发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响

吴光德, 兰鲲鹏, 陈旭, 王芸, 周传朋, 林黑着, 马振华, 王珺

吴光德, 兰鲲鹏, 陈旭, 王芸, 周传朋, 林黑着, 马振华, 王珺. 发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响[J]. 南方水产科学, 2023, 19(4): 126-138. DOI: 10.12131/20230036
引用本文: 吴光德, 兰鲲鹏, 陈旭, 王芸, 周传朋, 林黑着, 马振华, 王珺. 发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响[J]. 南方水产科学, 2023, 19(4): 126-138. DOI: 10.12131/20230036
WU Guangde, LAN Kunpeng, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua, WANG Jun. Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2023, 19(4): 126-138. DOI: 10.12131/20230036
Citation: WU Guangde, LAN Kunpeng, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua, WANG Jun. Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2023, 19(4): 126-138. DOI: 10.12131/20230036

发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响

基金项目: 国家自然科学基金面上项目 (32172984);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金 (2020TD55, 2022XT0404);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD09)
详细信息
    作者简介:

    吴光德 (1998—),男,硕士研究生,研究方向为鱼类营养与饲料。E-mail: 843007708@qq.com

    通讯作者:

    王 珺 (1979—),女,研究员,博士,研究方向为水产动物营养与饲料学。E-mail: jwang@scsfri.ac.cn

  • 中图分类号: S 917.4

Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)

  • 摘要: 发酵棉籽粉是一种优质植物蛋白原料,具有替代饲料鱼粉的潜力。为评估发酵棉籽粉作为卵形鲳鲹 (Trachinotus ovatus) 饲料蛋白源的适宜性及适宜替代水平,用发酵棉籽粉分别替代卵形鲳鲹幼鱼饲料中0% (对照组)、25%、50%、75%和100%的鱼粉 (基础饲料中鱼粉质量分数为35%),配制成5种实验饲料,饲喂幼鱼 [初始体质量为 (12.57±0.25) g] 7周,探究了发酵棉籽粉替代鱼粉对幼鱼存活、生长和饲料利用性能及肠道菌群组成的影响。结果显示,发酵棉籽粉替代组的存活、生长、饲料利用率以及蛋白质、脂肪沉积效率均低于鱼粉对照组,而25%和50%替代组与对照组无显著性差异 (P>0.05)。但当发酵棉籽粉替代75%~100%鱼粉时,刺激了卵形鲳鲹肝脏的抗氧化系统,使总超氧化物歧化酶 (T-SOD) 和过氧化氢酶 (CAT) 活性高于对照组。此外肝脏HE染色切片显示其细胞空泡化现象加剧,100%替代组的血清总蛋白、白蛋白和球蛋白含量降低,肝脏合成蛋白能力可能下降。发酵棉籽粉高水平替代鱼粉会影响卵形鲳鲹的肠道菌群组成,表现为有益菌丰度下降、有害菌丰度上升,从而影响了肠道菌群功能。综合考虑生长性能和鱼体健康,建议卵形鲳鲹饲料中发酵棉籽粉替代鱼粉水平以25%为宜。
    Abstract: Fermented cottonseed meal (FCSM) is a high-quality plant protein ingredient with potential to replace fishmeal in feed. To evaluate the suitability of FCSM as a protein source in the diet of juvenile golden pompano (Trachinotus ovatus) and its appropriate replacement level, we had fed the juveniles with initial body mass of (12.57±0.25) g for seven weeks by five diets to replace 0% (Control group), 25%, 50% and 100% of fishmeal by FCSM, and the fish meal in reference diet was 35%. Then we investigated the effects of FCSM replacement of fishmeal on the survival, growth, feed utilization performance and intestinal microflora of the juveniles. The results show that the survival, growth, feed efficiency, dietary protein and lipid deposition rates were lower in FCSM treatments compared with those in reference diet, while the differences between 25%, 50% replacement groups and the reference diet were not significant (P>0.05). However, the liver antioxidant system was stimulated, and the activities of total superoxide dismutase (T-SOD) and catalase (CAT) in 75%−100% replacement groups were higher than those in the control group. In addition, the liver hematoxylin-eosin-stained sections show that the cellular vacuolation phenomenon was aggravated. The contents of total protein, albumin and globulin in serum in 100% replacement group were reduced, and the protein synthesis capacity of liver might be impaired. High-level replacement of fish meal by FCSM affected the composition of intestinal flora, with the abundance of beneficial bacteria decreasing and that of harmful bacteria increasing. Taking into account both growth performance and fish health, it is recommended to replace fish meal with 25% FCSM in the diet for T. ovatus.
  • 克氏原螯虾 (Procambarus clarkii),俗称小龙虾,属于淡水螯虾[1]。2019年中国克氏原螯虾养殖总产量达208.96×104 t,成为产量第一的淡水养殖经济虾类[2]。克氏原螯虾在养殖过程中,可离水存活较长时间,故在其流通过程中多采用干法运输[3]

