Study on adhesion characteristics of fouling organisms of ultra-high molecular weight polyethylene and copper alloys mesh
-
摘要:
为研究不同材质网衣的污损生物附着效果,于2022年3—5月 (春季) 和6—8月 (夏季) 在福建莆田南日岛海域开展超高分子量聚乙烯网衣和铜合金网衣的现场挂网实验。结果表明:两种网衣污损生物的附着呈现出一定的季节性差异,两种网衣污损生物的密实度、种类数量、优势种种类数、湿质量和密度均表现为春季低于夏季。其中,超高分子量聚乙烯网衣春、夏季的密实度平均值分别为47.19%、86.98%,污损生物的湿质量平均值分别为 (144.83±15.69)、(1 054.59±34.81) g·网−1,密度平均值分别为 (2 699±49)、(4 630±53) 个·网−1,种类数分别为12、35种,优势种种类数分别为4、6种;铜合金网衣春、夏季的密实度平均值分别为41.04%、74.95%,污损生物的湿质量平均值分别为 (118.32±20.13)、(876.25±23.16) g·网−1,密度平均值分别为 (2 678±42)、(3 870±64) 个·网−1,种类数分别为12、19种,优势种种类数分别为3、4种。春、夏季高分子量聚乙烯网衣污损生物的密实度、种类数 (春季相同)、优势种种类数 (春季相同)、湿质量和密度平均值均高于铜合金网衣。海水温度的变化是污损生物季节性差异的主要原因,铜合金网衣的防污损生物附着效果优于高分子量聚乙烯网衣。
-
关键词:
- 污损生物 /
- 超高分子量聚乙烯网衣 /
- 铜合金网衣 /
- 附着特征
Abstract:In order to study the adhesion characteristics of fouled organisms on different materials of mesh, we had carried out on-site hanging experiments of ultra-high molecular weight polyethylene mesh and copper alloy mesh in the waters of Nanri Island, Putian City, Fujian Province during March−May 2022 (Spring) and June−August 2022 (Summer). The results reveal that the attachment of the two kinds of fouled organisms showed certain seasonal differences. The compactness, quantity of species, quantity of dominant species, wet mass and density of the two net-coated stained organisms were lower in spring than in summer. In spring and summer, for ultra-high molecular weight polyethylene mesh, the average compactnesses were 47.19% and 86.98%, respectively; the average wet masses of fouling organisms were (144.83±15.69) and (1 054.59±34.81) g·net−1, respectively; the average densities were (2 699±49) and (4 630±53) ind·net−1, respectively; the quantities of species were 12 and 35, respectively; the quantities of dominant species were 4 and 6, respectively. In spring and summer, for copper alloy mesh, the average compactnesses were 41.04% and 74.95%, respectively; the average wet masses of fouling organisms were (118.32±20.13) and (876.25±23.16) g·net−1, respectively; the average densities were (2 678±42) and (3 870±64) ind·net−1, respectively; the quantities of species were 12 and 19, respectively; the quantities of dominant species were 3 and 4, respectively. The compactness, quantity of species (The same in spring), quantity of dominant species (The same in spring), wet mass and density of ultra-high molecular weight polyethylene mesh were higher than those of copper alloy mesh in spring and summer. The change of seawater temperature is the main reason for the seasonal difference of fouling organisms, and the anti-fouling biological adhesion effect of copper alloy mesh is better than that of ultra-high molecular weight polyethylene mesh.
