强天气干扰条件下粤西凡纳滨对虾养殖池塘细菌群落动态特征

胡晓娟, 李卓佳, 曹煜成, 杨莺莺, 文国樑, 袁翠霖, 罗亮

胡晓娟, 李卓佳, 曹煜成, 杨莺莺, 文国樑, 袁翠霖, 罗亮. 强天气干扰条件下粤西凡纳滨对虾养殖池塘细菌群落动态特征[J]. 南方水产科学, 2012, 8(5): 52-59. DOI: 10.3969/j.issn.2095-0780.2012.05.008
引用本文: 胡晓娟, 李卓佳, 曹煜成, 杨莺莺, 文国樑, 袁翠霖, 罗亮. 强天气干扰条件下粤西凡纳滨对虾养殖池塘细菌群落动态特征[J]. 南方水产科学, 2012, 8(5): 52-59. DOI: 10.3969/j.issn.2095-0780.2012.05.008
HU Xiaojuan, LI Zhuojia, CAO Yucheng, YANG Yingying, WEN Guoliang, YUAN Cuilin, LUO Liang. Dynamic characteristics of bacterial community in culture ponds for Litopenaeus vannamei in western Guangdong under influence of severe weather[J]. South China Fisheries Science, 2012, 8(5): 52-59. DOI: 10.3969/j.issn.2095-0780.2012.05.008
Citation: HU Xiaojuan, LI Zhuojia, CAO Yucheng, YANG Yingying, WEN Guoliang, YUAN Cuilin, LUO Liang. Dynamic characteristics of bacterial community in culture ponds for Litopenaeus vannamei in western Guangdong under influence of severe weather[J]. South China Fisheries Science, 2012, 8(5): 52-59. DOI: 10.3969/j.issn.2095-0780.2012.05.008

强天气干扰条件下粤西凡纳滨对虾养殖池塘细菌群落动态特征

基金项目: 

现代农业(虾)产业技术体系建设专项资金 CARS-47

公益性行业(农业)科研专项 201103034

广东省鱼病防治专项 2130108

中央级公益性科研院所基本科研专项资金(中国水产科学研究院南海水产研究所)资助项目 2012YD02

详细信息
    作者简介:

    胡晓娟(1984-),女,博士研究生,从事水环境与微生物调控研究。E-mail: xinr129@yahoo.com.cn

    通讯作者:

    李卓佳,E-mail: zhuojiali609@163.com

  • 中图分类号: X172;S917.1

Dynamic characteristics of bacterial community in culture ponds for Litopenaeus vannamei in western Guangdong under influence of severe weather

  • 摘要:

    于暴雨频发的华南雨季(2009年5月~8月)对粤西凡纳滨对虾(Litopenaeus vannamei)养殖池塘水体和底泥进行调查,研究在强天气干扰条件下养殖池塘细菌数量动态及多样性指数变化情况。结果发现,水体异养细菌在104~106 cfu·mL-1间波动,弧菌(Vibrio sp.)数量在养殖初期高达105 cfu·mL-1,虾池301#和404#自6月18日开始施用芽孢杆菌(Bacillus subtilis)等微生态制剂后,其弧菌数量维持在104 cfu·mL-1以下,403#和305#波动较大且多次超过105 cfu·mL-1;4口虾池水体弧菌与异养细菌的数量比值在养殖初期均超过20%,之后301#和404#保持在12%以下,403#和305#在养殖后期分别达到21%和33%。底泥异养细菌先升高后稳定,弧菌数量除305#较稳定外,其他虾池波动较大(103~107 cfu·g-1)。施用微生态制剂池塘301#和404#水体微生物群落多样性较前期降低,305#和403#较前期升高;底泥微生物群落多样性则呈现相同的变化规律,群落的丰富度、常见种的优势度和群落均度较前期有所降低。结果表明,施用微生态制剂的虾池可在气候多变的情况下保持养殖水体细菌群落的相对稳定,抑制弧菌滋生,降低微生态环境风险。

    Abstract:

    We observed the water and sediment in culture ponds for Litopenaeus vannamei in western Guangdong during the rainy season in South China (May~August, 2009) to study the changes of bacterial quantity and microbial diversity index under the influence of severe weather. The results show that the amount of heterotrophic bacteria in water was 104~106 cfu·mL-1. The amounts of Vibrio exceeded 105 cfu·mL-1 in the early period, and those were less than 104 cfu·mL-1 in No.301 and No.404 ponds which were added with probiotics (Bacillus subtilis, etc.) since June 18, while those in No.403 and No.305 ponds often exceeded 105 cfu·mL-1. In the early period, the ratios of Vibrio to heterotrophic bacteria in water were more than 20% in the 4 ponds, and those were less than 12% in No.301 and No.404 ponds later; in later period, the ratios were 21% and 33% in No.403 and No.305 ponds, respectively. The amount of heterotrophic bacteria in sediment increased first and then stabilized. The amount of Vibrio in the ponds fluctuated (103~107 cfu·g-1) except No.305 pond. The microbial community functional diversity index decreased in No.301 and No.404 ponds which were added with probiotics, while that in No.305 and No.403 ponds increased. The diversity index in sediment showed a similar variation, in other words, microbial community richness, dominance of common species and community evenness decreased. The results indicate that applying probiotics periodically in shrimp ponds can stabilize bacterial communities, inhibit growth of Vibrio and reduce risk of micro-ecological environment in case of changeable weather.