    干法运输时水产动物常遭受干露胁迫,干露胁迫主要包括失水胁迫和低氧胁迫[4]。失水胁迫使机体水分丧失,打破细胞内外水平衡,造成组织结构损伤;低氧胁迫下机体氧供应不足,制约有氧呼吸,最终导致生理代谢失衡[5-6]。已有研究表明,干露胁迫会影响脊尾白虾[7] (Exopalaemon carinicauda) 的呼吸代谢和日本囊对虾[8] (Marsupenaeus japonicus) 的抗氧化应激,降低三疣梭子蟹[9] (Portunus trituberculatus) 的成活率。克氏原螯虾幼虾免疫系统尚未发育完全,体质弱、抗逆性差,在进行干法运输时成活率低,影响经济效益,有些地区专以运输成虾的方法获得亲本,通过繁育获得虾苗以保证当地的规模养殖[10]

    目前关于干露对克氏原螯虾成虾影响的研究尚未见报道,本研究采用温度为 (16±1) ℃、相对湿度 (Relative humidity, RH) 为 (55±5)%的干露条件对雌、雄成虾进行不同时间的干露胁迫,通过记录成虾死亡时间、测定相关代谢酶、H.E染色的方法,研究了干露对克氏原螯虾成虾的存活、相关代谢酶和组织结构的影响,为调整其运输时间,改善其运输方式,提高其运输成活率提供参考依据。

    实验时间为2019年9月,克氏原螯虾取自上海海洋大学崇明基地,选择附肢健全、活力旺盛的雌、雄虾各90尾,将雌、雄各30尾分别暂养于单个循环水槽 (长293 cm×宽80 cm×高20 cm,水深15 cm) 7 d。养殖用水为经充分曝气的自来水,水温为 (23.0±1.0) ℃,pH为7.5±0.5,持续充氧以保证水中溶氧充足。在养殖水桶中放入适量假水草,供克氏原螯虾栖息,且减少个体之间互相打斗。每天17时用虹吸管吸出残饵与粪便,并换水1/3以确保养殖水质清洁,投喂虾体质量3%~5%的配合饲料 (大北农水产科技集团股份有限公司)。实验前24 h停止投喂;雄虾体质量为 (44.4±6.5) g,体长为 (79.2±3.6) mm;雌虾体质量为 (41.9±5.9) g,体长为 (82.5±3.4) mm。

    实验在崇明基地实验室内进行,提前24 h调节加湿器 (广东容声电器,PH-88) 和除湿机 (GEDRYC20C),并通过温湿度记录仪 (精创RC-4HC) 显示情况,控制房间温度为 (16±1) ℃,RH为 (55±5)%。

    取雌、雄虾各8尾,单尾分别装于1 000 mL的聚丙烯 (PP) 盒 (14.9 cm×6.2 cm×15.0 cm),观察并统计克氏原螯虾死亡时间。根据死亡率与时间进行回归分析,建立回归方程,根据方程求得干露条件下的半致死时间 (LT50)。

    雌、雄虾各60尾,干露前擦干体表水分后称质量,即为初始湿体质量 (WO),于上述温湿度条件下进行干露胁迫,每6 h观察虾体存活情况,以晃动PP塑料盒虾体包括触角无反应判定虾体死亡,分别在第0、第3、第6、第12、第24、第36、第48、第60、第72、第96、第132和第144小时随机挑选雌、雄虾各4尾进行采样。

    采样时将克氏原螯虾体表水分擦干后称质量 (WT),计算其体质量消耗率后 [体质量消耗率=(WOWT)/WO×100%],置于解剖盘上,剪开头胸甲和腹部,取出肝胰腺和肌肉,解剖盘上将其快速切割成约0.2 g的小块,分装于0.2 mL离心管中,液氮速冻后放入−80 ℃冰箱中保存用于酶活力测定。另取适量肝胰腺、鳃和肌肉组织于Bouin's液中固定,用于后续组织切片的制作与观察。