-
黄鳝 (Monopterus albus) 属于硬骨鱼纲、合鳃鱼目、合鳃鱼科,为淡水肉食性鱼类[1],主要分布于中国、日本、印度,以及泰国、印度尼西亚、缅甸等一些东南亚国家[2]。在我国,黄鳝分布在除青藏高原以外的广泛区域,是我国重要的名特优淡水经济鱼类之一,其肉质鲜美,具有很高的营养价值[3]。根据《中国渔业统计年鉴》数据,湖北、江西、安徽、湖南、四川是我国黄鳝养殖主产区,在2016—2020年间年均产量超30万吨,其中湖北省的产量最高,其年产量占全国的40%以上[4-8]。黄鳝通常在完成第一次产卵后会由雌性转为雄性,导致适龄繁育的雌性亲本数量稀缺,极大限制了其产业发展[9]。目前,我国黄鳝养殖主要依赖于野生苗种捕捞,质量参差不齐,这种高强度捕捞对黄鳝养殖产业的可持续性及种质资源造成了极大破坏。在育种方面,目前尚无国家认定的黄鳝养殖品种,因此开展黄鳝品种选育、筛选优良品系、进行家系管理,是当下黄鳝育种工作中的迫切需求。笔者课题组已实现黄鳝全人工繁育技术的突破,已应用于规模化育苗,并开展了家系选育工作,为下一步黄鳝良种的选育奠定了基础。
在黄鳝后续良种选育工作中,亲子鉴定及系谱管理技术是避免其近交衰退的关键技术。传统家系选育工作存在繁琐及环境差异等问题,传统标记手段也存在幼体标记困难及造成应激、损伤、脱落等问题。开发高效亲子鉴定技术可为黄鳝良种选育和种质资源保护及利用提供技术支持。亲子鉴定又称亲权鉴定,可以通过遗传特征相互验证亲本和子代之间是否存在亲缘关系。在育种生产中开展亲子鉴定可有效避免近交导致的种质退化问题。微卫星序列 (Simple sequence repeats, SSR) 具有高度的多态性、稳定性、呈共显性遗传、数量丰富且遵循孟德尔遗传定律的优点,在水生动物亲子鉴定中应用广泛。文萍等[10]使用2组微卫星多重PCR体系对黄喉拟水龟 (Mauremys mutica) 进行亲子鉴定,在父本信息未知时,母本的鉴定准确率为87%;苗贵东等[11]通过2组微卫星多重PCR体系对大菱鲆 (Scophthalmus maximus) 7个家系开展了亲子鉴定,准确率达到98.26%;谢敏敏等[12]通过建立2组微卫星多重PCR体系,对鼋 (Pelochelys cantorii) 家系进行亲子鉴定分析,得到10个位点的双亲排除率为98%;Dong等[13]为了评估中国明对虾 (Fenneropenaeus chinensis) 养殖群体亲缘鉴定的可行性,使用5个微卫星位点,获得了92.9%的鉴定成功率;辛苗苗等[14]使用7个微卫星位点对多倍体中华鲟 (Acipenser sinensis) 进行亲子鉴定分析,得到双亲累计排除率为99.99%;Yang等[15]利用10个微卫星位点对鳜 (Siniperca chuatsi) 5个全同胞家系进行了亲子鉴定,得到的实际鉴定率为95%,且随机选择了69个后代进行双盲试验,结果表明95%的子代可以正确聚类;Zhu等[16]筛选出了14个用于评价斑节对虾 (Penaeus monodon) 亲子关系的微卫星标记,并用其中多态性最高的6个微卫星标记获得了99%的鉴定准确率。
目前,黄鳝已开发出较多的微卫星标记,如刘臻等[17]通过富集文库法开发了20个微卫星标记,设计了8对4碱基重复高度多态性的微卫星引物,分析了3种不同性别表型黄鳝群体的遗传多样性;Li等[18]使用富集文库法分离了16对微卫星引物,分析了两个黄鳝自然群体的遗传多样性和群体结构;Zhang等[19]通过RAD (Restriction-site associated DNA tags,简化基因组) 测序在基因组中鉴定出了9 897个微卫星,并筛选出28对多态性引物。但上述研究开发的微卫星标记仅用于遗传多样性分析,目前尚未见利用微卫星多重PCR体系对黄鳝进行亲子鉴定的相关研究报道。本研究利用笔者课题组前期发表的高度多态性微卫星标记[20]和基于黄鳝基因组数据开发的新的微卫星标记[21],结合繁育的黄鳝全同胞家系,建立了基于微卫星多重PCR的亲子鉴定技术,为后续黄鳝育种以及种质资源保护提供基础。
1. 材料与方法
1.1 实验材料
黄鳝样本取自中国水产科学研究院长江水产研究所窑湾基地。雌、雄亲本按照1∶1比例得到11个全同胞家系,雌、雄亲本完成繁殖后取背部肌肉于−80 ℃保存,每个家系在孵化出膜至30日龄随机选取10尾于−80 ℃保存。随机挑选4个黄鳝家系子代各10尾和随机候选亲本4尾,同样−80 ℃保存。
1.2 基因组DNA的提取
基因组DNA采用苯酚-氯仿法[22]提取,用1% (w) 琼脂糖凝胶电泳以及分光光度计检测DNA浓度及完整性。将合格的DNA用双蒸水 (ddH2O) 稀释至100 ng·μL−1,于−20 ℃保存。
1.3 多态性微卫星引物的筛选
黄鳝全基因组数据来源于中国科学院国家基因研究中心数据库 (CRA003062)。使用MISA对黄鳝全基因组序列中的完美型SSR进行检索[23],检索标准与课题组前期筛选微卫星的标准一致。挑取了148个SSR位点,同时提取SSR位点前后200 bp的序列,使用Primer premier 3.0软件设计引物。随机选取6尾黄鳝的混合DNA为模板,进行微卫星引物的扩增效果及初步的多态性验证,共获得35对扩增效果理想的引物。另挑选课题组前期发表的具有高度多态性的15对微卫星引物,共50对微卫星引物,以参与繁殖的22尾黄鳝亲本DNA为模板进行筛选,选择扩增等位基因数较多、出峰质量较好的位点。