  • 神经肽是从神经系统和内分泌系统产生和释放,参与调节生物个体的生理活动,维持生物体内环境稳态的一类重要信号因子,是NEI系统中最重要的调节因子之一,在脊椎和无脊椎动物中均有免疫调节功能。其中FMRFamide (Phe-Met-Arg-Pheamide) 是一种酰胺化四肽,是类 FMRF酰胺肽 (FMRFarmide-related peptides, Farps或FMRFamide-like peptide, FLPs) 家族的成员。其在神经系统中合成并释放,能通过神经元直接传递信号,并作为神经递质、神经调质和神经激素发挥作用[1],是无脊椎动物中含量最丰富的一类神经肽[2]。此外,该神经肽也能通过内分泌系统调节摄食和运动行为[3]。近年来,FMRFamide的生理功能受到普遍关注,如Marciniak等[4]研究发现其具有特异性的心脏活性,能有效调节甲虫内脏肌肉的内源性收缩活性。Kim等[5]研究皱纹盘鲍 (Haliotis discus hannai) 发现,FMRFamide神经肽对海洋腹足类动物生殖调节有重要促进作用。FMRFamide也被发现能够通过抑制有丝分裂来保护细胞免受凋亡[6]。而作为无脊椎动物中特有的神经肽,一些研究也表明其可能参与了海洋无脊椎动物的免疫应答。如Li等[7]通过对太平洋牡蛎 (Crassostrea gigas) 炎症刺激后的FMRFanide多肽治疗,发现FMRFamide多肽不仅由神经内分泌系统合成,而且还在血细胞中合成加工,首次证实了该多肽存在于血细胞中。Guan等[8]对加利福尼亚海兔 (Aplysia california) 的研究发现FMRFamide可以通过激活P38丝裂原激活蛋白 (MAP) 激酶来调节突触的可塑性和调节免疫效应物。

    瘤背石磺 (Onchidium reevesii) 隶属于软体动物门、石磺科,又名土鸡、海赖子、涂龟、土海参等[9-10],常栖息在滩涂上的石缝中、植被的根部和阴暗潮湿的角落,主要分布于我国东部沿海地区[11-12]。瘤背石磺的中枢神经系统 (Central nervous system, CNS) 是一个简单的环状结构,体积大且易获得[13]。瘤背石磺不仅是研究无脊椎动物神经系统功能的模式种,而且由于其生活在潮间带,有良好的应激耐受机制,能适应波动的生存环境、各种重金属离子和病原体[14],对于研究无脊椎动物应对外界环境变化和病原入侵的免疫反应机制也有显著优势。为此,本研究在实验室瘤背石磺高通量转录组测序的基础上克隆得到了OrFMRFamide基因的全长,分析该基因的分子特征及其mRNA和多肽在组织中的分布,研究其在炎症刺激后的反应,从而为探究FMRFamide基因在瘤背石磺免疫机制中的作用提供了理论依据,也为进一步理解生活在潮间带的两栖类动物对恶劣环境的适应机理奠定基础。

    2020年6月初在江苏省盐城市沿海滩涂采集成体鲜活瘤背石磺,带回实验室后暂养于70 cm×120 cm×50 cm的塑料养殖箱内,养殖箱底部覆盖5~10 cm厚的海泥,种植滩涂采集的植被,放上瓦片,放养滩涂捕捉的螃蟹在泥中打洞,为石磺提供休息躲避的巢穴,尽可能地模拟自然生态环境,消除实验外干扰。每天早晚定时投喂玉米粉和喷洒海水保持土壤湿润,定期检查瘤背石磺生长状况,以确保其较高的成活率。暂养1周后,取5只体态均匀、健康有活力的瘤背石磺 [ 体长 (43.55±1.32) mm,体质量 (15.73±0.78) g],用超纯水清洗表面的泥沙,取血细胞、神经节、肝胰腺、肌肉、性腺、皮肤和腹足等组织用液氮速冻后放入–80 ℃冰箱备用,用于组织cDNA模板的制备。

    实验所用器皿均经180 ℃高温杀菌处理3 h或使用DEPC处理过后进行高压灭菌。实验开始前将所有器材预冷备用,全程在冰上操作,取–80 ℃保存的瘤背石磺各组织,按照Trizol (Invitrogen, 美国) 说明书提取各组织的总RNA。配制质量浓度为10 mg·mL−1的琼脂糖凝胶,135 V、电泳15 min检测RNA提取质量,在核酸检测仪上标定提取RNA的浓度和纯度。将神经节RNA按照PrimeScript II 1st Strand cDNA Synthesis Kit (TaKaRa) 说明书合成cDNA第一链,作为后续实验的RACE (Rapid-amplification of cDNA ends) 模板。将提取所得的各组织RNA按照PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa) 试剂盒说明书进行反转录,将获得的cDNA于–20 ℃保存备用。

    根据笔者实验室测得的转录组数据库 (未发表) 筛选得到目的基因的部分基因片段,使用Primer Premier 5.0软件设计2对引物,进行PCR扩增反应,反应产物用10 mg·mL−1的琼脂糖凝胶电泳检测,使用D2000 Ladder作为Maker,产物条带单一且清晰,送至苏州金唯智生物科技有限公司测序,测序结果在NCBI上BLAST比对,确认为FMRFamide基因片段,然后按照SMARTER® RACE5'/3'Kit及3'Full RACE Core Set With PrimerScriptTM RTase试剂盒的说明书在Primer Premier 5.0软件上设计5'和3' RACE特异性引物,通过RACE技术得到产物,产物经过1.0%琼脂糖凝胶电泳检测合格后送往苏州金唯智生物科技有限公司测序,将所得到的全部测序结果通过Sequebcher 5.0软件拼接得到OrFMRFamide基因的序列全长。