    样品按质量体积比1∶9加入0.9%生理盐水,冰上研磨将其制成10%的组织匀浆,离心取上清液待测。乳酸脱氢酶 (LDH) 活力采用苏州科铭生物技术有限公司的试剂盒进行测定,琥珀酸脱氢酶 (SDH) 活力和乳酸 (LA) 浓度采用南京建成生物工程研究所试剂盒测定,具体方法参照试剂盒说明书操作。LDH酶活的单位定义为每克组织每分钟催化产生1 nmol丙酮酸定义为1个酶活力 (U·g−1)。SDH酶活的单位定义为每毫克蛋白每分钟使反应体系的吸光度降低0.01为1个比活性单位。

    Bouin's液固定24 h后换70%乙醇并进行乙醇梯度脱水,二甲苯透明,石蜡包埋,切片机 (LEICA RM2125 RTS) 5~7 μm切片,苏木精-伊红染色,中性树胶进行封片,研究级显微镜 (ECLIPES 80i) 观察并拍照。

    采用SPSS 19.0软件进行数据分析,实验结果以“平均值±标准差 ($\overline { X}\pm { \rm {SD}} $)”表示,不同干露时间点数据运用单因素方差分析 (One-way ANOVA) 进行比较,差异显著时采用Duncan's多重比较,P<0.05认为差异显著。

    预实验雌、雄克氏原螯虾死亡情况见图1。实验开始第75小时雄虾开始出现死亡,在干露258 h后全部死亡;雌虾第82小时开始死亡,在干露272 h后全部死亡。将雌、雄虾死亡率与时间进行回归分析,分别得到干露时间与累积死亡率的直线关系,线性显著相关。由线性回归方程可以得到该干露胁迫条件下克氏原螯虾雄虾的LT50为148.36 h,雌虾的LT50为144.01 h。

    图  1  干露胁迫下克氏原螯虾的死亡率
    Fig. 1  Mortality of P. clarkii in air exposure periods

    克氏原螯虾成虾的体质量消耗率随干露时间的延长逐渐增大 (图2)。干露前期雌、雄虾体质量消耗率无显著差异,雄虾体质量消耗率在干露第72和第132小时出现显著升高 (P<0.05),雌虾体质量消耗率在干露第36、第60和第72小时出现显著升高 (P<0.05),干露48 h后,在同一干露时间雌虾的体质量消耗率均高于雄虾。

    图  2  干露胁迫下克氏原螯虾的体质量消耗率
    大写字母不同表示雄虾不同胁迫时间组的差异显著 (P<0.05),小写字母不同表示雌虾不同胁迫时间组的差异显著 (P<0.05)。
    Fig. 2  Mass consumption rate of P. clarkii in air exposure periods
    Values with different uppercase and lowercase letters indicate significantly difference in male and female crayfish among different groups, respectively (P<0.05).

    雄虾肝胰腺LDH活力在第6、第12、第24和第36小时呈逐级递增趋势 (图3-a),在第36小时达到最大 (204.16 U·g−1),在随后的第48、第60和第72小时 LDH活力仍显著高于0 h组 (P<0.05),但相比前期胁迫稍有降低。在第96、第132和第144小时雄虾LDH活力无明显变化 (P>0.05)。雌虾肝胰腺LDH活力在整个干露时间段内呈现先上升后下降的趋势 (图3-b),在干露第3和第6小时LDH活力显著降低 (P<0.05),在第12、第24和第48小时LDH相比0 h组有所升高 (P<0.05),在第24小时达到峰值 (154.17 U·g−1)。干露第36小时无显著差异 (P>0.05)。在干露后期的第60、第72和第96小时雌虾肝胰腺LDH显著低于干露0 h组 (P<0.05)。

    图  3  干露胁迫对克氏原螯虾雄虾 (a) 和雌虾 (b) 肝胰腺乳酸脱氢酶活力的影响
    *. 各组与0 h组的差异显著 (P<0.05);不同字母上标表示除0 h组外不同胁迫时间组的差异显著 (P<0.05);后图同此。
    Fig. 3  Effect of dry exposure on hepatopancreas LDH activity of male (a) and female (b) P. clarkii
    *. Significant difference between each group and 0 h group (P<0.05); different letters represent significant difference among different groups except 0 h group (P<0.05). The same case in the following figures.

