Review of research on streptococcosis in tilapia
-
摘要:
链球菌(Streptococcus spp.)是一种广泛分布于自然界的革兰氏阳性菌,是人类的重要病原之一,也是其他多种脊椎动物包括猪、牛、鱼等的重要病原菌。目前已有多个国家报道了鱼类链球菌病的暴发与流行,受感染的鱼类包括多种海水和淡水鱼类,以温水性鱼类最为严重。近年中国罗非鱼链球菌感染的报道也呈现增加趋势,尤其在2009年,广东、海南、福建和广西地区养殖罗非鱼的链球病发病率为20%~50%,死亡率达50%~70%,甚至更高。链球菌病已严重危害着中国罗非鱼养殖业的健康发展。文章对罗非鱼链球菌病的病原、流行及防治方法作一综述,以期为今后开展罗非鱼链球菌病防控研究提供参考。
Abstract:Streptococcus spp. is gram-positive and one of the major bacterial pathogens causing infectious diseases in human as well as in many vertebrates including swine, cattle and fish. Currently, the outbreak and prevalence of streptococcosis in fish, often occurring in various species of marine and freshwater fishes and mostly occurring in fishes of warm waters, have already been reported by many countries. There are more and more reports of tilapia infected with streptococcosis in China. In 2009, the outbreaks of streptococcosis were found in tilapia farms in southern China, including Guangdong, Guangxi, Fujian and Hainan provinces; the rates of streptococcal infectivity and mortality were 20%~50% and 50%~70%, respectively. Thus, streptococcosis has seriously hindered the development of tilapia aquaculture. This review summarized the reports on pathogeny, epidemiology, control and prevention of streptococcosis in tilapia, which would provide references for the prevention and control of streptococcosis in tilapia in the future.
-
Keywords:
- tilapia /
- Streptococcus spp. /
- streptococcosis
-
光合细菌是一大类能利用光能作为能源进行不放氧光合作用的原核生物的总称。光合细菌由于其显著的净化水质作用[1],其中的某些菌株能够拮抗病原菌[2]、提高水产动物免疫力[3]和成活率[4],且其丰富的菌体蛋白也可以为水产动物提供营养[5-7],在水产动物的育苗[8]及生产[9]中发挥了重要的作用。筴膜红假单胞菌(Rhodopseudomonas capsulate)PS2菌株可适应的温度、盐度、pH和光照度范围分别为(20~40) ℃、0~40.0、6.0~9.0、(500~5 000)lx;该菌株具有良好的水质净化能力,生长范围广泛,是一种潜在的益生菌[1]。赵卫红等[10]研究了筴膜红假单胞菌对异育银鲫(Allogynogenetie cruciaan)鱼种非特异性免疫机能的影响。笔者将此株光合细菌添加到饲料中研究了其对尖吻鲈(Lates calcarifer)的生长、消化酶及血清非特异性免疫酶的影响,以为光合细菌在鱼类饲料中的应用提供参考。
1. 材料与方法
1.1 试验菌株
试验所用的光合细菌由中国水产科学研究院南海水产研究所分离保存,并培养成液体制剂,该光合细菌被鉴定为筴膜红假单胞菌,其菌含量为8×108 cfu·mL-1。
1.2 试验饲料
投喂前将光合细菌液体制剂分别按照0.0%、0.5%、1.0%和1.5%的比例均匀喷洒在基础饲料表面,稍晾干后,在0.5 h内投喂完毕。基础饲料是恒兴牌海水鱼膨化饲料。
1.3 试验用鱼及饲料管理
试验在中国水产科学研究院南海水产研究所热带水产研究开发中心(海南三亚)进行。试验尖吻鲈购于当地养殖场,购回后在室内进行为期2周的驯养。挑选健康均匀的个体随机分为4个组,初始体质量为(10.95±0.25)g,每组3个平行,每个平行20尾鱼,在容量为0.5 m3的圆形玻璃纤维桶内养殖50 d。采用流水养殖,海水流速为2~3 L·min-1。试验用水是沙滤海水。每天饱食投喂2次,分别于8: 00和16: 00进行。溶解氧、氨氮、盐度和温度分别为(6.84±0.90)mg·L-1,(0.03±0.02)mg·L-1,29~31和26~31 ℃。
1.4 取样及计算指标
