南半球的季节划分(1月~3月为夏季、4月~6月为秋季、7月~9月为冬季、10月~12月为春季),分析不同季节下长鳍金枪鱼CPUE与20 ℃和25 ℃等温线深度的时空分布特征及其动态变化规律。

    采用频次分析和经验累积分布函数(empirical cumulative distribution function,ECDF)相结合的方法,计算南太平洋长鳍金枪鱼适宜的垂直活动水层深度范围[13]。1)计算南太平洋长鳍金枪鱼中心渔场20 ℃和25 ℃等温线深度的平均值、均方差及适宜的垂直活动水层深度区间(平均值±均方差);2)计算高值CPUE与20 ℃和25 ℃等温线深度的经验累积分布函数及适宜的垂直活动水层深度区间[最大D(t)处深度值±均方差];取两者交集,即为长鳍金枪鱼适宜的垂直活动水层深度。

    ECDF计算方法如下[14]

    $$ f(t)=\frac{1}{n} \sum\limits_{i=1}^n l\left(x_i\right) \quad l\left(x_i\right)= \begin{cases}1, & x_i \leq t \\ 0, & x_i>t\end{cases} $$ (2)
    $$ g(t)=\frac{1}{n} \sum\limits_{i=1}^n \frac{y_i}{\bar{y}} $$ (3)
    $$ D(t)=|f(t)-g(t)| $$ (4)

    式中f(t)为深度值的经验累积分布函数,g(t)为高值CPUE与深度的加权经验累积分布函数,l(t)为分段函数,D(t)为t时刻处f(t)与g(t)差的绝对值。n为高值CPUE样本个数;t是以1 m为间距从低到高排列的深度范围序列;xi为第i个样本对应的深度值;yi为第i个样本对应的CPUE;y为所有高值CPUE样本的平均值;根据给定的显著性水平α=0.05,采用双样本K-S(Kolmogorov-Smirnov)检验方法分别检验高值CPUE与20 ℃和25 ℃等温线深度间的关系。

    2010年~2012年南太平洋长鳍金枪鱼CPUE与20 ℃等温线深度的月平均空间分布见图 2。20 ℃等温线深度大致以15°S为中心,呈南北对称分布,且存在明显的季节性变化,长鳍金枪鱼CPUE的时空分布与20 ℃等温线深度的220 m等深线时空变动特征具有明显的相关性。1月,研究海域内20 ℃等温线深度基本在220 m以上,深度为220~230 m区域占整个研究海域面积的比例较大,高值CPUE主要分布于12°S~18°S,深度为220~240 m的海域,瓦努阿图东北部,20 ℃等温线深度小于220 m的海域,也有少量高值CPUE分布;2月~3月,研究海域南部的20 ℃等温线深度略有下降,中心渔场开始北移,渔场分布的纬度范围变窄,瓦努阿图东北部渔场消失,而深度为220~230 m的区域面积则进一步扩张,约占整个研究海域面积的一半;秋季(4月~6月),随着作业渔船数量的增加,高值CPUE的个数及分布范围均有所拓展,220 m等深线较1月~3月有明显的向南移动趋势,20 ℃等温线深度为220~230 m的海域面积开始逐步缩小,中心渔场所在区域20 ℃等温线深度则逐步加深,20 ℃等温线深度超过230 m的中心渔场数量显著增加,随着220 m等深线的南移,研究区域北部20 ℃水层的深度开始逐步变浅,而研究海域南部20 ℃等温线深度则开始逐步加深;从冬季(7月~9月)开始,10°S以北海域20 ℃等温线深度已基本全部处于220 m以下,此处区域全年均少有渔场出现,中心渔场位置开始逐步向南移动,深度为220~240 m的区域面积进一步缩小,渔场分布的纬度范围开始重新收窄;春季(10~12月),中心渔场继续向南移动,中心渔场所处海域的20 ℃等温线深度则继续加深,到12月,南太平洋长鳍金枪鱼中心渔场已完全分布于15°S以南,中心渔场所在海域的20 ℃等温线深度下界也随之拓展到250 m。