    雄虾肌肉LDH活力见图4-a,在干露24、第36、第48和第60小时显著高于0 h组,在第48小时达到峰值 (120.22 U·g−1),随后LDH活力与0 h组无显著差异 (P>0.05)。随着干露时间的延长,雄虾肌肉LDH活力整体呈现先升高后下降的趋势。干露期间雌虾肌肉LDH活力先升高后下降 (图4-b),在第132小时达到最低 (40.88 U·g−1)。雌虾肌肉LDH活力在第6、第12、第24和第36小时显著高于0 h组 (P<0.05),在第36小时达到最大活力值 (104.63 U·g−1),干露48~96 h阶段LDH活力与干露0 h组无显著差异 (P>0.05)。

    图  4  干露胁迫对克氏原螯虾雄虾 (a) 和雌虾 (b) 肌肉乳酸脱氢酶活力的影响
    Fig. 4  Effect of dry exposure on muscle LDH activity of male (a) and female (b) P. clarkii

    雄虾肝胰腺SDH活力在干露期间呈现先下降后升高趋势 (图5-a),在干露第48小时达到最低 (4.36 U·mg−1),第60小时达到峰值 (11.65 U·mg−1)。而雌虾肝胰腺SDH活力在干露前期梯度递减 (图5-b),第36小时达到最低 (1.97 U·mg−1),在第48和第60小时明显激增,但与0 h组无显著差异 (P>0.05),在干露60 h后活力显著降低 (P<0.05)。

    图  5  干露胁迫对克氏原螯虾雄虾 (a) 和雌虾 (b) 肝胰腺琥珀酸脱氢酶活力的影响
    Fig. 5  Effect of dry exposure on hepatopancreas SDH activity of male (a) and female (b) P. clarkii

    雄虾肌肉SDH活力见图6-a,在干露第24和第60小时明显降低 (P<0.05),在第36小时达到最大 (9.76 U·mg−1)。雌虾肌肉SDH活力在第12小时达到最低 (7.18 U·mg−1),第36小时后随干露时间的延长显著降低 (P<0.05,图6-b)。

    图  6  干露胁迫对克氏原螯虾雄虾 (a) 和雌虾 (b) 肌肉琥珀酸脱氢酶活力的影响
    Fig. 6  Effect of dry exposure on muscle SDH activity of male (a) and female (b) P. clarkii

    雌、雄虾肌肉LA水平随干露时间的延长呈现先升高后下降的变化 (图7),其中雄虾LA水平在第48小时达到最大值 (732.33 µmol·g−1),雌虾在第60小时达到峰值 (706.01 µmol·g−1)。

    图  7  干露胁迫对克氏原螯虾雄虾 (a) 和雌虾 (b) 肌肉乳酸质量摩尔浓度的影响
    Fig. 7  Effect of dry exposure on muscle LA molar concentrations of male (a) and female (b) P. clarkii

    干露0 h组雌、雄虾肝胰腺肝小管排列紧密,细胞结构正常,细胞界限清晰 (图8图9)。随着干露时间的延长,雄虾肝小管形态有明显膨胀,管壁外侧基膜在第72小时开始有离散现象,在第96小时更为明显;管腔内壁基膜逐渐扩张,形状呈不规则多边形,尤其在第36小时之后明显变大;肝小管内部细胞收缩,B细胞以及内部运转泡体积增大,数量增多,雌虾此现象较雄虾明显。雌虾肝小管在持续干露时间段内除第132小时外始终紧密排列,内部基膜扩张明显,管腔随干露时间逐渐变大,在第132小时达到最大;内部细胞在第48、第96和第132小时结构模糊,细胞界限不清晰。随着干露时间的增加,雌、雄虾柱状上皮细胞的细胞质内均出现许多空泡,空泡随干露时间数量增多、体积增大,干露终期细胞空泡化严重。雌、雄虾干露期间肝胰腺R细胞数量无明显变化。

    图  8  干露胁迫对雄性克氏原螯虾肝胰腺显微结构的影响
    a—i分别代表干露胁迫0、12、24、36、48、60、72、96和132 h;B. B细胞;R. R细胞;F. F细胞;L. 管腔;BM. 基膜;TV. 转运泡;图9同此。
    Fig. 8  Effect of dry exposure on hepatopancreas microstructure of male P. clarkii
    a–i represent dry exposure of 0, 12, 24, 36, 48, 60, 72, 96 and 132 h, respectively; B. B cell; R. R cell; F. F cell; L. Lumen; BM. Basement membrane; TV. Transferred vacuoles; the same case in Figure 9.
    图  9  干露胁迫对雌性克氏原螯虾肝胰腺显微结构的影响
    Fig. 9  Effect of dry exposure on hepatopancreas microstructure of female P. clarkii