试验结束前经24 h禁食,称总质量,并统计每组鱼的数量。每桶随机取3尾鱼作为消化酶的样品。冰盘解剖活鱼,分别取出肝脏、胃、幽门垂和肠道,剔除脏器的脂肪和结缔组织并称重。样品放置在-20 ℃保存备用。每桶取5尾鱼断尾取血,用以测定血清免疫酶活性。增重率(weight gain,WG)、特定生长率(specific growth rate,SGR)、饲料系数(feed conversion ratio,FCR)和成活率(survival rate,SR)的计算公式如下:
增重率(%)=100×[终末均质量(g)-初始均质量(g)]/初始均质量(g)
特定生长率(%)=100×[ln终末均质量(g)-ln初始均质量(g)]/试验天数(d)
成活率(%) =100×试验结束鱼数/试验开始鱼数
饲料系数=投喂饲料干质量(g)/鱼增质量(g)
1.5 消化酶的测定
1.5.1 样品制备
样品制备参照WANG和XU[11]。将各个消化器官的组织在预冷的磷酸缓冲液(0.02 mol·L-1,pH 7.5)[1 g·(5 mL)-1]中用玻璃匀浆器冰浴匀浆,4 ℃、10 000 r·min-1冷冻离心30 min,上清液作为消化酶分析样品,4 ℃保存,24 h内分析完毕。酶液中可溶性蛋白浓度用BRADFORD[12]的方法测定,用牛血清蛋白做标准曲线。酶的活力单位定义为在37 ℃,相应的pH的条件下,每分钟催化底物释放1 μg的产物所需要的酶量。酶比活力定义为单位每毫克蛋白的酶活力(U·mg-1)。其中胃组织的测定pH 3.0,其他组织酶的活性均在pH 7.5时测定。
1.5.2 消化酶活力的测定
蛋白酶的测定参照ANSON[13]的方法,用酪氨酸做标准曲线,以福林酚试剂作为显色剂,分别用1.5%的酪蛋白(Sigma)和1.5%的牛血红蛋白(Sigma)作为碱性蛋白酶和酸性蛋白酶的底物,在680 nm测定吸光度。淀粉酶的测定参照BERNFELD[14]的方法,以DNS试剂为显色剂,用麦芽糖做标准曲线,以1%的可溶性淀粉做底物,在520 nm测定吸光度。
1.6 非特异性免疫酶活力的测定
试验结束时,血液样品在4 ℃过夜,5 000 r·min-1冷冻离心10 min取上清液分别测定碱性磷酸酶(AKP)、过氧化物酶(POD)和超氧化物歧化酶(SOD)。均使用南京建成试剂盒测定。
1.7 数据的统计分析
采用Excel和SPSS 13.0软件对数据进行统计分析,所有数值用平均数±标准误差表示,先对数据作单因素方差分(ANOVA),处理若有显著差异,再作Duncan′s多重比较,P < 0.05表示差异显著。
2. 结果与分析
2.1 对尖吻鲈生长的影响
在养殖过程中,部分鱼出现寄生虫病,影响了成活率和增重率,导致标准偏差较很大。尖吻鲈的增重率、特定生长率、成活率和饲料系数在组间均没有显著性差异(P>0.05),试验组鱼的增重率和特定生长率比对照组略微降低(表 1)。
表 1 饲料中不同添加量的光合细菌对尖吻鲈生长的影响Table 1. Growth performance of sea bass fed with different doses of photosynthetic bacterium in feed指标 index 饲料中光合细菌添加量 dietary R.capsulate levels 0.0% 0.5% 1.0% 1.5% 增重率 weight gain(WG) 427.05±26.02 391.75±116.52 404.28±115.25 337.07±41.05 特定生长率 specific growth rate(SGR) 3.32±0.10 3.15±0.46 3.20±0.46 2.94±0.19 成活率 survival rate(SR) 80.00±13.23 81.67±7.64 66.67±15.28 68.33±34.03 饲料系数 feed conversion ratio(FCR) 1.31±0.14 1.33±0.21 1.26±0.06 1.36±0.11 注:数据以3个重复的平均值±标准差表示,上标字母不同者为存在显著差异(P < 0.05)。后表同此
Note:Values are showed by Means ± SD of 3 replicates. Values within the same row with different superscript letters are significantly different(P < 0.05).The same as below.2.2 对尖吻鲈消化酶活性的影响
尖吻鲈的肠和肝蛋白酶均在1.0%组达到最大值,其中1.0%组鱼的肝蛋白酶显著高于对照组,但1.0%组肠蛋白酶与对照组没有显著差异。幽门垂蛋白酶在1.5%组达到最大值, 并显著高于其他各组(P < 0.05)。胃蛋白酶活性在组间没有显著性差异(P>0.05)(表 2)。
表 2 饲料中不同添加量的光合细菌对尖吻鲈各个器官蛋白酶活性的影响Table 2. Protease of organs of sea bass fed with different doses of photosynthetic bacterium in feedw(蛋白酶)/U·mg-1蛋白
protease饲料中光合细菌添加量 dietary R.capsulate levels 0.0% 0.5% 1.0% 1.5% 肠 intestinal 9.567±5.098ab 9.478±4.370ab 11.959±2.380b 5.516±1.214a 幽门垂 pyloric caeca 4.798±1.616a 5.568±1.355a 4.992±1.639a 14.199±2.377b 肝 liver 0.408±0.046ab 0.359±0.040a 0.595±0.125c 0.509±0.045bc 胃 stomach 3.656±0.731 3.521±0.902 4.275±0.770 3.777±0.587 尖吻鲈的肠及胃淀粉酶均在1.0%组显著高于对照组(P < 0.05);幽门垂淀粉酶在1.5%组显著高于其他各组(P < 0.05);肝淀粉酶在组间没有显著性差异(P>0.05)(表 3)。