1.4 多重PCR体系的构建及优化
对筛选获得的16对微卫星引物进行荧光修饰 (FAM、HEX、ROX、TAMRA) ,由武汉天一辉远科技有限公司合成,以亲本DNA为模板进行多重PCR构建。构建过程中避免产生引物二聚体、发卡结构和错配等现象,优化模板DNA浓度、退火温度、延伸时间等反应条件。根据片段大小将引物分为两组,两组引物等比混合开展预实验,根据出峰结果调整引物浓度,最终确定最佳的多重PCR体系。
PCR反应体系10 μL,包含2×PCR Mix 5 μL,10 pmol·μL−1上下游引物各0.5 μL,基因组DNA 1 μL以及灭菌超纯水3 μL。扩增程序为:95 ℃预变性5 min;95 ℃变性30 s,62~53 ℃退火30 s,72 ℃延伸30 s,共10个循环,其中退火温度每次循环下降1 ℃;95 ℃变性30 s,52 ℃退火30 s,72 ℃延伸30 s,共25个循环;72 ℃延伸20 min。使用1% (w) 的琼脂糖凝胶电泳检测扩增产物的完整性,然后由ABI3730XL测序仪进行毛细管电泳检测 (由武汉天一辉远生物科技有限公司完成),使用GeneMarker[24]读取各位点等位基因大小。
1.5 数据统计及分析
将整理的亲本与子代基因型结果导入Cervus 3.0[25]进行等位基因频率分析、模拟分析和亲子鉴定分析。模拟分析设置模拟子代数为10 000个,候选亲本数为父母本各11对,对100%的候选亲本进行抽样模拟分析,允许1%的分型错误,置信度为95%。在性别已知和未知的情况下,基于16个微卫星位点模拟分析不同候选亲本数情况下的鉴定率,设置模拟子代数目为10 000个,候选亲本数分别为20、50、100、150和200对,抽样比例为100%,允许1%的分型错误,置信度为95%。根据多态信息含量大小将16个微卫星位点排序,分析微卫星位点数与鉴定率之间的关系。统计所有子代样本在某一位点出现的所有基因型,单个样本在该位点存在对应基因型则记为1,否则记为0,构建基因型0/1矩阵,并根据该矩阵利用NTSYS软件[26]对110尾家系子代进行聚类分析。利用NTSYS软件对4个家系共40尾子代进行聚类分析,验证微卫星多重PCR体系的准确率。
其中单个位点的非亲排除率 (NEP) 由Cervus 3.0软件计算得到,累积非亲排除率 (CEP) 计算公式如下:
$$ R_{\rm{CEP}}=1-{\prod} _{i=1}^{n}{(1-R}_{\mathrm{N}\mathrm{E}\mathrm{P},i}) $$ (1) 式中:RCEP为累积非亲排除率;RNEP, i为第i个微卫星位点的NEP值;n为微卫星位点排除概率的数目。CE-1P对应用NE-1P计算,CE-2P对应用NE-2P计算,CE-PP对应用NE-PP计算。
2. 结果
2.1 微卫星的筛选与多重PCR建立
从黄鳝基因组预测的148个微卫星位点,筛选获得了扩增效果较好的微卫星引物35对。进而以30尾亲本为模板,从50对微卫星引物中筛选得到16对多态性高、扩增效果好的微卫星引物。
将筛选的16对微卫星引物进行不同组合并优化反应程序、调整引物浓度比例,最终确定2 组多重PCR (表1)。2组多重PCR的扩增效率都较好,分型结果符合预期。A组多重PCR体系各位点如见图1。
表 1 黄鳝 2 组微卫星多重PCR的引物信息Table 1. Primer information of two multiplex PCR sets of microsatellites in M. albus分组
Group位点
Locus重复单元
Reapet motif退火温度
Tm/℃引物序列
Primer sequence荧光标记
Fluorescence label片段长度
Size/bp比例
RatioA Mta027 (GCA)7 52 F: CTGCGGTAACAAGCGTATCA
R: CTGGGGATCCCAGTCAAACTFAM 147~154 3 Mta141 (GT)17 52 F: CAGAGATGGTCGACTGGTGA
R: AGAGCCATGGGAAGCACTTAFAM 185~312 2 Mta031 (ATG)8 52 F: AGAGGCAGCTCATGGACACT
R: TTCATGGCTGAGCTGACTTGFAM 242~265 3 Ma28 (ATC)7 52 F: GGGATTGTCTGGAATGCTGT
R: GTGAACCCTGAACAGACGGTHEX 144~168 3 Ma39 (GAT)8 52 F: AGGTGAAGGGGAACACACTG
R: TTGCCCTGTCCATTTTTCTCHEX 193~224 3 Ma71 (TCA)13 52 F: TCACATTGCCCAGAGAACAG
R: GGCAGCATCAAGAGACCTTCHEX 258~269 2 Ma24 (CTG)9 52 F: TCGTCTGGCTCAGAGGAGAT
4R: AGCTGCAGCAGGAGGAATACTAMRA 125~143 7 Mta026 (CAG)8 52 F5: TGAACATCCCTTCTTCCACC