    干露0 h组雌、雄虾鳃叶结构完整,鳃膜薄且平整光滑、形状规则整齐 (图10图11),正常内部呼吸上皮细胞单层逐个相连围成微血管腔,微血管腔内有血细胞和血淋巴液。在干露第12小时出现雄虾鳃膜边缘结构模糊,雌虾鳃丝轻微肿大现象。在随后的干露时间,鳃膜皆出现褶皱弯曲,表面有严重粗糙感,尤其在干露第24和第36小时上皮细胞有部分脱落现象,随着干露时间延长,雌、雄虾鳃组织上皮细胞脱落、坏死愈发严重。干露后期的第96和第132小时鳃细胞数量减少,鳃膜受损严重,微血腔中的血淋巴液弥散严重,基本失去正常鳃细胞结构。

    图  10  干露胁迫对雄性克氏原螯虾鳃显微结构的影响
    GM. 鳃膜;H. 血细胞;CL. 微血管腔;REC. 呼吸上皮细胞;图11同此。
    Fig. 10  Effect of dry exposure on gill microstructure of male P. clarkii
    GM. Gill membranes; H. Hemocytes; CL. Capillary lumen; REC. Respiratory epithelium cells; the same case in Figure 11.
    图  11  干露胁迫对雌性克氏原螯虾鳃显微结构的影响
    Fig. 11  Effect of dry exposure on gill microstructure of female P. clarkii

    肌肉组织变化见图12图13,干露0 h组肌肉组织结构排列较为整齐,肌纤维间隙紧致、平整,雄虾在干露第12、第36、第60、第72和第96小时,雌虾在干露第24、第36、第48、第60、第96和第132小时组织肌纤维弯曲呈波浪状,间隙褶皱疏松。

    图  12  干露胁迫对雄性克氏原螯虾肌肉显微结构的影响
    Fig. 12  Effect of dry exposure on muscle microstructure of male P. clarkii
    图  13  干露胁迫对雌性克氏原螯虾肌肉显微结构的影响
    Fig. 13  Effect of dry exposure on muscle microstructure of female P. clarkii

    半致死时间能反映生物对胁迫因子的耐受能力[11]。克氏原螯虾成体在水中的窒息点低至0.061 mg·L−1[12],在本研究 (16±1) ℃、RH (55±5)% 干露胁迫条件下,雄虾LT50为148 h,雌虾为144 h。三疣梭子蟹[9]幼蟹在15 ℃干露4 h后全部死亡;未抱卵天津厚蟹[13] (Helice tientsinensis) 在RH 50%~60% 下5 d后全部死亡;克氏原螯虾[14]幼虾在20 ℃、RH 50%干露24 h后成活率为53.3%。相比来说,克氏原螯虾成虾对干露环境的耐受能力较好。机体的耐干露时间与自身的保水能力有关[15-16],克氏原螯虾具有独特的羽毛状鳃丝,在扩大与水体接触面积的同时也能保留大部分水分[17],从而能够在失水环境中存活一段时间。另外,干露耐受时间与自身水分丧失速度有关[15-16],体质量消耗率可反映机体的水分丧失,雄、雌虾体质量消耗率分别在第60和第48小时后急剧增加,第48小时后雌虾体质量消耗率皆高于雄虾,因而其干露耐受时间小于雄虾。雌虾体质量消耗率急剧升高的时间早于雄虾的原因还有待进一步研究。