    图  2  各月平均20 ℃等温线深度与平均CPUE空间叠加图
    Figure  2.  Overlay map of average isothermal depths at 20 ℃ and average CPUE in each month

    2010年~2012年南太平洋长鳍金枪鱼CPUE与25 ℃等温线深度的月平均空间分布见图 3。25 ℃等温线深度大致呈由北向南逐步递减的纬向带状分布。25 ℃等温线深度也存在明显的季节性变化,长鳍金枪鱼中心渔场的时空分布与25 ℃等温线深度的140 m等深线季节性变化趋势具有明显的相关性。1月,长鳍金枪鱼高值CPUE主要分布于25 ℃等温线深度为100~140 m的海域,瓦努阿图东北部,25 ℃等温线水深在80 m以下的海域,也有少量高值CPUE分布;2月~3月,中心渔场逐步北移,中心渔场对应的25 ℃等温线深度范围变窄,瓦努阿图东北部渔场消失;秋季(4月~6月),随着研究海域内捕捞努力量的增加,中心渔场的数量和空间分布范围均有所拓展,140 m等深线开始逐步南移,水深为140~160 m的海域面积不断扩张,中心渔场对应的25 ℃等温线深度范围拓宽至80~160 m;冬季(7月~9月),研究海域北部25 ℃等温线深度开始加深,140~160 m水深海域面积达到全年最大值,140 m等深线已完全分布于15°S以南,中心渔场对应的25 ℃等温线深度也随之变浅至80~150 m,研究海域南部25 ℃等温线深度开始变浅,中心渔场也随着140 m等深线的变动而向南转移,此处海域等深线分布密集,水层结构较为复杂,同时也是长鳍金枪鱼高值CPUE密集分布的海域;从春季(10月~12月)开始,140 m等深线开始北移,研究海域北部25 ℃等温线深度逐渐变浅,140~160 m水深的海域面积逐渐缩小,而在研究海域南部,25 ℃等温线深度则开始逐步加深,随着研究海域南部25 ℃等温线深度的增加,长鳍金枪鱼中心渔场的分布也随之不断南移,到12月,长鳍金枪鱼中心渔场已完全分布于15°S以南,中心渔场对应的25 ℃等温线深度范围缩小至80~120 m。

    图  3  各月平均25℃等温线深度与平均CPUE空间叠加图
    Figure  3.  Overlay map of average isothermal depths at 25 ℃ and average CPUE in each month

    2010年~2012年南太平洋长鳍金枪鱼中心渔场所在区域,20 ℃等温线深度在181~272 m,25 ℃等温线深度在41~201 m均有分布。长鳍金枪鱼高值CPUE与20 ℃和25 ℃等温线深度的频次分布直方图(图 4)呈现出明显的偏正态分布趋势,20 ℃等温线深度平均值为227 m、均方差为18,25 ℃等温线深度平均值为115 m,均方差为27。采用频次分析方法计算得出,71%的长鳍金枪鱼中心渔场趋向于集中分布在20 ℃等温线深度为209~245 m(227±18)的海域,70%的长鳍金枪鱼中心渔场趋向于集中分布在25 ℃等温线深度为88~142 m(115±27)的海域。

    图  4  长鳍金枪鱼高值CPUE与20 ℃和25 ℃等温线深度频次分布直方图
    Figure  4.  Frequency distribution histogram of high CPUE and isothermal depths at 20 ℃ and 25 ℃

    采用K-S检验方法对长鳍金枪鱼高值CPUE与20 ℃和25 ℃等温线深度之间的关系进行检验,样本数为485,在给定显著性水平α=0.05下,得出D0.05=0.061 7。ECDF分析结果见图 5。20 ℃和25 ℃等温线深度对应的最大D(t)值分别为0.026 9和0.025 1,均远小于D0.05,表明样本间服从同一分布,长鳍金枪鱼高值CPUE与20 ℃和25 ℃等温线深度间有密切关系。20 ℃和25 ℃等温线深度对应的最大D(t)值分别出现在220 m和111 m,与中心渔场20 ℃和25 ℃等温线深度的均值稍有差异(分别为227 m和115 m)。采用ECDF方法得出长鳍金枪鱼中心渔场20 ℃和25 ℃等温线深度分别为202~238 m(220±18)、84~138 m(111±27)。综合频次分析和ECDF分析的结果,取两者交集,得出南太平洋长鳍金枪鱼适宜的垂直活动水层深度为88~238 m。