R: GTCATGGGTTTGTGTTGCTGTAMRA 171~182 4 Ma85 (TGC)9 52 F: GTGGAAGAAGCTGGATGAGC
R: CACATGGGGTGTTCTCACTGTAMRA 208~236 5 Mta013 (AGG)9 52 F: GAGCGTCTTTTCCATCCTTG
R: CCTACTGCTGCTTCTGGTCCROX 131~150 4 Mta025 (GCT)7 52 F: GCCAAGCAAACGTGTGAGTA
R: AACGAGCTGCGTGTTAAGGTROX 172~184 3 Ma78 (TAAGA)5 52 F: CTGACGGTTGTGTGTAACGG
R: CACGTACGCCGGTTAAACTTROX 214~235 3 B Mta033 (TGT)7 52 F: TGGAGGCAGGAGAAGGAGTA
R: TGAAAGACTCCTCGCAACCTFAM 158~170 1 Mta021 (TGT)7 52 F: AGAGTCTTGCTCGGTTTCCA
R: AGAGTCTTGCTCGGTTTCCAFAM 201~210 1 Ma5 (TCTAC)7 52 F: TTCAGGTTCGGGACTTTGAC
R: AGACGGTTGTGTCAGGAAGGFAM 231~256 1 Mta148 (GT)15 52 F: TTTTCCCAGCAGCTGATTTC
R: CATGACAACAGGACGCAAACHEX 158~174 1 2.2 亲子鉴定分析
16个微卫星位点在黄鳝22尾亲本和110尾子代中的遗传参数如表2所示。等位基因数 (Na) 为3~9,平均等位基因数为5.562;观测杂合度和期望杂合度分别为0.421~0.771和0.382~0.797,平均观测杂合度和期望杂合度分别为0.627和0.619;多态信息含量 (PIC) 为0.347~0.766,平均多态信息含量为0.564,其中Ma71、Ma78、Mta021、Mta027和Mta033表现为中度多态性,其余11个位点均表现为高度多态性。16个位点均未偏离Hardy-Weinberg平衡。
表 2 16 个微卫星位点的遗传参数Table 2. Genetic parameters of 16 SSR loci位点
Locus等位基因数
Na观测杂合度
Ho期望杂合度
He多态信息含量
PICNE-1P NE-2P NE-PP 无效等位基因频率
FNullMa5 5 0.758 0.704 0.647 0.723 0.555 0.380 −0.037 6 Ma24 6 0.550 0.546 0.513 0.833 0.662 0.472 −0.018 2 Ma28 9 0.679 0.660 0.613 0.747 0.574 0.384 −0.017 3 Ma39 9 0.771 0.797 0.766 0.570 0.393 0.206 0.004 0 Ma71 5 0.485 0.494 0.444 0.873 0.732 0.579 0.005 4 Ma78 4 0.489 0.490 0.401 0.880 0.780 0.662 −0.001 5 Ma85 8 0.583 0.717 0.676 0.682 0.504 0.308 0.106 6 Mta013 4 0.583 0.647 0.586 0.775 0.615 0.444 0.046 6 Mta021 4 0.667 0.578 0.485 0.830 0.714 0.574 −0.076 9 Mta025 4 0.652 0.588 0.522 0.822 0.676 0.517 −0.055 4 Mta026 4 0.636 0.621 0.545 0.799 0.657 0.498 −0.020 5 Mta027 3 0.432 0.382 0.347 0.928 0.803 0.675 −0.086 5 Mta031 8 0.756 0.746 0.714 0.640 0.457 0.259 −0.019 3 Mta033 4 0.606 0.509 0.430 0.870 0.756 0.625 −0.100 9 Mta141 8 0.735 0.764 0.732 0.620 0.438 0.244 0.018 8 Mta148 5 0.644 0.666 0.603 0.760 0.600 0.430 0.008 3 双亲未知时单个亲本的累积非亲排除率 Combined non-exclusion probability (First parent): 0.013 807 65 已知单亲时另一个亲本的累积非亲排除率 Combined non-exclusion probability (Second parent): 0.000 339 45 双亲未知时父母本组合的累积非亲排除率 Combined non-exclusion probability (Parent pair): 0.000 001 26 注:NE-1P代表双亲基因型未知时,单个位点的单亲排除率;NE-2P表示已知单亲基因型时,另一亲本单个位点的排除率;NE-PP表示双亲基因型未知时,单个位点的双亲排除率。 