    把拼接得到的基因序列全长在NCBI上用ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) 在线工具对OrFMRFamide基因开放阅读框 (Open reading frame, ORF) 及编码氨基酸进行预测,得到预测的编码氨基酸后在NCBI上用在线工具BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 进行同源性比较,使用NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) 在线工具确定糖基化位点,理化性质用ProtParam (http://web.expasy.org/protparam/) 在线工具分析,使用NetPhos 2.0 Server (http://www.cbs.dtu.dk/services/NetPhos–2.0/) 在线工具查找磷酸化位点,使用Signal 5.0 (http://www.cbs.dtu.dk/services/SignalP/) 在线工具查找信号肽。用MEGA-X软件基于比邻法,以1 000次Bootstraps构建瘤背石磺与其他物种FMRFamide基因的系统进化树。

    通过在线工具Genscrip (https://www.genscript.com/tools/real–time–pcr–taqman–primer–design–tool) 根据OrFMRFamide基因全长序列设计荧光定量引物 (表1),以18S作为内参基因,以上述验证过的瘤背石磺各组织cDNA为模板,使用 ChamQ Universal SYBR qPCR Master Mix (Vazyme,美国) 试剂盒在CFX-96 (Bio-Rad,美国) 进行荧光定量反应,每个样品和内参都设置3个平行对照,以Rnase-free双蒸水 (ddH2O) 为阴性对照,实时荧光定量PCR数据用2–ΔΔCT法进行分析。

    表  1  实验中所用引物序列
    Table  1.  Primers used in this experiment
    引物
    Primer
    引物序列 (5'–3')
    Primer sequence
    用途
    Function
    OrFMRFamide-F1 CTTAGGAGTGGGAACAGC 验证目的片段
    OrFMRFamide-R1 CGGCTGGAGATTTGATTG
    OrFMRFamide-F2 CGGACCAGTACGACCAAC
    OrFMRFamide-R2 GTTCAGTCCGCCCTAATG
    OrFMRFamide-3'RACE-inter ACTGGTTTGGGTAGCA 3'RACE 特异性引物
    OrFMRFamide-3'RACE-outer ATGGCAACAATGTCTTTCG
    OrFMRFamide-5'RACE-inter GAGCAGAAGATGGCGT 5'RACE 特异性引物
    OrFMRFamide-5'RACE-outer TCCTCGCTTTGCCTCA
    OrFMRFamide-RT-F AGCTGGAGGACACACTGAGGCA Real-time RT-PCR
    OrFMRFamide-RT-R TGCCACATCGCCCTCATCGG
    18S-F TCCGCAGGAGTTGCTTCGAT
    18S-R ATTAAGCCGCAGGCTCCACT
    下载: 导出CSV 
    | 显示表格

    免疫组织化学取养殖箱暂养未经处理的5只瘤背石磺进行实验。采集未经处理的新鲜的神经节、肝胰腺、性腺、腹足、肌肉和皮肤,用4%的多聚甲醛固定6 h,转移至20%的蔗糖溶液固定过夜,然后转移至40%的蔗糖溶液固定到组织沉底,使用冰冻切片机 (莱卡CM1950) 切片后贴在黏附载玻片上,按照一步法免疫组化试剂盒 (凯基) 说明书完成免疫组化实验,用显微镜观察拍照。

    在养殖箱中暂养7 d后随机选取100只瘤背石磺,平均分为2组,暂养在2个养殖箱中,分别给每只瘤背石磺注射100 μL磷酸盐缓冲溶液 (Phosphate buffered saline, PBS) 和100 μL脂多糖 (LPS, 0.5 mg·mL–1,溶于PBS),经处理的瘤背石磺分别放回养殖箱暂养,分别在注射后第0、第6、第12、第24、第48小时取样,每次随机抽取9只石磺,将3只的血细胞、神经节、肝胰腺、肌肉、性腺、皮肤和腹足合并为1个样本,每个时间点采集3个平行样本。血细胞的采集是使用1 mL注射器从瘤背石磺腹部抽取血液,在800 ×g、4 ℃条件下离心10 min,获得血细胞后将其溶解在trizol中,用液氮速冻,于–80 ℃保存。其他组织取样后放入液氮速冻,于–80 ℃保存。用trizol法提取各组织RNA,用HiScript Q RT SuperMix for qPCR (+gDNA wiper, Vazyme,美国) 试剂盒进行反转录,得到的cDNA于–20 ℃备用。

    按照上述方法,以各组织各个时期刺激前后的cDNA为模板,18S为内参,进行实时荧光定量RT-PCR扩增实验,数据使用2–ΔΔCT法进行分析。

    使用SPSS 26.0软件对荧光定量的数据进行处理,单因素方差分析结果以“平均值±标准差 ($ \overline X \pm {\rm{SD}} $)”表示。P<0.05为差异显著,P<0.01为差异极显著。

    根据瘤背石磺转录组测序结果获得的OrFMRFamide基因片段,通过3'和5'-RACE扩增得到该基因全长序列为2 618 bp,开放阅读框 (Open reading frame, ORF)为882 bp,基因序列末端加尾信号AATAA与Poly (A) 之间有17个碱基 (图1)。ProtParam推测编码1个含有293个氨基酸的蛋白,分子量为33847.88 kD,理论等电点 (pI) 为9.25,不稳定指数为57.00,预测为不稳定蛋白,溶脂指数为55.67,平均疏水指数为–0.890。Server预测该蛋白不存在糖基位点。NetPhos 2.0 Server预测该蛋白含有12个磷酸化位点 [ 丝氨酸 (Ser):4;苏氨酸 (Thr):2;酪氨酸 (Tyr):6]。信号肽软件预测该基因有1个N端信号肽 (1~24)。