表 3 饲料中不同添加量的光合细菌对尖吻鲈各个器官淀粉酶活性的影响Table 3. Amylase of organs of sea bass fed with different doses of photosynthetic bacterium in feedw(淀粉酶)/U·mg-1蛋白
amylase饲料中光合细菌添加量
dietary R.capsulate levels0.0% 0.5% 1.0% 1.5% 肠 intestinal 26.728±3.693a 33.433±6.292ab 38.633±13.095b 26.793±5.679a 幽门垂 pyloric caeca 43.497±11.147a 58.597±24.210a 51.357±6.590a 94.501±18.328b 肝 liver 137.029±31.855 239.006±79.602 230.824±60.875 231.406±22.863 胃 stomach 11.834±3.767a 13.002±1.991ab 15.628±3.468b 13.601±1.740ab 2.3 对尖吻鲈血清非特异性免疫酶活性的影响
尖吻鲈血清AKP、POD及SOD在组间均没有显著性差异(P>0.05)。但试验组的AKP均高于对照组,随着饲料中光合细菌添加量的增加,POD先减小后增大,SOD先增大后减小(表 4)。
表 4 饲料中不同添加量的光合细菌对尖吻鲈血清非特异性免疫酶活性的影响Table 4. Serum nonspecific immune enzymes of sea bass fed with different doses of photosynthetic bacterium in feedw(免疫酶)/U·mg-1蛋白
immune enzymes饲料中光合细菌添加量 dietary R.capsulate levels 0.0% 0.5% 1.0% 1.5% 碱性磷酸酶(AKP) 2.287±0.654 2.677±0.846 2.750±0.567 2.604±0.548 过氧化物酶(POD) 34.741±10.266 32.815±4.491 28.815±12.581 38.000±2.189 超氧化物歧化酶(SOD) 147.956±18.588 159.358±9.622 151.849±13.350 147.121±17.105 3. 讨论
在体外试验中,沼泽红假单胞菌(Rhodopseudomonas palustris)和混球红细菌(Rhodobacter sphaeroides)对人工模仿的胃酸及肠液具有一定的抵抗力,且对罗非鱼的小肠上皮细胞无害[15]。说明光合细菌的某些种类具有在鱼类消化道中生存的能力。在该试验中,饲料中添加光合细菌对尖吻鲈的生长及饲料系数均没有显著性影响。对草鱼(Ctenopharyngodon idellus)[16]、西伯利亚鲟鱼(Acipenser baeri)[17]、罗非鱼(Tilapia sp.)[18]和月鳢(Channa asiatica)[19]等的研究则表明,光合细菌以适宜的比例添加到饲料中可以显著地促进鱼类的生长。这可能与光合细菌的种类、鱼的食性以及养殖环境有关。不同种类的光合细菌在对酸及胆盐的耐受能力、对pH及盐度的适宜生长范围、对鱼类消化道的粘附能力等特性的影响会有很大差别。鱼类肠道菌群多样性与鱼类食性相关[20],尖吻鲈属于肉食性海水鱼类,可能与上述草食性、杂食性或肉食性淡水鱼类的微生态区系的菌群组成存在差别,因而也会影响光合细菌的作用。
此试验中,光合细菌在1.0%组促进肠及胃蛋白酶和淀粉酶活性,其中肠及胃的淀粉酶活性显著高于对照组;在1.5%组幽门垂的蛋白酶及淀粉酶都显著升高(P < 0.05),而此时肠及胃的消化酶却受到抑制。说明不同光合细菌添加量对各个消化器官的消化酶活性的影响不同。该研究的结果与陈鹏飞等[17]的研究结果有所不同,其研究显示,随着饲料中光合细菌添加量的增加,西伯利亚鲟鱼的胃、肠、肝及盲囊的消化酶变化趋势几乎一致。另外,该研究还显示消化酶的升高并没有促进尖吻鲈的生长,甚至有略微降低的趋势,这可能是由于该株光合细菌对尖吻鲈的生长没有促进作用,也可能养殖期间寄生虫病的发生对试验结果产生了影响。
张梁等[16]将菌浓度为1×108 cfu·mL-1的球形红假单胞菌(Rhodopseudomonas sphaeroides)分别按照0.0%、0.5%、1.5%、2.5%和3.5%的比例添加到草鱼饲料中,发现其血清及肝脏的SOD、ACP和AKP在2.5%组达到最大值,并显著高于对照组,而在3.5%组则出现降低的趋势。鲤鱼(Cyprinus carpio)血清溶菌酶及白细胞吞噬活性随着养殖水体中沼泽红假单胞菌(R.palustris)的添加量增加及添加时间的延长而升高[3]。赵卫红等[10]报道添加到水体中(5×108、5×109、5×1010 cfu·m-3)的筴膜红假单胞菌可提高异育银鲫白细胞的免疫性能,且其作用效果均随着添加量的增加而增加,但并未增加其血清溶菌酶的活力。而在此研究中光合细菌对尖吻鲈的血清AKP、POD及SOD均没有显著性差异。
尽管文献中报道光合细菌可以抑制病原菌的生长[2, 21],提高水产动物的成活率[22],显著地促进鱼类的生长[16-19],但该研究结果中多项指标却无显著性差异。这可能与光合细菌的种类、菌株特性具有专一性以及添加量有关,此外,养殖期间寄生虫病的发生对试验的结果也有一定的影响。对于尖吻鲈饲料中此株光合细菌的添加量和肠道微生态区系的菌群组成,以及两者之间的关系均有待于进一步研究。