Note: NE-1P represents exclusion probability and of the first parent given only the genotype; NE-2P represents exclusion probability for one candidate parent given the genotype of a known parent of the opposite sex; NE-PP represents exclusion probability probability of a parent pair given only the genotype. 将16个微卫星位点根据多态信息含量由大到小排序探究微卫星数量与鉴定率之间的关系。结果如图2所示,随着微卫星位点数的增加,亲子鉴定的模拟鉴定率和实际鉴定率逐渐上升。当位点数为8时,亲子鉴定的模拟鉴定率和实际鉴定率均达到95%。当位点数继续增加,模拟鉴定率无限接近100%,实际鉴定率则保持在95%左右。实际亲子鉴定结果显示,110尾子代中仅有6尾子代的三联LOD≤0,无法准确匹配到真实的父母本,运用16个微卫星位点的实际鉴定成功率为95%。
利用构建的2组多重PCR体系计算黄鳝11个家系单个位点的排除概率和累计排除概率,结果见表2。NE-1P、NE-2P、NE-PP分别为0.570~0.928、0.393~0.803、0.143~0.675,CE-1P、CE-2P、CE-PP分别为0.999 999 99、0.999 999 91、0.999 964 76,模拟亲本已知的情况准确率为99.96%,置信度为95%。说明在理想情况下,使用这16个微卫星标记进行黄鳝的亲子鉴定可以在置信度95%的情况下达到99.96%的准确率。
此外,分别开展了在候选亲本性别已知和未知的情况下进行不同候选亲本数 (20、50、100、150、200对) 的模拟分析。结果如图3所示,当候选亲本数为20对,在候选亲本性别已知或未知的情况下,父本、母本和父母本联合都能够得到99%以上的鉴定率。当候选亲本数为50对时,无论父母本性别是否已知,父母本联合的鉴定率也都在95%左右,单亲本的鉴定率也在93%左右。当候选亲本数为100对时,无论父母本性别是否已知,父母本联合的鉴定率保持在95%以上,但单亲本的鉴定率下降到了90%以下。当候选亲本数为150对时,在候选亲本性别已知和未知的情况下,父母本联合仍然能够得到95%以上的鉴定率。当候选亲本数继续增加至200对时,鉴定率在父母本联合且性别已知的情况下依然有较高的鉴定率 (94.88%),而在性别未知的情况下,鉴定率明显下降 (89.56%)。单亲本的鉴定率在亲本数为200对时下降至80%左右。
2.3 家系聚类分析
NTSYS聚类分析的结果如图4所示,结果表明11个家系的子代仅有2尾无法正确聚类,分别为个体1-07和101-07,其余子代个体均可以正确聚类,鉴定准确率为98.18%。
2.4 群体遗传多样性分析
利用两组多重PCR体系对黄鳝11个子代家系群体和全部候选亲本群体独立进行遗传多样性分析,结果见表3。11个子代家系群体的平均等位基因数为0.489,平均观测杂合度和期望杂合度分别为0.632和0.489,平均多态信息含量为0.394。比较候选亲本群体和11个子代家系群体的遗传多样性,发现候选亲本群体的平均等位基因数、观测杂合度和多态信息含量均要高于11个子代家系群体。
表 3 黄鳝子代和亲本群体的遗传多样性Table 3. Genetic diversities of offsprings and parents of M. albus群体
Population平均等位基因数
Mean Na平均观测杂合度
Mean Ho平均期望杂合度
Mean He平均多态信息含量
Mean PIC子代-1 Offspring-1 2.750 0.619 0.495 0.408 子代-41 Offspring-41 2.813 0.688 0.554 0.453 子代-68 Offspring-68 2.375 0.669 0.475 0.375 子代-70 Offspring-70 2.063 0.488 0.386 0.301 子代-77 Offspring-77 2.563 0.719 0.536 0.436 子代-79 Offspring-79 2.125 0.575 0.430 0.334 子代-81 Offspring-81 2.563 0.806 0.574 0.457 子代-85 Offspring-85 2.125 0.494 0.384 0.311 子代-88 Offspring-88 2.375 0.556 0.466 0.373 子代-96 Offspring-96 2.438 0.639 0.506 0.411 子代-101 Offspring-101 3.188 0.700 0.574 0.474 亲本 Parents 5.625 0.556 0.636 0.570 2.5 亲子鉴定的应用
利用另外4个家系的子代和候选亲本44尾个体进行聚类分析。结果如图5,表明仅有个体10-04和23-08无法正确聚类,子代聚类准确率为95%,并且所有4个候选亲本均能正确聚类,说明本实验建立的微卫星多重PCR体系可以用于黄鳝家系的亲子鉴定。