    图  1  FMRFamide基因的氨基酸序列及cDNA全长
    浅灰色阴影部分是该基因编码信号肽部分,起始密码子和终止密码子用方框标出,深灰色阴影是磷酸化位点,末端加尾信号AATAAA用下划线标出,poly (A) 用斜体表示
    Figure  1.  Amino acid sequence and full length cDNA of FMRFamide gene
    The light grey shaded portion is the signal peptide portion of the gene; the start and stop codons are boxed; the dark grey shaded portion is the phosphorylation site; the end plus tail signal AATAAA is underlined, and poly (A) is in italics.

    将预测得到的OrFMRFamide基因的氨基酸序列放到NCBI上进行BLAST比对,发现其与其他物种的FMRFamide基因有较高的同源性,下载这些物种的氨基酸序列,使用MEGA-X软件构建进化树 (图2)。结果显示,瘤背石磺和静水椎实螺 (Lymnaea stagnalis) 聚为一支,再与加利福尼亚海兔、棕蜗牛 (Cornu aspersum) 等腹足纲软体动物聚为一大支,与双壳纲海洋贝类聚为一大支,与环节动物和节肢动物各聚为一支。瘤背石磺与静水椎实螺进化关系最为接近。

    图  2  利用MEGA-X软件基于NJ法构建的FMRFamide系统进化树
    Figure  2.  NJ phylogenetic tree of FMRFamide by MEGA-X

    荧光定量RT-PCR结果显示,OrFMRFamide基因在神经节中的表达量极显著高于在其他组织的(P<0.01),此外,该基因也在血细胞、肝胰腺、皮肤、性腺组织中表达,几乎不在肌肉和腹足中表达 (图3)。以性腺的表达量为参照,血细胞、神经节、肝胰腺和皮肤的表达量分别约为性腺的2.33、1 025.47、36.96和6.86倍。

    图  3  OrFMRFamide在各组织的相对表达量
    **. 极显著性差异 (P<0.01)
    Figure  3.  mRNA relative expression of OrFMRFamide in different tissues
    **. Very significant at 0.01 level (P<0.01)

    利用免疫组织化学的方法分析瘤背石磺FMRFamide神经肽在神经节、肝胰腺、肌肉、性腺、皮肤和腹足中的分布情况 (图4),结果显示OrFMRFamide基因在不同组织中的表达模式和FMRFamide神经肽的分布水平相一致,在神经节中大量表达,在性腺、皮肤和肝胰腺中微量表达,在腹足和肌肉中几乎不表达。

    图  4  免疫组化结果
    a. 神经节;b. 腹足;c. 肝胰腺;d. 肌肉;e. 皮肤;f. 性腺;箭头表示FMRFamide多肽
    Figure  4.  Immunohistochemistry results
    a. Ganglia; b. Pleopod; c. Hepatopancreas; d. Muscle; e. Skin; f. Gonad; arrows represent FMRFamide polypeptides.

    基于瘤背石磺OrFMRFamide基因在不同组织中的相对表达量,研究该基因在LPS刺激后48 h内的表达变化 (图5)。LPS组肝胰腺中OrFMRFamide基因的表达量在注射后第12小时达最高值,与PBS组差异显著 (P<0.05),皮肤中OrFMRFamide基因的表达量随时间变化差异不大,但LPS组整体的表达量显著高于PBS对照组 (P<0.05),神经节中该基因的表达量在第12 小时达最高值,整体表达水平显著高于PBS对照组 (P<0.05),血细胞中该基因的相对表达量在第12小时达最高值,性腺中的表达量随时间变化的差异不显著,且LPS组和PBS组差异也不显著 (P>0.05)。

    图  5  OrFMRFamide基因在炎症刺激后在不同组织中的相对表达量
    图中不同字母表示差异显著 (P<0.05)
    Figure  5.  Relative expression of OrFMRFamide gene in different tissues after inflammatory stimulation
    Different letters in the figure indicate significant difference (P<0.05).

    本研究克隆了瘤背石磺FMRFamide基因,系统进化树显示其与静水椎实螺、棕蜗牛聚为一支,说明其与软体动物门腹足纲贝类的亲缘关系非常近,与软体动物双壳纲贝类明显区分开来。

    神经节、肝胰腺和血细胞属于NEI (神经节、肝胰腺、血细胞) 系统,有报道指出NEI系统在应激和感染过程中能维持机体内环境稳定,有效清除病原体,调节机体平衡,减少对宿主的伤害[15]。FMRFamide作为软体动物神经系统中的重要组成部分[16],实时荧光定量结果显示OrFMRFamide在神经节、血细胞和肝胰腺组织中均有较高的表达,在神经节中表达量最高,可能因为其参与神经系统中神经递质的合成和释放及神经内分泌系统的可塑性调节。杨金龙等[17]在研究厚壳贻贝 (Mytilus coruscus) 早期幼虫发育时也发现,FMRFamide大量存在于神经系统中。在其他软体动物如双壳纲[7,18]、腹足纲[19]、头足纲[20]中,FMRFamide多肽也被报道主要存在于神经系统、消化系统和血细胞中。FMRFamide在瘤背石磺NEI系统中的高表达说明该基因可能对瘤背石磺的稳态起重要作用,推测FMRFamide可能在神经节、肝胰腺和血细胞中合成和加工,然后通过自分泌/旁分泌信号通路释放到血细胞中来调节机体。荧光定量结果显示瘤背石磺FMRFamide还存在于皮肤中,高凤娟等[21]和Allan等[22]对花背蟾蜍 (Bufo raddei) 和北美木蛙 (Rana sylvatica) 的研究表明,两栖类动物皮肤具有先天免疫功能,说明瘤背石磺作为无贝壳的两栖型贝类,为适应潮间带恶劣的生存环境,FMRFamide多肽可能参与了其先天免疫。FMRFamide应用免疫组化学进一步证实了OrFMRFamide在不同组织中的分布和FMRFamide多肽的分布一致,这与Terrnina等[23]对猫肝吸虫 (Opisthorchis felineus) 和Allan等[22]对星虫 (Themiste lageniformis) 中FMRFamide的定位结果相似。