    本研究干露初期第3和第6小时,雌、雄虾肝胰腺、肌肉的LDH活力及LA浓度与0 h组相比变化不显著,机体脱离水体刚进入干露环境,鳃部仍留有一定水分,以维持正常的呼吸代谢[18]。随着干露时间的延长,在干露12~48 h 阶段,雌、雄虾的肝胰腺和肌肉LDH活力呈上升趋势,LA浓度变化趋势与LDH相同。LDH作为机体无氧代谢的标志酶[19],陶易凡等[20]在研究低pH对克氏原螯虾鳃的呼吸代谢酶的影响时指出,LDH活力上升,表明此时机体有氧代谢受阻,会迅速提高无氧代谢强度来满足自身缺氧条件下的能量需求。类似的呼吸代谢变化在日本囊对虾[21]干露胁迫第1和第3小时也有发生。本研究在12~48 h干露时间内LDH活力升高,表明机体无氧呼吸代谢强度增加,LDH催化还原丙酮酸致使LA逐渐积累[22],同时SDH作为有氧呼吸中琥珀酸转变为延胡索酸的关键脱氢酶,其在干露期间活力降低也同样反映了机体有氧代谢水平的下降[23-24],克氏原螯虾的呼吸方式逐渐从有氧代谢向无氧代谢转变。在干露48~132 h阶段,LDH活力和LA浓度逐渐降低,脊尾白虾[7]在常温干露胁迫末期也出现类似的酶活力下降变化,推测过长的胁迫时间导致机体的代谢系统受到影响,LA浓度的下降是机体应对严重的低氧胁迫将LA转化为葡萄糖来维持内环境稳态所做的调整[25],这种调整是机体短时间内为消耗过量LA而采取的糖异生作用[25],但长时间的干露胁迫,使机体耐受能力到达极限,致使酶的调节功能丧失,内稳态失衡,造成不可逆损伤[5]

    组织结构变化反映出机体生理状态的改变[26]。肌肉组织拥有致密的结缔组织,蛋白质是肌肉组织的主要组成成分。有研究指出,肌肉蛋白溶解性与蛋白持水性息息相关[27],尼罗罗非鱼 (Oreochromis niloticus) 在冷藏期间肌肉肌原纤维蛋白含量下降,肌肉蛋白溶解性降低[28]。本研究中雄、雌虾在干露第24小时后肌肉纤维出现有规律的疏松、褶皱、弯曲现象,推测可能是在干露条件下肌肉肌原纤维蛋白含量和持水量下降,导致肌肉收缩,从而产生组织损伤。

    鳃作为参与气体交换和离子调节的重要器官,通常最先受到环境胁迫影响并造成损伤[29]。本研究中克氏原螯虾的鳃组织在干露第12小时出现轻微损伤,第24和第36小时大部分呼吸上皮细胞脱落。有研究表明呼吸上皮细胞的脱落使机体气体交换的能力减弱,造成组织缺氧[20],而本研究中干露第24和第36小时无氧代谢酶LDH处于活力最大值,LA浓度增大,无氧代谢水平增强,结合组织结构变化可知,干露胁迫导致机体鳃组织损伤,损伤的鳃组织使机体获氧能力下降,缺氧条件下机体通过提高无氧代谢水平满足自身能量需求[20,30]。克氏原螯虾鳃组织随着干露时间的延长损伤加剧,本研究干露第96和第132小时的损伤与过量的硫酸锌 (ZnSO4) 胁迫[30]条件下克氏原螯虾鳃组织出现情况类似,包括鳃膜和呼吸上皮细胞分离,许多呼吸上皮细胞坏死、脱落,失去正常鳃细胞结构。干露条件下鳃缺少用于有氧呼吸的溶解氧,同时鳃组织的严重损伤进一步降低了自身氧气的利用,严重影响了机体的离子代谢和渗透调节功能[31],制约了呼吸代谢的进行,造成克氏原螯虾死亡。

    肝胰腺是克氏原螯虾重要的代谢器官,具有消化、吸收、储存和排泄的功能[32]。对于不同胁迫,甲壳动物的肝胰腺细胞会出现一些相似的变化,盐度9.0暴露下的三疣梭子蟹[33]、氨氮 (NH4-N) 胁迫15 d后的中华绒螯蟹[34] (Eriocheir sinensis) 以及在低pH胁迫下的克氏原螯虾[20]皆出现了B细胞内部空泡增多、体积增大的现象。B细胞具有消化、吸收营养物质的功能,其数量多少反映机体消化能力的强弱[35]。本研究中B细胞及内部转运泡增多、体积增大,可能有助于加快营养物质的运输[33],进而有助于克氏原螯虾消耗营养物质来提供能量[26]。R细胞除具有吞噬作用外,还可以储存脂肪和糖原。本研究中R细胞空泡化可能是细胞中营养物质的消耗造成的[33,36],尤其在干露48 h后空泡化的细胞数量增多,约占据整个细胞的80%,甚至出现肝细胞溶解的现象。此外,随着干露胁迫时间的延长,肝胰腺细胞管腔逐渐变大,在干露第132小时约占细胞体积的50%。干露胁迫下伴随失水胁迫,肝小管收缩变形,进一步表明机体细胞严重失水,过长时间的胁迫已严重破坏肝胰腺的正常组织结构,可能影响机体的正常生理功能。

