Abstract:
In order to study the adhesion characteristics of fouled organisms on different materials of mesh, we had carried out on-site hanging experiments of ultra-high molecular weight polyethylene mesh and copper alloy mesh in the waters of Nanri Island, Putian City, Fujian Province during March−May 2022 (Spring) and June−August 2022 (Summer). The results reveal that the attachment of the two kinds of fouled organisms showed certain seasonal differences. The compactness, quantity of species, quantity of dominant species, wet mass and density of the two net-coated stained organisms were lower in spring than in summer. In spring and summer, for ultra-high molecular weight polyethylene mesh, the average compactnesses were 47.19% and 86.98%, respectively; the average wet masses of fouling organisms were (144.83±15.69) and (1 054.59±34.81) g·net
−1, respectively; the average densities were (2 699±49) and (4 630±53) ind·net
−1, respectively; the quantities of species were 12 and 35, respectively; the quantities of dominant species were 4 and 6, respectively. In spring and summer, for copper alloy mesh, the average compactnesses were 41.04% and 74.95%, respectively; the average wet masses of fouling organisms were (118.32±20.13) and (876.25±23.16) g·net
−1, respectively; the average densities were (2 678±42) and (3 870±64) ind·net
−1, respectively; the quantities of species were 12 and 19, respectively; the quantities of dominant species were 3 and 4, respectively. The compactness, quantity of species (The same in spring), quantity of dominant species (The same in spring), wet mass and density of ultra-high molecular weight polyethylene mesh were higher than those of copper alloy mesh in spring and summer. The change of seawater temperature is the main reason for the seasonal difference of fouling organisms, and the anti-fouling biological adhesion effect of copper alloy mesh is better than that of ultra-high molecular weight polyethylene mesh.