    图  5  长鳍金枪鱼高值CPUE与20 ℃和25 ℃等温线深度值的经验累积分布函数
    Figure  5.  ECDF for high CPUE of albacore tuna and isothermal depths at 20 ℃ and 25 ℃

    以往对南太平洋长鳍金枪鱼渔场环境的研究,采用的多是遥感获取的海表面环境因子[15-19]。但标志放流和延绳钓调查结果表明,长鳍金枪鱼多分布于80 m以深的水层,10 m以浅的近表层很少有长鳍金枪鱼活动[20-21]。因此,相较于表层环境因子,采用次表层环境变量分析长鳍金枪鱼的栖息环境更为适合。长鳍金枪鱼耳石研究发现,长鳍金枪鱼经常出没于海洋环境变化较大的水层,如温跃层和混合层[22]。笔者在研究过程中也发现,15°S以南,长鳍金枪鱼高值CPUE密集分布的海域,其25 ℃等温线深度的等深线分布也十分密集,推测此处可能有混合层存在(图 3)。以往的研究中,常用20 ℃等温线深度来表示太平洋海域温跃层的深度,表明在太平洋海域次表层20 ℃等温线分布与温跃层的分布十分相似[23-24]。DOMOKOS等[6]指出,长鳍金枪鱼白天下潜至温跃层以下觅食DSL生物,夜晚则游回混合层上方,混合层及温跃层的深度直接影响到长鳍金枪鱼垂直活动水层的深度。对太平洋海域DSL生物的调查研究发现,DSL生物白天主要分布于温跃层以下,夜晚则分布于温跃层以上[25]。据此推断,20 ℃等温线可能通过影响DSL生物的垂直分布,进而影响长鳍金枪鱼垂直活动水层的空间分布。

    K-S检验结果表明,长鳍金枪鱼高值CPUE与20 ℃和25 ℃等温线深度之间有密切关系。长鳍金枪鱼中心渔场所处海域,其20 ℃等温线深度多在220 m以深,超过250 m则少有中心渔场出现;25 ℃等温线深度多在140 m以浅,浅于80 m则少有中心渔场出现。长鳍金枪鱼高值CPUE与20 ℃和25 ℃等温线深度的时空分布均呈现出明显的季节性变化特征,20 ℃和25 ℃等温线深度的这种季节性变化进而导致长鳍金枪鱼垂直活动水层深度的季节性变化。长鳍金枪鱼中心渔场的时空分布与20 ℃等温线深度的220 m等深线和25 ℃等温线深度的140 m等深线的时空变动具有显著的相关性,进一步表明水温垂直结构对长鳍金枪鱼的垂直活动水层深度及渔场分布有直接影响。

    综合频次分析和ECDF方法计算得出,南太平洋长鳍金枪鱼适宜的垂直活动水层深度为88~238 m。所得结果在中西太平洋长鳍金枪鱼垂直分布水层(80~380 m)之内[19],与临近的所罗门群岛附近海域长鳍金枪鱼活动较为频繁的水层(130~190 m)相符[7],与相似纬度的东太平洋海域成年长鳍金枪鱼钓获深度(102.3~236.1 m)基本相同[26],与东南太平洋长鳍金枪鱼延绳钓钓获深度(74.33~296.50 m)相似[27]。文章初步得出了南太平洋长鳍金枪鱼适宜的垂直活动水层深度范围,在实际的长鳍金枪鱼延绳钓生产作业中,应尽可能使延绳钓钓钩沉降至88~238 m,从而有效节省饵料投放、提高长鳍金枪鱼的生产效率。