-
[1] HOSHINA T, SANO T, MORIMOTO Y. A Streptococcus pathogenic to fish[J]. J Tokyo Univ Fish, 1958, 44: 57-58. https://www.researchgate.net/publication/241040381_Streptococcal_Infections_of_Fish_1
[2] MATA A I, GIBELLO A, CASAMAYOR A, et al. Multiplex PCR assay for detection of bacterial pathogens associated with warm-water streptococcosis in fish[J]. Appl Environ Microbiol, 2004, 70(5): 3183-3187. doi: 10.1128/AEM.70.5.3183-3187.2004
[3] SHOEMAKER C, KLESIUS P H. Streptococcal disease problems and control-a review[M]//FITZSIMMONS K. Tilapia Aquaculture vol. 2 Northeast Regional Agricultural Engineering Service, Ithaca, NY, 1997: 671-682. https://www.researchgate.net/publication/304361917_Streptococcal_disease_problems_and_control_a_review
[4] ELDAR A, HORVITEZ A, BEREOVER H. Development and efficacy of a vaccine against Streptococcus iniae infection in farmed rainbow trout[J]. Vet Immunol Immunopathol, 1997, 56(1/2): 175-183. https://www.sciencedirect.com/science/article/pii/S0165242796057388
[5] HURVITZ A, BERCOVIER H, VAN RIJN J. Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mikiss, Walbaum) vaccinated against Streptococcus iniae[J]. Fish & Shellfish Immunol, 1997, 7(1): 45-53. doi: 10.3321/j.issn:1005-8737.1997.01.007
[6] 柴家前, 丁巧玲, 王振龙, 等. 罗非鱼链球菌的分离鉴定[J]. 中国预防兽医学报, 2002, 24(1): 18-20. doi: 10.3969/j.issn.1008-0589.2002.01.006 [7] 王琼秋. 罗非鱼链球菌性皮炎的分离鉴定[J]. 中国预防兽医学报, 2001, 23(2): 150-152. doi: 10.3969/j.issn.1008-0589.2001.02.021 [8] 张新艳, 樊海平, 钟全福, 等. 罗非鱼无乳链球菌的分离、鉴定及致病性研究[J]. 水产学报, 2008, 32(5): 772-779. doi: 10.3724/sp.j.00001 [9] 卢迈新, 黄樟翰. 罗非鱼遗传育种研究[J]. 上海水产大学学报, 2005, 14(2): 186-191. https://www.doc88.com/p-7478875745814.html [10] PIER G, MADIN S. Streptococcus iniae sp nov, a beta-hemolytic Streptococcus isolated from an Amazon freshwater dolphin, Inia geoffrensis[J]. Int J Syst Bacteriol, 1976, 26(4): 545-553. doi: 10.1099/00207713-26-4-545
[11] SAKAI M, ATSUTA S, KOBAYASHI M. Protective immune response in rainbow trout, Oncorhynchus mikiss, vaccinated with β-haemolytic streptocococal bacterin[J]. Fish Pathol, 1989, 24(3): 169-173. doi: 10.3147/jsfp.24.169
[12] ELDAR A, PERL S, FRELIER P F, et al. Red drum Sciaenops ocellatus mortalities associated with Streptococcus iniae infection[J]. Dis Aquat Org, 1999, 36(2): 121-127. doi: 10.3354/dao036121
[13] BOWSER P R, WOOSTER G A, Getchell, et al. Streptococcus iniae infection of tilapia Oreochromis niloticus in a recirculation production facility[J]. J World Aquac Soc, 1998, 29(3): 335-339. doi: 10.1111/j.1749-7345.1998.tb00655.x