    综上,鳃组织在干露第12小时即出现损伤,随着干露时间的延长肝胰腺组织损伤愈严重,两者在干露第36小时均受到严重损伤,影响了基本结构功能。雌虾体质量在干露第48小时后下降显著,而雄虾在第60小时后下降明显,同时以无氧呼吸代谢为主的呼吸强度减弱,机体面临耐受极限。因此,克氏原螯虾雌、雄成虾抗干露胁迫能力存在差异,在进行成体运输时干露时间不宜超过36 h。

  • 图  1   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹肝脏 HE 染色切片 (400×,红圈代表细胞质空泡化现象)

    Figure  1.   Hematoxylin-eosin (HE) stained liver sections of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (400×, red circles represent cytoplasmic vacuolization)

    图  2   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的血清总蛋白、白蛋白、球蛋白和尿素氮浓度

    注:方柱上不同字母表示具有显著性差异 (P<0.05)。

    Figure  2.   Contents of serum total protein, albumin, globulin and blood urea nitrogen of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    Note: Different letters on the bars are significantly different (P<0.05).

    图  3   不同发酵棉籽粉替代水平下卵形鲳鲹的肠道菌群物种多样性指标

    Figure  3.   Species diversity indexes of intestinal flora of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    图  4   不同发酵棉籽粉替代水平下卵形鲳鲹的肠道菌群组成 (门水平)

    Figure  4.   Relative abundance of intestinal flora of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (Phylum level)

    图  5   不同发酵棉籽粉替代水平下卵形鲳鲹肠道菌群组成 (属水平)

    Figure  5.   Relative abundance of intestinal flora of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (Genus level)

    图  6   摄食全鱼粉蛋白饲料和全棉籽粉蛋白饲料的卵形鲳鲹肠道菌群功能预测 (KEGG L2)

    Figure  6.   Prediction of intestinal flora function of juvenile T. ovatus fed with reference and experimental diets containing 100% FCSM replacement (KEGG L2)

    表  1   实验饲料组成及营养组成 (干物质)

    Table  1   Formulation and proximate composition of reference and experimental diets (Dry mass) %