    文章从次表层水温垂直结构的角度研究了南太平洋长鳍金枪鱼的垂直活动水层分布特征及其适宜的垂直活动水层深度范围,事实上,长鳍金枪鱼的垂直分布还受到海流、溶解氧、海水盐度、饵料生物分布等其他诸多环境因素的共同影响[28-30]。Argo数据可以实时获取次表层水温、水深、盐度以及溶解氧等信息,极大地拓展了远洋渔业资源和渔场学研究中海洋环境因子的选择范围,在远洋渔业研究中有着良好的应用前景。综合多种环境因子,恰当地选择神经网络、支持向量机、栖息地适应性指数等预报模型,准确、全面地把握渔场时空分布,是今后中国长鳍金枪鱼渔业研究的一个重要方向。

  • 图  1   水东湾采样站位示意图

    Figure  1.   Sampling stations in Shuidong Bay

    图  2   水东湾海域浮游植物种类数水平分布

    Figure  2.   Horizontal distribution of phytoplankton species in Shuidong Bay

    图  3   水东湾海域浮游植物细胞丰度水平分布

    Figure  3.   Horizontal distribution of phytoplankton abundance in Shuidong Bay

    表  1   水东湾浮游植物优势种组成

    Table  1   Composition of dominant species of phytoplankton in Shuidong Bay

    春季 spring 秋季 autumn
    种名 species 优势度 (Y)dominance 种名 species 优势度 (Y)dominance
    中肋骨条藻 S.costatum 0.64 中肋骨条藻 S.costatum 0.54
    中心圆筛藻 C.centralis 0.13 奇异棍形藻 B.paradoxa 0.33
    远距角毛藻 C.distans 0.07 菱形海线藻 T.nitzschioides 0.04
    拟弯角毛藻 C.pseudocurvisetus 0.02 尖刺拟菱形藻 P.pungens 0.02
    下载: 导出CSV

    表  2   水东湾浮游植物多样性指数、均匀度指数和丰富度指数

    Table  2   Diversity index, evenness index and richness index of phytoplankton in Shuidong Bay

    指数 index 季节 season Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 全区均值 average of the area
    多样性指数(H′) diversity index 春季 2.72 3.07 2.95 2.79 3.05 2.61 2.45 2.64 1.92 2.17 1.46 0.71 2.38
    秋季 1.75 1.52 1.60 1.34 1.85 1.58 2.07 2.12 1.97 1.40 2.33 1.07 1.72
    平均 2.24 2.30 2.28 2.07 2.45 2.10 2.26 2.38 1.95 1.79 1.90 0.89 2.05
    均匀度指数(J) evenness index 春季 0.82 0.74 0.80 0.88 0.76 0.71 0.68 0.76 0.57 0.61 0.40 0.19 0.66
    秋季 0.39 0.35 0.39 0.32 0.46 0.43 0.54 0.48 0.53 0.36 0.56 0.34 0.43
    平均 0.61 0.55 0.60 0.60 0.61 0.57 0.61 0.62 0.55 0.49 0.48 0.27 0.55
    丰富度指数(D) richness index 春季 0.58 0.99 0.73 0.51 0.93 0.74 0.67 0.59 0.49 0.61 0.68 0.64 0.68
    秋季 1.01 0.93 0.73 0.75 0.75 0.61 0.68 1.08 0.58 0.68 0.84 0.38 0.75
    平均 0.80 0.96 0.73 0.63 0.84 0.68 0.68 0.84 0.54 0.65 0.76 0.51 0.72
    下载: 导出CSV

    表  3   水东湾邻近海域浮游植物生态特征值比较

    Table  3   Comparison of ecological characteristics of phytoplankton in Shuidong Bay and adjacent sea areas