    炎症刺激实验结果显示,瘤背石磺神经节、肝胰腺和血细胞中FMRFamide基因相对表达量变化趋势为先上升后降低,在注射脂多糖12 h后的表达量达最大值,说明FMRFamide可能参与了免疫防御反应。在无脊椎动物中,血细胞被认为是宿主在免疫防御反应中起重要作用的免疫相关细胞[24],更有研究表明免疫细胞可以通过自分泌信号途径重新合成神经肽来调节肌体免疫反应[25-27]。Wang等[28]用寄生虫感染光滑双脐螺 (Biomphalaria glabrata),发现FMRFamide相对表达量高于对照组,FMRFamide表达量上升以抵抗寄生虫感染,这和本研究结果一致,可以推测FMRFamide多肽能保护机体免受侵害,响应免疫刺激,在维持机体稳态中发挥重要作用。炎症刺激后瘤背石磺性腺中FMRFamide相对表达量变化不显著,Hada等[29]研究发现FMRFamide还能影响根结线虫 (Meloidogyne graminicola) 的繁殖因子,Kerbl等[30]的研究也证实FMRFamide能作用于生殖腺,影响动物的交配行为,推测瘤背石磺性腺中的FMRFamide可能对瘤背石磺的繁殖有影响,但不参与维持自身稳态。

  • 图  1   水体和底泥异养细菌与弧菌的数量变化

    Figure  1.   Change of heterotrophic bacteria amount and Vibrio amount in water and sediment

    图  2   水体弧菌与异养细菌数量比值变化

    Figure  2.   Change of ratio of Vibrio to heterotrophic bacteria in water

    表  1   养殖过程天气概况

    Table  1   Weather during culture period

    月份month 天气情况weather status
    5月23日~27日May 23~27 持续大到暴雨天气[5]
    6月7日~11日June 7~11 持续大雨天气
    7月11日~22日July 11~22 分别受热带风暴“苏迪罗”和强台风“莫拉菲”的影响,出现大雨天气
    8月4日~15日August 4~15 受热带风暴“天鹅”影响,出现持续大到暴雨天气
    下载: 导出CSV

    表  2   虾池的基本情况

    Table  2   Basic information of shrimp ponds

    项目
    item
    池塘pond
    301# 404# 305# 403#
    放苗时间stocking date 5月15日 5月9日 5月15日 5月9日
    放苗量/104尾·hm-2 stocking density 75 75 75 75
    放苗前处理pre-treatment of stocking 进水用茶麸、二氧化氯等消毒剂消毒
    添加物supplement 6月18日、28日,7月14日、30日分别施用芽孢杆菌制剂,7月24日施用乳酸菌制剂
    溶解氧/mg·L-1 dissolved oxygen 3.88~7.76 4.67~7.18 2.31~8.72 3.58~6.10
    盐度salinity 5~11 8~12 6~13 6~11
    透明度/cm transparency 27~60 24~56 11~55 56~120
    pH 7.0~8.0 7.4~8.6 7.4~8.7 7.0~8.3
    水温/℃ temperature 28.8~32.2 28.4~32.3 28.0~32.2 28.7~32.4
    收获规格/尾·kg-1 harvest specification 40.2 47.7 73 44.1
    养殖时间/d culture time 101 91 93 121
    饲料系数FCR 1.37 1.18 1.72 1.91
    产量/t·hm-2 yield 4.24 5.97 6.41 4.42
    收虾原因reason of harvest 适价 适价 发病 适价
    下载: 导出CSV