图 5 亲子鉴定应用聚类分析注:“-”前的数字代表家系、后面的数字代表子代标号,M代表家系对应的母本,F代表家系对应的父本,其中10-04为聚类错误的子代编号。Figure 5. Cluster analysis of parentage test applicationNote: The number before "-" represents the family; the number after "-" represents the offspring label; M represents the female parent corresponding to the family; F represents the male parent corresponding to the family, and 10-04 was clustered incorrectly.3. 讨论
3.1 微卫星多重PCR体系
自20世纪80年代Chamberlain等[27]成功建立多重PCR (Multiplex polymerase chain reaction, MPCR) 体系以来,以其高效、敏感、大幅降低成本、提高检测效率的优势,在基因分型、遗传分析等领域得到广泛应用[28-31]。建立多重PCR反应体系,需要保证同种荧光标记引物的扩增产物不会重叠,以避免基因型误读,从而实现多重优势。本实验筛选获得16个微卫星位点的平均He、平均Ho和平均PIC分别为0.627、0.619和0.564。根据Botstein的标准[32],11个位点为高度多态性位点,5个位点为中度多态性位点,这一结果与在兰州鲇 (Silurus lanzhouensis) [33]和圆口铜鱼 (Coreius guichenoti) [34]中用于亲子鉴定的微卫星位点多态性水平相近,表明这16个位点具有丰富的遗传多样性,能够用于后续的亲子鉴定。张毅等[35]提出影响多重PCR的关键因素是体系中引物之间是否兼容以及引物浓度的比例。本实验将16对微卫星引物依据扩增产物的片段大小及初步实验,在退火温度确定的情况下根据电泳结果不断地调整引物浓度的比例来保证每对引物的扩增效果,最终构建了2组多重PCR体系,包括A组的十二重PCR体系和B组的四重PCR体系。其中本实验A组十二重PCR体系经过不断调整最终确定了各引物浓度的比例,而B组四重PCR体系仅实验一次就获得了良好的扩增效果,说明当多重PCR体系中引物数量多的时候,引物浓度的比例尤为重要。
3.2 微卫星标记在黄鳝亲子鉴定中的应用
近年来,微卫星亲子鉴定被广泛应用于种质资源保护、新品种选育及种群遗传管理等方面,尤其在品种选育工作中能避免近亲交配并指导生产[36-38]。在微卫星亲子鉴定中,主要根据累计排除概率 (CE-PP) 判定。赵桐茂[39]研究表明,如果CE-PP<80%,则不能确定存在亲子关系;如果95%<CEP≤99%,则可能存在亲子关系;如果CE-PP≥99.73%,则可以认为存在亲子关系。本实验中,16个微卫星位点的CE-PP达到99.99%,说明这批微卫星可以用于黄鳝的亲子鉴定;16个微卫星位点的模拟鉴定率高达99.96%,实际鉴定率达95%,这一结果与哲罗鱼 (Hucho taimen)[40]和黄河鲤 (Cyprinus carpio haematoperus)[41]的结果相近。在实际生产进行亲子鉴定时,往往是在更多的候选亲本中鉴定亲本和子代的关系。本实验进行了不同亲本数的模拟分析,结果表明16个微卫星标记在亲本性别未知的150对亲本和亲本性别已知的200对亲本的情况下,均可达到95%的准确率。利用另外4个黄鳝家系对建立的微卫星多重PCR体系进行验证,结果显示仅有2尾子代聚类错误,说明本实验建立的多重PCR体系可用于黄鳝亲子鉴定。尽管随着家系数量继续增加,亲子鉴定的准确率会逐渐降低,但本实验建立的亲子鉴定技术可以满足一定规模黄鳝育种对亲本数的要求,可以为开展黄鳝新品种选育工作、选育家系规模确定提供参考。此外,根据子代聚类分析的结果,可以将不同家系的子代区分开来,实际生产中在亲本缺失的情况下,可以对混养的不同家系黄鳝进行区分,以有效防止近亲繁殖。
在亲子鉴定中出现实际鉴定率低于模拟鉴定率的情形,原因可能是基因型误读及无效等位基因的存在[42]。根据O'reilly等[43]的研究,在基因分型过程中存在2%~3%的分型错误;此外,二、三碱基重复的微卫星标记在读取基因型大小时可能会因为碱基重复单元较短而出现基因型的误读,使得基因分型的结果存在一定误差。本实验中,实际鉴定率 (95%) 略低于模拟鉴定率 (99.96%) ,筛选的16个微卫星位点中有且仅有一个位点 (Ma85) 的无效等位基因频率大于10%,这可能是造成实际鉴定率略低的原因。
3.3 群体的遗传多样性分析
群体的遗传多样性主要通过有效等位基因数、杂合度 (Ho/He) 和多态信息含量表示,遗传参数越高,多态性越高,说明群体的遗传多样性越高。通过分析发现,各个位点的PIC与NE-PP大致呈反比关系,与韩叶等[44]对大麻哈鱼 (Oncorhynchus keta) 的研究结果一致。比较各子代家系与亲本群体之间的遗传多样性,发现亲本群体的平均期望杂合度和平均PIC均高于子代各群体,说明亲本群体的遗传多样性高于各子代家系群体的遗传多样性,在各子代家系群体中,子代家系81的杂合度最高,子代家系101和子代家系77次之。比较各子代家系群体之间的多态信息含量,发现子代家系101的多态信息含量最高,子代家系81和41次之。综合杂合度和多态信息含量的比较,得出子代家系81和101具有较高的遗传多样性,说明其具有较高的育种潜力,可以作为家系选育的基础群体。11个子代家系群体观测杂合度为0.631,期望杂合度为0.618,多态信息含量为0.562,整体而言杂合度和多态信息含量均低于我国长江中下游湖北、安徽、江苏、浙江4省的野生黄鳝群体[45-46]和江西1个野生黄鳝群体,但高于天津3个野生黄鳝群体[47],说明选育家系子代群体的遗传多样性相比野生群体有所下降。