    时间 time 海域 sea area 种类 species 密度/104个·m-3 density 优势种 dominant species 多样性指数(H′) diversity index 均匀度指数(J) evenness index 文献 Reference
    1987.8 水东港 66 49.00 中肋骨条藻、菱形海线藻、布氏双尾藻、活动盒形藻、锤状中鼓藻、洛氏角毛藻、裸甲藻、夜光藻 - - [6]
    2003.8 放鸡岛 57 75 244.00 角毛藻、丹麦细柱藻、脆根管藻、尖刺拟菱形藻 1.45 0.77 [22]
    2003.12 20 416.00 1.17 0.63
    2004.2 9 916.90 0.95 0.46
    2004.5 14 938.00 1.45 0.49
    2013.4 水东湾 69 22.89 中肋骨条藻、奇异菱形藻、中心圆筛藻、菱形海线藻、远距角毛藻、拟弯角毛藻、尖刺拟菱形藻 2.38 0.66 该文
    2013.10 203.10 1.72 0.43
    下载: 导出CSV

    表  4   水东湾与南海其他海湾浮游植物多样性比较

    Table  4   Comparison of phytoplankton diversity in Shuidong Bay and other bays in the South China Sea

    时间 time 海湾 bay 种类 species 多样性指数(H′) diversity index 均匀度指数(J′) evenness index 文献 Reference
    2010春 spring 钦州湾 193 1.58 0.46 [20]
    2010夏 summer 2.65 0.53
    2010秋 autumn 3.08 0.70
    2011冬 winter 3.25 0.71
    2008春 spring 深圳湾 150 0.100 0.017 [23]
    2008 夏summer 0.633 0.102
    2008 秋autumn 0.823 0.143
    2008 冬winter 1.211 0.215
    2001.7~2002.7 柘林湾 183 1.75 0.42 [24]
    2007春 spring 流沙湾 159 3.23 0.82 [25]
    2006夏 summer 2.92 0.79
    2007秋 autumn 3.43 0.73
    2006冬 winter 2.53 0.85
    2007春 spring 大亚湾 114 1.83 0.51 [26]
    2007夏 summer 1.62 0.53
    2013春 spring 水东湾 69 2.38 0.66 该文
    2013秋 autumn 1.72 0.43
    下载: 导出CSV
  • [1] 刘长俭. 加快茂名港发展推进滨海新区战略实施[J]. 港口经济, 2012(12): 16-20. https://kns.cnki.net/kcms2/article/abstract?v=8iF5fUaBjd5UtRmF7VwjplJtaqyiz9AVdPocydXqI3c6Qe7M6sCsfGUu80tM_xD2i5upsin2-4BRz4n33QzzA33EPJbzjk-AKbiZTSMYe_6CZSz67YuU6R-lMbouNAWXTPrKBmApGj0rKYx3NsTPe79ei5LxAN5Ki5B4TwTJTjJtSQLvNI3T0O_nr239vg8O&uniplatform=NZKPT&language=CHS
    [2]

    PADISAK J, CROSSETTI L O, NASELLI F L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates[J]. Hydrobiologia, 2009, 621(1): 1-19. doi: 10.1007/s10750-008-9645-0

    [3]

    HORN H. The relative importance of climate and nutrients in controlling phytoplankton growth in Saidenbach Reservoir[J]. Hydrobiologia, 2003, 504(1/2/3): 159-166. https://www.semanticscholar.org/paper/The-relative-importance-of-climate-and-nutrients-in-Horn/fd1fd9c8b469b325aa98861619e94431a880c578

    [4]

    LUZIA C R, NADSON R S, VANIA M B, et al. Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain[J]. Ecol Indic, 2015, 48: 334-341. doi: 10.1016/j.ecolind.2014.08.009

    [5]

    SIDK M J, NABI M R U, HOQUE M A. Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia[J]. Est Coast Shelf Sci, 2008, 80(2): 251-260. doi: 10.1016/j.ecss.2008.08.004

    [6]

    SABATER S, ARTIGAS J, DURAN C, et al. Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River)[J]. Sci Total Environ, 2008, 404(1): 196-206. doi: 10.1016/j.scitotenv.2008.06.013