    表  3   虾池微生物群落的多样性指数比较

    Table  3   Microbial community functional diversity index in shrimp ponds

    指标
    indicator
    Shannon指数
    (H)
    Shannon均度
    (E)
    Simpson指数
    (D)
    McIntosh指数
    (U)
    McIntosh均度
    (E)
    前期
    early period
    后期
    later period
    前期
    early period
    后期
    later period
    前期
    early period
    后期
    later period
    前期
    early period
    后期
    later period
    前期
    early period
    后期
    later period
    W301# 3.27± 0.04 3.07± 0.04* 1.04± 0.02 1.02± 0.02 24.01±1.39 17.24±0.94* 3.91± 0.63 5.48± 0.34* 1.00± 0.01 0.98± 0.01
    W404# 3.27± 0.04 3.23± 0.04 1.04± 0.02 1.00± 0.04 24.01±1.39 22.79± 1.25 3.91± 0.63 5.47± 0.31* 1.00± 0.01 0.99± 0.02
    W305# 3.18± 0.07 3.30± 0.03 1.02± 0.00 1.02± 0.03 21.03±1.90 24.87± 1.32* 5.76± 0.23 5.98± 0.92 0.99± 0.01 1.00± 0.01
    W403# 3.18± 0.07 3.23± 0.07 1.02± 0.00 1.00± 0.01 21.03±1.90 22.74±1.94 5.76± 0.23 6.69± 0.28* 0.99± 0.01 0.99± 0.01
    S301# 3.29± 0.04 3.03± 0.11* 0.99± 0.02 1.05± 0.01 25.26±1.19 16.87± 2.54* 8.62± 0.23 5.40± 0.80* 0.99± 0.01 0.99± 0.01
    S404# 3.29± 0.04 3.07± 0.02* 0.99± 0.02 1.12± 0.05 25.26±1.19 17.82± 0.27* 8.62± 0.23 6.28± 0.25* 0.99± 0.01 1.02± 0.02
    S305# 3.26±0.02 2.80± 0.08* 1.00± 0.01 1.08± 0.08 24.47±0.40 12.74± 1.40* 9.24± 0.45 4.79± 0.82* 0.99± 0.00 0.99± 0.03
    S403# 3.26± 0.02 3.20± 0.04 1.00± 0.01 1.00± 0.02 24.47±0.40 22.50±1.56 9.24± 0.45 7.61± 0.92 0.99± 0.00 0.99± 0.01
    注:W301#表示301#虾池水体;W404# 表示404#虾池水体;W305#表示305#虾池水体;W403# 表示403#虾池水体;S301# 表示301#虾池底泥;S404#表示404#虾池底泥;S305# 表示305#虾池底泥;S403# 表示403#虾池底泥;* 表示每种多样性指数前期和后期两次数据之间差异显著(P < 0.05),数值均为平均值±标准方差
    Note:W301# represents the water of No.301 pond;W404# represents the water of No.404 pond;W305# represents the water of No.305 pond;W403# represents the water of No.403 pond;S301# represents the sediment of No.301 pond;S404# represents the sediment of No.404 pond;S305# represents the sediment of No.305 pond;S403# represents the sediment of No.403 pond;* indicates that the data between early and later periods are significantly different (P < 0.05),and values are shown as X ±SD.
    下载: 导出CSV
  • [1] 胡晓娟, 李卓佳, 曹煜成, 等. 强降雨对粤西凡纳滨对虾养殖池塘微生物群落的影响[J]. 中国水产科学, 2010, 17(5): 987-995. http://qikan.cqvip.com/Qikan/Article/Detail?id=35237837

    HU Xiaojuan, LI Zhuojia, CAO Yucheng, et al. Influence of heavy rain on microbial community in Litopenaeus vannamei culture ponds in western Guangdong province[J]. J Fish Sci China, 2010, 17(5): 987-995. (in Chinese) http://qikan.cqvip.com/Qikan/Article/Detail?id=35237837

    [2] 申玉春, 熊邦喜, 叶富良, 等. 凡纳滨对虾高位池细菌数量变化及其与水环境因子的关系[J]. 海洋科学, 2006, 30(7): 33-37. https://qikan.cqvip.com/Qikan/Article/Detail?id=22352377

    SHEN Yuchun, XIONG Bangxi, YE Fuliang, et al. Relationship of bacterial density to its environmental factors in higher-place ponds of Litopenaeus vannamei[J]. Mar Sci, 2006, 30(7): 33-37. (in Chinese) https://qikan.cqvip.com/Qikan/Article/Detail?id=22352377

    [3] 査广才, 周昌清, 麦雄伟. 凡纳滨对虾低盐度高产虾池环境微生物生态研究[J]. 生态科学, 2006, 25(2): 231-235. doi: 10.3969/j.issn.1008-8873.2006.03.010

    CHA Guangcai, ZHOU Changqing, MAI Xiongwei. Environmental bacteria in Litopenaeus vannamei low salinity intensive stocking ponds[J]. Ecol Sci, 2006, 25(2): 231-235. (in Chinese) doi: 10.3969/j.issn.1008-8873.2006.03.010

    [4] 李烁寒, 李卓佳, 杨莺莺, 等. 秋冬季凡纳滨对虾养殖池塘细菌的数量动态[J]. 暨南大学学报: 自然科学与医学版, 2009, 30(3): 343-348. doi: 10.3969/j.issn.1000-9965.2009.03.023

    LI Shuohan, LI Zhuojia, YANG Yingying, et al. The dynamic study of bacteria from autumn to winter in the Litopenaeus vannamei ponds[J]. J Jinan Univ: Natural Science & Medicine Edition, 2009, 30(3): 343-348. (in Chinese) doi: 10.3969/j.issn.1000-9965.2009.03.023

    [5] 广东省气候中心. 2009年广东省气候公报[EB/OL]. [2011-10-18]. http://www.tqyb.com.cn/NewTqyb/QHGB/GDGB2009.htm.

    Guangdong Climate Center. Climate communique in Guangdong Province, 2009[EB/OL]. [2011-10-18]. http://www.tqyb.com.cn/NewTqyb/QHGB/GDGB2009.htm.

    [6] 陈绍铭, 郑福寿. 水生微生物学实验法(上册)[M]. 北京: 海洋出版社, 1985: 5-10.