4. 结论
本研究筛选得到了16个高度多态性的微卫星标记,建立了2组可用于黄鳝亲子鉴定的微卫星多重PCR体系,在黄鳝110尾子代及22尾亲本中达到了95%的鉴定率,研究结果有助于黄鳝的家系选育与管理,并可为其种质资源保护和良种选育提供理论依据和技术手段。
-
图 6 春、夏季 2 种网衣污损生物的附着情况
注:图中sp代表春季,su代表夏季;3—8代表月份;c代表铜合金网衣,h代表高分子量聚乙烯网衣。
Figure 6. Adhesion of fouled organisms of ultra high molecular polyethylene mesh and copper alloy mesh in different seasons
Note: In the figure, sp represents spring, and su represents autumn; 3−8 represent months, c represents copper alloy mesh, and h represents ultra high molecular polyethylene mesh.
表 1 春、夏季2种网衣污损生物的优势种类统计
Table 1 Statistics of dominant species of fouled organisms for two kinds of net in spring and summer
网衣类型
Type of mesh春季 Spring 夏季 Summer 种名
Species
name数量
Quantity/
(个·网–1)湿质量
Wet mass/
(g·网–1)相对
重要性
指数
IRI种名
Species
name数量
Quantity/
(个·网–1)湿质量
Wet mass/
(g·网–1)相对
重要性
指数
IRI高分子量聚乙烯网衣
Ultra-high molecular
weight polyethylene mesh长颈麦杆虫
Caprella equilibra19 647 25.02 4 740 理石叶钩虾
Jassa marmorata13 326 13.65 3 285 中胚花筒螅
Tubularia mesembryanthemum131 202.42 3 970 长颈麦杆虫
Caprella equilibra10 325 10.17 2 544 理石叶钩虾
Jassa marmorata15 582 7.18 3 451 翡翠股贻贝
Perna viridis4 024 766.58 1 718 厚壳贻贝
Mytilus coruscus2 389 89.44 1 073 中胚花筒螅
Tubularia mesembryanthemum139 349.86 1 549 — — — — 背棘麦杆虫
Caprella caura5 407 13.35 1 367 — — — — 网纹藤壶
Amphibalanus
reticulatu393 639.55 1 146 铜合金网衣
Copper alloy mesh长颈麦杆虫
Caprella equilibra11 300 14.28 3 676 翡翠股贻贝
Perna viridis3 435 675.28 4 138 理石叶钩虾
Jassa marmorata8 929 4.06 2 641 长颈麦杆虫
Caprella equilibra5 392 5.91 2 813 厚壳贻贝
Mytilus coruscus2 520 129.50 1 356 理石叶钩虾
Jassa marmorata4 845 5.60 2 529 — — — — 中胚花筒螅
Tubularia mesembryanthemum103 208.87 1 641 注:—. 未鉴定出。 Note: —. Not identified. -
[1] EDWARDS P, ZHANG W, BELTON B, et al. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported[J]. Mar Policy, 2019, 106: 103547. doi: 10.1016/j.marpol.2019.103547
[2] BRAITHWAITE R A, CARRASCOSA M C C, MCEVOY L A. Biofouling of salmon cage netting and the efficacy of a typical copper-based antifoulant[J]. Aquaculture, 2007, 262(2/3/4): 219-226.