    [7] 吕颂辉, 齐雨藻, 钱宏林, 等. 南海港湾浮游植物与赤潮生物研究Ⅰ. 水东港[J]. 海洋通报, 1993, 12(2): 52-56.
    [8] 国家海洋局. 海洋调查规范[S]. 北京: 中国标准出版社, 2007: 1-168. https://wenku.baidu.com/view/fa77906d1eb91a37f1115c33.html?fr=xueshu_top&_wkts_=1731896185678&needWelcomeRecommand=1
    [9] 刘雪花, 赵秀侠, 高攀, 等. 安徽菜子湖浮游植物群落结构的周年变化(2010年)[J]. 湖泊科学, 2012, 24(5): 771-779. doi: 10.3969/j.issn.1003-5427.2012.05.019
    [10] 胡韧, 林彰文, 韩博平, 等. 大型热带水库-松涛水库枯水期浮游植物群落特征[J]. 生态科学, 2004, 23(4): 315-319. doi: 10.3969/j.issn.1008-8873.2004.04.007
    [11] 刘耕彤, 何文辉, 张慧, 等. 立体复合生态操纵水体浮游植物群落结构特征及水质评价[J]. 上海海洋大学学报, 2013, 22(2): 253-259.
    [12] 张婷, 李林, 宋立荣. 熊河水库浮游植物群落结构的周年变化[J]. 生态学报, 2009, 29(6): 2971-2979. doi: 10.3321/j.issn:1000-0933.2009.06.025
    [13] 周凯, 黄长江, 姜胜, 等. 2000-2001年柘林湾浮游植物群落结构及数量变动的周年调查[J]. 生态学报, 2002, 22(5): 688-698. doi: 10.3321/j.issn:1000-0933.2002.05.011
    [14] 黄长江, 王超, 董巧香, 等. 粤东柘林湾中肋骨条藻(Skeletonema costatum)种群生态学[J]. 生态学报, 2007, 27(1): 142-151. doi: 10.3321/j.issn:1000-0933.2007.01.017
    [15] 孙翠慈, 王友绍, 孙松, 等. 大亚湾浮游植物群落特征[J]. 生态学报, 2006, 26(12): 3949-3958. doi: 10.3321/j.issn:1000-0933.2006.12.005
    [16]

    RIJSTENBIL J W. Phytoplankton composition of stagnant and tidal ecosystems in relation to salinity, nutrients, light and turbulence[J]. Neth J Sea Res, 1987, 21(2): 113-124. doi: 10.1016/0077-7579(87)90027-5

    [17] 洪君超, 黄秀清, 蒋晓山, 等. 嵊山水域中肋骨条藻赤潮发生过程主导因子分析[J]. 海洋学报, 1993, 15(6): 135-141. doi: 10.1007/BF02677081
    [18] 安达六郎. 赤潮生物と赤潮生态[J]. 水产土木, 1973, 9(1): 31-36. doi: 10.18903/fishengold.9.1_31
    [19] 王彦, 申玉春, 叶宁, 等. 流沙湾浮游生物的群落结构与时空分布[J]. 广东海洋大学学报, 2012, 32(6): 66-73.
    [20] 姜发军, 陈波, 何碧娟, 等. 广西钦州湾浮游植物群落结构特征[J]. 广西科学, 2012, 19(3): 268-275. doi: 10.3969/j.issn.1005-9164.2012.03.018
    [21] 孙金水, WAI Onyx Wing-Hong, 戴纪翠, 等. 深圳湾海域浮游植物的生态特征[J]. 环境科学, 2010, 31(1): 63-68.
    [22] 冯波, 陈俊辉, 卢伙胜. 茂名市大放鸡岛海域浮游植物群落的季节变化[J]. 海洋渔业, 2008, 30(1): 67-73. doi: 10.3969/j.issn.1004-2490.2008.01.012
    [23] 张才学, 周凯, 孙省利, 等. 深圳湾浮游植物的季节变化[J]. 生态环境学报, 2010, 19(10): 2445-2451. doi: 10.3969/j.issn.1674-5906.2010.10.032
    [24] 杜虹, 黄长江, 陈善文, 等. 2001-2002年粤东柘林湾浮游植物的生态学研究[J]. 海洋与湖沼, 2003, 34(6): 604-617.
    [25] 程小倪, 黄良民, 谭烨辉, 等. 流沙湾海域浮游植物群落结构的时空变化[J]. 海洋环境科学, 2011, 30(1): 13-18. doi: 10.3969/j.issn.1007-6336.2011.01.003
    [26] 陈凯彪, 白洁, 董燕红. 2007年大亚湾生态监控区浮游植物群落结构及时空变动[J]. 黑龙江科技信息, 2009(32): 168, 257.
  • 期刊类型引用(13)