[14] ELDAR A, FRELIER P F, ASANTA L, et al. Streptococcus shiloi, the name for an agent causing septicemic infection in fish, is a junior synonym of Streptococcus iniae[J]. Int J Syst Bacteriol, 1995, 45(4): 840-842. doi: 10.1099/00207713-45-4-840
[15] COLORNI A, DIAMANT A, ELDAR A, et al. Streptococcus iniae infection in Red Sea cage-cultured and wild fishes[J]. Dis Aquat Org, 2002, 49(3): 165-170. https://pubmed.ncbi.nlm.nih.gov/12113301/
[16] PERERA R P, COLLINS M D, JOHNSON S K, et al. Streptococcus iniae associated with mortality of Tilapia nilotica × T. aurea[J]. J Aquat Anim Health, 1994, 6(4): 335-340. doi: 10.1577/1548-8667(1994)006<0335:SIAWMO>2.3.CO;2
[17] ELDAR A, BEJERANO Y, BERCOVIER H. Streptococcus shiloi and Streptococcus difficile: two new streptococcal species causing a meningoencephalitis in fish[J]. Curr Microbiol, 1994, 28: 139-143. doi: 10.1007/BF01571054
[18] ELDAR A, BEJERANO Y, LIVOFF A, et al. Experimental streptococcal meningo-encephalitis in cultured fish[J]. Vet Microbiol, 1995, 43(1): 33-40. doi: 10.1016/0378-1135(94)00052-X
[19] 李波, 陈明, 李莉萍, 等. 广西罗非鱼链球菌病病原的生化鉴定及药敏试验[J]. 中国畜牧兽医, 2008, 35(10): 93-95. https://www.cnki.com.cn/Article/CJFDTotal-GWXK200810028.htm [20] EVANS J J, KLESIUS P H, GILBERT P M, et al. Characterization of beta-haemolytic group B Streptococcus agalactiae in cultured seabream, Sparus auratus L. and wild mullet, Liza klunzingeri (Day) in Kuwait[J]. J Fish Dis, 2002, 25(9): 505-513. doi: 10.1046/j.1365-2761.2002.00392.x
[21] KAWAMURA Y, ITOH Y, MISHIMA N, et al. High genetic homogeneity of Streptococcus agalaetiae and Streptococcus diffcilis: reclassification of S. difficilis, Eldar et al 1995 as a junior synonym of S. agalactiae, Lehmann and Neumann 1896[J]. Int J Syst Evol Microbiol, 2005, 55: 961-965. doi: 10.1099/ijs.0.63403-0
[22] AMAL M N A, ZAMET-SAAD M, SITI-ZAHRAH A, et al. Streptococcus agalactiae isolation patterns from cage cultured tilapia: 8th International Symposium on Tilapia in Aquaculture, Cario, October 12-14, 2008[C]//Cario, Egypt: Ministry of Agriculture & Land Reclamation, 2008: 1253-1256. http://www.semanticscholar.org/paper/1267d368fe8ad4901dd34ac9906dbba7990cd40f
[23] NARAID S, FANRONG K, DANNY K, et al. Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand-Relationship to human isolates?[J]. Aquac, 2008, 284(1/4): 35-40. https://www.sciencedirect.com/science/article/pii/S0044848608005139