    CHEN Shaoming, ZHENG Fushou. Aquatic microbiology experiment(1st volume)[M]. Beijing: Ocean Press, 1985: 5-10. (in Chinese)

    [7] 杨永华, 姚健, 华晓梅. 农药污染对土壤微生物群落功能多样性的影响[J]. 微生物学杂志, 2000, 20(2): 23-25. http://qikan.cqvip.com/Qikan/Article/Detail?id=4450207

    YANG Yonghua, YAO Jian, HUA Xiaomei. Effect of pesticide pollution against functional microbial diversity in soil[J]. J Microbiol, 2000, 20(2): 23-25. (in Chinese) http://qikan.cqvip.com/Qikan/Article/Detail?id=4450207

    [8] 罗亮, 李卓佳, 张家松, 等. 对虾精养池塘碳、氮和异养细菌含量的变化及其相关性研究[J]. 南方水产科学, 2011, 7(5): 24-29. doi: 10.3969/j.issn.2095-0780.2011.05.004

    LUO Liang, LI Zhuojia, ZHANG Jiasong, et al. Variation in contents of carbon, nitrogen and heterotrophic bacteria in intensive shrimp ponds and their correlation[J]. South China Fish Sci, 2011, 7(5): 24-29. (in Chinese) doi: 10.3969/j.issn.2095-0780.2011.05.004

    [9] 蒲红宇, 胡兆群, 王福强. 微生态制剂及其在水产养殖中的应用研究现状[J]. 海洋水产研究, 2003, 24(4): 80-84.

    PU Hongyu, HU Zhaoqun, WANG Fuqiang. Status quo of application and study of probiotics in aquaculture[J]. Mar Fish Res, 2003, 24(4): 80-84. (in Chinese)

    [10] 林黑着, 李卓佳, 郭志勋, 等. 益生菌对凡纳滨对虾生长和全虾营养组成的影响[J]. 南方水产, 2008, 4(6): 95-100. doi: 10.3969/j.issn.2095-0780.2008.06.014

    LIN Heizhao, LI Zhuojia, GUO Zhixun, et al. Effects of dietary probiotics on growth and biochemical composition of whole body of juvenile shrimp, Litopenaeus vannamei[J]. South China Fish Sci, 2008, 4(6): 95-100. (in Chinese) doi: 10.3969/j.issn.2095-0780.2008.06.014

    [11]

    LIN Heizhao, GUO Zhixun, LI Zhuojia, et al. Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone[J]. Aquac Res, 2004, 35 (15): 1441-1447. doi: 10.1111/j.1365-2109.2004.01169.x

    [12] 李卓佳, 郭志勋, 冯娟, 等. 应用芽孢杆菌调控虾池微生态的初步研究[J]. 海洋科学, 2006, 30(11): 28-31. doi: 10.3969/j.issn.1000-3096.2006.11.007

    LI Zhuojia, GUO Zhixun, FENG Juan, et al. Primary study on mediating micro-ecological environment with Bacillus sp. in shrimp pond[J]. Mar Sci, 2006, 30(11): 28-31. (in Chinese) doi: 10.3969/j.issn.1000-3096.2006.11.007

    [13] 李卓佳, 李烁寒, 杨莺莺, 等. 凡纳滨对虾高位池养殖水体细菌变动及其与理化因子的关系[J]. 南方水产, 2010, 16(4): 6-12. doi: 10.3969/j.issn.1673-2227.2010.04.002

    LI Zhuljia, LI Shuohan, YANG Yingying, et al. Bacteria variation in Litopenaeus vannamei high level ponds and its relation with physical-chemical factors[J]. South China Fish Sci, 2010, 16(4): 6-12. (in Chinese) doi: 10.3969/j.issn.1673-2227.2010.04.002

    [14] 林美兰, 倪纯治, 刘文华, 等. 厦门同安西柯对虾养殖池的细菌数量动态[J]. 台湾海峡, 1998, 17(2): 156-161. https://td.alljournals.cn/view_abstract.aspx?jid=716BEB847F28CF84C4BCD5675932EDA6&aid=AE62C92A99ADA504F57A91A2C550730B&yid=8CAA3A429E3EA654&iid=0B39A22176CE99FB&referenced_num=%E6%80%BB%E8%A2%AB%E5%BC%95%EF%BC%9A10%EF%BC%8C%E8%87%AA%E5%BC%95%EF%BC%9A0%EF%BC%8C%E4%BB%96%E5%BC%95%EF%BC%9A10

    LIN Meilan, NI Chunzhi, LIU Wenhua, et al. Variation of bacterium numbers in shrimp ponds in Xike, Tong'an, Xiamen[J]. J Oceanogr Taiwan Strait, 1998, 17(2): 156-161. (in Chinese) https://td.alljournals.cn/view_abstract.aspx?jid=716BEB847F28CF84C4BCD5675932EDA6&aid=AE62C92A99ADA504F57A91A2C550730B&yid=8CAA3A429E3EA654&iid=0B39A22176CE99FB&referenced_num=%E6%80%BB%E8%A2%AB%E5%BC%95%EF%BC%9A10%EF%BC%8C%E8%87%AA%E5%BC%95%EF%BC%9A0%EF%BC%8C%E4%BB%96%E5%BC%95%EF%BC%9A10

    [15] 黄洪辉, 林钦, 郭志勋, 等. 有益微生物的应用对海水对虾养殖池塘中细菌数量动态变化的影响[J]. 南方水产, 2007, 3(3): 14-19. doi: 10.3969/j.issn.2095-0780.2007.03.003

    HUANG Honghui, LIN Qin, GUO Zhixun, et al. Effects of probiotics on the dynamic of bacteria in marine shrimp pond[J]. South China Fish Sci, 2007, 3(3): 14-19. (in Chinese) doi: 10.3969/j.issn.2095-0780.2007.03.003