    1. 王志华,杨晓明,田思泉. 南太平洋长鳍金枪鱼资源不同尺度的空间格局特征. 南方水产科学. 2023(02): 31-41 . 本站查看
    2. 许回,宋利明,沈介然,李玉伟,张敏. 基于GAM的库克群岛海域长鳍金枪鱼CPUE时空分布与海洋环境的关系. 海洋通报. 2023(04): 444-455 . 百度学术
    3. XU Hui,SONG Liming,ZHANG Tianjiao,LI Yuwei,SHEN Jieran,ZHANG Min,LI Kangdi. Effects of Different Spatial Resolutions on Prediction Accuracy of Thunnus alalunga Fishing Ground in Waters Near the Cook Islands Based on Long Short-Term Memory(LSTM) Neural Network Model. Journal of Ocean University of China. 2023(05): 1427-1438 . 必应学术
    4. 宋利明,任士雨,洪依然,张天蛟,隋恒寿,李彬,张敏. 大西洋热带海域长鳍金枪鱼渔场预报模型的比较. 海洋与湖沼. 2022(02): 496-504 . 百度学术
    5. 袁红春,高子玥,张天蛟. 基于改进的XGBoost模型预测南太平洋长鳍金枪鱼资源丰度. 海洋湖沼通报. 2022(02): 112-120 . 百度学术
    6. 周胜杰,杨蕊,于刚,吴洽儿,马振华. 青干金枪鱼和小头鲔循环水养殖生长研究. 水产科学. 2021(03): 339-346 . 百度学术
    7. 程懿麒,张俊波,汪金涛,雷林. 基于神经网络的印度洋长鳍金枪鱼(Thunnus alalunga)时空分布与海洋环境关系研究. 海洋与湖沼. 2021(04): 960-970+1-6 . 百度学术
    8. 谢笑艳,汪金涛,陈新军,陈丕茂. 南印度洋长鳍金枪鱼渔获率与水深温度关系研究. 南方水产科学. 2021(05): 86-92 . 本站查看
    9. 张嘉容,杨晓明,戴小杰,邹莉瑾. 南太平洋长鳍金枪鱼延绳钓渔获率与环境因子的关系研究. 南方水产科学. 2020(01): 69-77 . 本站查看
    10. 张亚男,官文江,李阳东. 印度洋长鳍金枪鱼栖息地指数模型的构建与验证. 上海海洋大学学报. 2020(02): 268-279 . 百度学术
    11. 张嘉容,杨晓明,田思泉. 基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测. 中国水产科学. 2020(10): 1222-1233 . 百度学术
    12. 侯娟,周为峰,樊伟,张衡. 基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究. 南方水产科学. 2020(05): 42-50 . 本站查看
    13. 江建军,许柳雄,朱国平,郭志勋,朱伟俊. 利用鳍条研究北太平洋长鳍金枪鱼的年龄与生长. 水产学报. 2019(04): 917-927 . 百度学术

    其他类型引用(14)

图(3)  /  表(4)
计量
  • 文章访问数:  3157
  • HTML全文浏览量:  193
  • PDF下载量:  1420
  • 被引次数: 27
出版历程
  • 收稿日期:  2014-11-17
  • 修回日期:  2014-12-25
  • 刊出日期:  2015-08-04

目录

/

返回文章
返回