[24] 卓玉琛. 罗非鱼暴发性流行病组织病理的研究[J]. 福建水产, 2008(3): 27-30. doi: 10.3969/j.issn.1006-5601.2008.03.007 [25] MIAN G F, GODOYD T, LEAL C A, et al. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia[J]. Vet Microbiol, 2009, 136(1/2): 180-183. https://pubmed.ncbi.nlm.nih.gov/19042097/
[26] HERNÁNDEZ E, FIGUEROA J, IREGUI C. Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study [J]. J Fish Dis, 2009, 32(3): 247-252. https://pubmed.ncbi.nlm.nih.gov/19236558/
[27] KITAO T. Streptococcal infections. Bacterial diseases of fish[M]//INGLIS V, ROBERTS R J, BROMAGE N R. Oxford: Blackwell Scientific Publications, 1993: 196-210.
[28] 邱军强, 杨先乐, 李怡, 等. 高体革鯻链球菌出血性败血症病原与组织病理的初步研究[J]. 上海水产大学学报, 2004, 13(2): 115-119. http://qikan.cqvip.com/Qikan/Article/Detail?id=10011862 [29] WANG G T, KIM J H, SAMESHIMA M, et al. Detection against the monogenean Meterobothrium okamotoi ELISA[J]. Fish Pathol, 1997, 32: 179-180.
[30] AMEMJYA C T, LITMEN G W. Complete nucleotide sequence of an immunoglobulin heavy-chain gene and analysis of immunoglobulin gene organization in a primitive teleost species[J]. Proc Natl Acad Sci USA, 1990, 87(2): 811-815. https://ncbi.nlm.nih.gov/pmc/articles/PMC53356/
[31] HARDING F A, COHEN N, LITMAN G W. Immunoglobulin heavy-chain gene organization and complexity in the skate Raji erinacea[J]. Nucleic Acids Res, 1990, 18(4): 1015-1020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC330358/
[32] AGNEW W, BARNES A C. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination[J]. Vet Microbiol, 2007, 122(1/2): 1-15. https://pubmed.ncbi.nlm.nih.gov/17418985/
[33] STOFFREGEN D A. Initial disease report of Streptococcus iniae infection in hybrid striped (sunshine) bass and successful therapeutic intervention with the fluoroquinolone antibacterial enrofloxacin[J]. J World Aquac Soc, 1996, 27(4): 420-434. doi: 10.1111/j.1749-7345.1996.tb00626.x
[34] LAU S K, WOO P C, TSE H, et al. Invasive Streptococcus iniae infections outside North America[J]. J Clin Microbiol, 2003, 41(3): 1004-1009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150295/
[35] PRASATPORN B, PITHAI K, SOMPOTH W, et al. Anti-bacterial activity of Thai medicinal plant extracts on Aeromonas hydrophila and Streptococcus agalactiae isolated from diseased tilapia (Oreochromis niloticus): 31st Congress on Science and Technology of Thailand, October 18-20, 2005[C]. Nakhon Ratchasima, Thailand: Suranaree University of Technology, 2005.