[3] PHILLIPPI A L, O'CONNOR N J, LEWIS A F, et al. Surface flocking as a possible anti-biofoulant[J]. Aquaculture, 2001, 195(3/4): 225-238.
[4] ECKMAN J E, THISTLE D, BURNETT W C, et al. Performance of cages as large animal-exclusion devices in the deep sea[J]. J Mar Res, 2001, 59(1): 79-95. doi: 10.1357/002224001321237371
[5] CRONIN E R, CHESHIRE A C, CLARKE S M, et al. An investigation into the composition, biomass and oxygen budget of the fouling community on a tuna aquaculture farm[J]. Biofouling, 1999, 13(4): 279-299. doi: 10.1080/08927019909378386
[6] TAN C K F, NOWAK B F, HODSON S L. Biofouling as a reservoir of Neoparamoeba pemaquidensis (Page, 1970), the causative agent of amoebic gill disease in Atlantic salmon[J]. Aquaculture, 2002, 210(1/2/3/4): 49-58.
[7] WADDY S L, BURRIDGE L E, HAMILTON M N, et al. Emamectin benzoate induces molting in American lobster, Homarus americanus[J]. Can J Fish Aquat Sci, 2002, 59(7): 1096-1099. doi: 10.1139/f02-106
[8] HODSON S L, BURKE C M, BISSETT A P. Biofouling of fish-cage netting: the efficacy of a silicone coating and the effect of netting colour[J]. Aquaculture, 2000, 184(3/4): 277-290.
[9] KALANTZI I, ZERI C, CATSIKI V, et al. Assessment of the use of copper alloy aquaculture nets: potential impacts on the marine environment and on the farmed fish[J]. Aquaculture, 2016, 465: 209-222. doi: 10.1016/j.aquaculture.2016.09.016
[10] 石建高, 余雯雯, 赵奎, 等. 海水网箱网衣防污技术的研究进展[J]. 水产学报, 2021, 45(3): 472-485. [11] GONZÁLEZ E P, HURTADO C F, GACE L, et al. Economic impacts of using copper alloy mesh in trout aquaculture: Chilean example[J]. Aquac Econ Manag, 2013, 17(1): 71-86. doi: 10.1080/13657305.2013.747227
[12] 周文博, 余雯雯, 石建高, 等. 超高分子量聚乙烯纤维在渔业领域的应用与研究进展[J]. 渔业信息与战略, 2018, 33(3): 186-194. [13] 吴加文, 李众, 林和山, 等. 兴化湾污损生物群落结构及其时空格局[J]. 应用海洋学学报, 2019, 38(4): 578-584. doi: 10.3969/J.ISSN.2095-4972.2019.04.013 [14] BI C W, ZHAO Y P, DONG G H, et al. Drag on and flow through the hydroid-fouled nets in currents[J]. Ocean Eng, 2018, 161: 195-204. doi: 10.1016/j.oceaneng.2018.05.005
[15] 张明明, 赵文, 于世超. 我国海洋污损生物的研究概况[J]. 水产科学, 2008, 27(10): 545-549. [16] 严涛, 刘姗姗, 曹文浩. 中国沿海水产设施污损生物特点及防除途径[J]. 海洋通报, 2008, 27(1): 102-110. doi: 10.3969/j.issn.1001-6392.2008.01.015 [17] CLARE A S, HØEG J T. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature[J]. Biofouling, 2008, 24(1): 55-57. doi: 10.1080/08927010701830194
[18] CALLOW M E, CALLOW J E. Marine biofouling: a sticky problem[J]. Biologist, 2002, 49(1): 10-14.
[19] 周家丽, 刘丽, 王学锋, 等. 中国沿海污损生物研究进展综述[J]. 南方论坛, 2021, 52(10): 27-32. [20] 林和山, 王建军, 郑成兴, 等. 东山湾污损生物生态研究[J]. 海洋学报, 2012, 34(6): 160-169. [21] 林更铭, 项鹏, 李炳乾, 等. 厦门港污损生物物种多样性和分布特征[J]. 海洋湖沼通报, 2010, 12(3): 65-72. doi: 10.3969/j.issn.1003-6482.2010.03.011 [22] CARVALHO M L, DOMA J, SZTYLER M, et al. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components[J]. Bioelectrochemistry, 2014, 97: 2-6. doi: 10.1016/j.bioelechem.2013.12.005
[23] CHAMBERS M. Comparative growth and survival of juvenile Atlantic cod (Gadus morhua) cultured in copper and nylon net pens[J]. J Aquac Res Dev, 2012, 3(5): 137-142.
[24] BUYUKATES Y. Environmental monitoring around an offshore fish farm with copper alloy mesh pens in the Northern Aegean Sea[J]. J Environ Prot, 2017, 6(2): 50-61.