    [16] 李卓佳, 林亮, 杨莺莺, 等. 芽孢杆菌制剂对虾池环境微生物群落的影响[J]. 农业环境科学学报, 2007, 26(3): 1183-1189. doi: 10.3321/j.issn:1672-2043.2007.03.075

    LI Zhuojia, LIN Liang, YANG Yingying, et al. Influence of Bacillus on the microbial communities in shrimp ponds[J]. J Agro-Environ Sci, 2007, 26(3): 1183-1189. (in Chinese) doi: 10.3321/j.issn:1672-2043.2007.03.075

    [17]

    THIMMALAPURA N D, FATIMAH M Y, MOHAMED S. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products[J]. Aquaculture, 2002, 206(3): 245-256. doi: 10.1016/S0044-8486(01)00721-9

    [18] 林亮, 李卓佳, 郭志勋, 等. 施用芽孢杆菌对虾池底泥细菌群落的影响[J]. 生态学杂志, 2005, 24(1): 26-29. https://www.cje.net.cn/CN/abstract/abstract14612.shtml

    LIN Liang, LI Zhuojia, GUO Zhixun, et al. Influence of Bacillus on the bacterial communities in the sediment of shrimp ponds[J]. Chin J Ecol, 2005, 24(1): 26-29. (in Chinese) https://www.cje.net.cn/CN/abstract/abstract14612.shtml

    [19] 杨莺莺, 李卓佳, 陈永青, 等. 乳酸杆菌L1对致病弧菌的抑制作用[J]. 南方水产, 2005, 3(1): 62-65. https://www.schinafish.cn/cn/article/id/ed5bbae7-3c05-4936-80f8-b08c86fcfcdc

    YANG Yingying, LI Zhuojia, CHEN Yongqing, et al. Inhibitory effects of Lactobacillaceae on pathogen Vibrio sp. [J]. South China Fish Sci, 2005, 3(1): 62-65. (in Chinese) https://www.schinafish.cn/cn/article/id/ed5bbae7-3c05-4936-80f8-b08c86fcfcdc

    [20] 倪纯治, 林燕顺, 叶德赞, 等. 海水养虾池的几种致病弧菌生态[J]. 台湾海峡, 1995, 14(1): 73-79.

    NI Chunzhi, LIN Yanshun, YE Dezan, et al. Vibrio ecology of penaeid in ponds[J]. J Oceanogr Taiwan Strait, 1995, 14(1): 73-79. (in Chinese)

    [21]

    STEFANOWICZ A. The Biolog plates technique as a tool in ecological studies of microbial communities[J]. Polish J Environ Stud, 2006, 15(5): 669-676. http://www.pjoes.com/The-Biolog-Plates-Technique-as-a-Tool-in-Ecological-Studies-of-Microbial-Communities,87919,0,2.html

    [22]

    WEBER K P, LEGGE R L. Dynamics in the bacterial community-level physiological profiles and hydrological characteristics of constructed wetland mesocosms during start-up[J]. Ecol Eng, 2011, 37(5): 666- 677. doi: 10.1016/j.ecoleng.2010.03.016

    [23] 杨莺莺, 李卓佳, 梁晓华, 等. 芽孢杆菌对鱼池微生物群落代谢功能的影响[J]. 微生物学杂志, 2009, 29(3): 11-17. doi: 10.3969/j.issn.1005-7021.2009.03.003

    YANG Yingying, LI Zhuojia, LIANG Xiaohua, et al. Influences of Bacillus on metabolic functions of microbial communities in fishponds[J]. J Microbiol, 2009, 29(3): 11-17. (in Chinese) doi: 10.3969/j.issn.1005-7021.2009.03.003

    [24]

    MAGURRAN A E. Ecological diversity and its measurement[M]. New Jersey: Princeton University Press, 1988, 141-162.

    [25]

    ATLAS R M. Diversity of microbial community[J]. Adv Microbial Ecol, 1984, 7: 1-47. doi: 10.1007/978-1-4684-8989-7_1

    [26] 刘少英. 滩涂土池半集约化养殖凡纳滨对虾和斑节对虾的生长特性研究[D]. 湛江: 广东海洋大学, 2010. 10.7666/d.y1804053

    LIU Shaoying. Study on growth characteristics of Litopenaeus vannamei and Penaeus monodon during semi-intensive earthen pond-culture[D]. Zhanjiang: Guangdong Ocean University, 2010. (in Chinese) 10.7666/d.y1804053

    [27] 彭聪聪, 李卓佳, 曹煜成, 等. 粤西凡纳滨对虾海水滩涂养殖池塘浮游微藻群落结构特征[J]. 渔业科学进展, 2011, 32(4): 117-125. https://www.southchinafish.ac.cn/info/1451/17260.htm

    PENG Congcong, LI Zhuojia, CAO Yucheng, et al. Structure characteristics of planktonic microalgae community in Litopenaeus vannamei shoal water culture ponds in western Guangdong[J]. Prog Fish Sci, 2011, 32(4): 117-125. (in Chinese) https://www.southchinafish.ac.cn/info/1451/17260.htm

  • 期刊类型引用(1)

    1. QIU Jiayin,SUN Lianlian,LI Shuang,ZHOU Xu,CHI Changfeng,ZHENG Libing. Identification and Expression Profile of a Neuropeptide LFRFamide-Like Gene During Different Stages of Gonadal Development in the Cephalopod Sepia pharaonis. Journal of Ocean University of China. 2024(02): 499-508 . 必应学术

    其他类型引用(0)

图(2)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2012-03-05
  • 修回日期:  2012-05-12
  • 刊出日期:  2012-10-04

目录

/

返回文章
返回