[36] ZIMMERMAN, R A, KLESIUS P H, KRUSHAK D H, et al. Effect of antibiotic treatment on the immune response following group A streptococcal pharyngitis[J]. Can J Int Med, 1975, 39: 227-230.
[37] 张生, 曾忠良, 王凡, 等. 海豚链球菌灭活疫苗对罗非鱼免疫效果的研究[J]. 西南师范大学学报, 2007, 32(5): 65-70. doi: 10.3969/j.issn.1000-6907.2011.06.009 [38] 余晓丽, 陈明, 李莉萍, 等. 罗非鱼海豚链球菌疫苗及其免疫效果的研究[J]. 淡水渔业, 2008, 38(6): 31-37. doi: 10.3969/j.issn.1000-6907.2008.06.007 [39] 徐增辉, 陈汉忠, 陈明, 等. 海豚链球菌疫苗对罗非鱼免疫功能的影响[J]. 大连水产学院学报, 2008, 23(6): 413-417. https://www.nstl.gov.cn/paper_detail.html?id=eeb7f8117f764ffe60efeb05d903b001 [40] KLESIUS P H, SHOEMAKER C A, EVANS J J. Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia[J]. Aquac, 2000, 188(3/4): 237-246. https://www.sciencedirect.com/science/article/abs/pii/S0044848600003458
[41] KLESIUS P H, EVANS J J, SHOEMAKER C A, et al. Vaccines to prevent Streptococcus iniae and S. agalactiae disease in tilapia, Oreochromis niloticus: 7th International Symposium of Tilapia in Aquaculture-ISTA7, Veracruz, Mexico, September 6-8, 2006[C]. Vercruz: [s. n. ], 2006: 15-24.
[42] PASNIK D J, EVANS J J, KLESIUS P H. Duration of protective antibodies and correlation with survival in Nile tilapia Oreochromis niloticus following Streptococcus agalactiae vaccination[J]. Dis Aquat Org, 2005, 66(2): 129-134. https://www.int-res.com/articles/dao2005/66/d066p129.pdf
[43] EVANS J J, KLESIUS P H, SHOEMAKER C A. Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration [J]. Vaccine, 2004, 22(27/28): 3769-3773. https://www.sciencedirect.com/science/article/pii/S0264410X04002312
-
期刊类型引用(8)
1. 张秀霞,汪蕾,李军涛,张泽龙,王冬梅,冼健安,孙敬锋. 饲料添加光合细菌对红螯螯虾幼虾生长、消化酶活力与免疫力的影响. 饲料研究. 2021(06): 62-65 . 百度学术
2. 王一福,周胜杰,杨蕊,于刚,王志,马振华. 甘草对尖吻鲈生长特性、消化酶及免疫酶的影响. 南方农业学报. 2020(12): 3116-3125 . 百度学术
3. 王一福,韩明洋,周胜杰,陈旭,付正祎,杨蕊,孟祥君,马振华. 饲料大蒜素水平对尖吻鲈消化酶、肝脏免疫酶活性的影响. 天津农学院学报. 2019(04): 71-76 . 百度学术
4. 周胜杰,马婷,胡静,马振华,杨其彬,陈旭,杨蕊,刘亚娟,孟祥君. 尖吻鲈仔鱼骨骼发育观察. 南方农业学报. 2018(03): 592-598 . 百度学术
5. 黄灵,李小梅,舒琥,张海发,石和荣. 饲料中添加不同益生菌对虎龙斑生长、免疫力及抗氧化能力的影响. 饲料工业. 2016(22): 15-20 . 百度学术
6. 李小义,孔杰,赵凤,杨明举. 常用益生菌在鲟鱼饲料添加剂中的应用及研究进展. 贵州畜牧兽医. 2016(06): 61-63 . 百度学术
7. 何伟聪,董晓慧,谭北平,杨奇慧,迟淑艳,刘泓宇,章双. 益生菌对军曹鱼幼鱼生长性能、消化酶和免疫酶活性的影响. 动物营养学报. 2015(12): 3821-3830 . 百度学术
8. 文琳,雷燕,戚瑞荣,肖洋,王雪鹏. 尖吻鲈Lates calcarifer虹彩病毒病的诊断. 水产学杂志. 2015(04): 28-32 . 百度学术
其他类型引用(10)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 18