    原料 Ingredient发酵棉籽粉替代鱼粉比例 Proportion of FCSM replacement
    0%25%50%75%100%
    鱼粉 Fish meal 35.00 26.25 17.50 8.75 0.00
    发酵棉籽粉 Fermented cottonseed meal 0.00 11.47 22.94 34.41 45.00
    大豆浓缩蛋白 Soy protein Conc 13.00 13.00 13.00 13.00 13.00
    鸡肉粉 Chicken meal 5.00 5.00 5.00 5.00 5.00
    赖氨酸 L-Lysine 0.00 0.21 0.42 0.63 0.85
    蛋氨酸 DL-methionine 0.00 0.10 0.19 0.29 0.39
    高筋面粉 Gluten flour 20.00 20.00 20.00 20.00 20.00
    诱食剂 Attractant 0.30 0.30 0.30 0.30 0.30
    卵磷脂 Lecithin 2.50 2.50 2.50 2.50 2.50
    鱼油 Fish oil 6.00 6.50 7.00 7.50 8.00
    维生素和矿物质预混料
    Vitamin and mineral premix
    2.00 2.00 2.00 2.00 2.00
    氯化胆碱 Choline chloride 0.50 0.50 0.50 0.50 0.50
    磷酸二氢钙 Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00
    维生素 Vitamin C 0.50 0.50 0.50 0.50 0.50
    骨粉 Bone meal 13.20 9.67 6.15 2.62 0
    营养成分分析 (干基) Analyzed proximate composition (Dry basis)
     水分 Moisture 9.5±0.2 8.3±0.1 10.4±0.1 11.0±0.1 9.9±0.1
     粗蛋白 Crude protein 40.6±0.3 41.6±0.3 43.3±0.3 44.6±0.1 44.9±0.1
     粗脂肪 Crude lipid 9.7±0.1 9.7±0.2 9.8±0.1 9.8±0.15 9.8±0.1
     粗纤维 Crude fiber 0.33 1.62 2.91 4.20 5.39
     灰分 Ash 21.4±0.1 18.1±0.2 14.2±0.1 10.9±0.1 8.6±0.1
     游离棉酚质量分数
     Free gossypol mass fraction/(mg·kg−1)
    0 29.93 59.85 89.78 119.70
    注:① 水分7.1% (质量分数,后同)、粗蛋白68.0%、粗脂肪8.0%、粗纤维0.2%、灰分16.4%;② 水分7.2%、粗蛋白59.7%、粗脂肪1.7%、粗纤维11.4%、灰分6.6%;③ 水分9.0%、粗蛋白65.0%、粗脂肪0.5%、粗纤维0.1%、灰分2.6%;④ 水分9.0%、粗蛋白65.0%、粗脂肪5.0%、粗纤维2.6%、灰分12.1%;⑤ 水分9.7%、粗蛋白16.4%、粗脂肪1.0%、粗纤维0.6%、灰分1.5%;⑥ 诱食剂为二甲基-β-丙酸噻亭(Dimethyl-β-propiothetin , DMPT)、甘氨酸、牛磺酸等比例混合;⑦ 维生素和矿物质预混料物质质量分数 (mg·kg−1):维生素A乙酸酯150 000 IU,维生素D3 75 000 IU,dl-α-生育酚乙酸酯2 500,亚硫酸氢烟酰胺甲萘醌250,硝酸硫铵 (维生素B1) 320,核黄素 (维生素B2) 700,盐酸吡哆醇 (维生素B6) 500,氰钴胺 (维生素B12) 4,肌醇4 000,L-抗坏血酸-2-磷酸酯5 500,烟酰胺3 800,D-泛酸钙1 600,叶酸80,D-生物素4,铜 (甘氨酸铜络合物) 200,一水硫酸亚铁1 800,硫酸锰450,硫酸锌5 500,碘酸钙100,亚硒酸钠15,硫酸钴50,乙氧基喹啉0~300,二丁基羟基甲苯0~750。 Note: ① Moisture 7.1% (Mass fraction, the same below), crude protein 68.0%, crude lipid 8.0%, crude fiber 0.2%, ash 16.4%; ② Moisture 7.2%, crude protein 59.7%, crude lipid 1.7%, crude fiber 11.4%, ash 6.6%; ③ Moisture 9.0%, crude protein 65.0%, crude lipid 0.5%, crude fiber 0.1%, ash 2.6%; ④ Moisture 9.0%, crude protein 65.0%, crude lipid 5.0%, crude fiber 2.6%, ash 12.1%; ⑤ Moisture 9.7%, crude protein 16.4%, crude lipid 1.0%, crude fiber 0.6%, ash 1.5%; ⑥ The palatability enhancer is a mixture of dimethyl-β-propionate, glycine and taurine; ⑦ Composition of vitamin and mineral premixa (mg·kg−1): Retinyl acetate 150 000 IU, Vitamin D3 75 000 IU, dl-α-tocopherol acetate 2 500 mg, Menadione nicotinamide bisulfite 250, Vitamin B1 320, Riboflavin (Vitamin B2) 700, Vitamin B6 500, Vitamin B12 4, Inositol 4 000, Cholinesalicylate 5 500, Nicotinamide 3 800, D-calcium pantothenate 1 600, Folic acid 80, D-biotin 4, Copper (Copperdiglycinate) 200, Ferrous sulfate monohydrate 1 800, Manganese (II) sulfate monohydrate 450, Zinc (Zinc sulfate monohydrate) 5 500, Iodine (calcium iodate) 100, Selenium (Sodium selenite) 15, Cobalt (Cobalt sulfate hydrate) 50, Ethoxyquin 0–300, Dibutylhydroxytoluene 0–750.
    下载: 导出CSV

    表  2   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹幼鱼的存活、生长和饲料利用性能

    Table  2   Survival, growth and feed utilization of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    指标
    Index
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear
    trend
    (P>F)
    二次趋势
    Quadratic
    trend
    (P>F)
    0% (对照组
    Control)
    25%50%75%100%
    成活率 Survival/% 85.00±5.09b 80.00±6.94ab 85.00±6.31b 72.50±5.34ab 63.33±2.72a 0.061 0.010 0.210
    终末质量 FBW/g 42.34±3.92 40.78±2.62 39.87±1.49 39.14±3.80 35.08±1.38 0.487 0.095 0.648
    体质量增长率 WGR/% 239.8±31.9 226.7±20.0 217.6±10.2 212.81±29.4 181.07±12.7 0.471 0.087 0.692
    摄食率 FR/(%·d−1) 3.15±0.03 3.27±0.10 3.21±0.04 3.29±0.08 3.31±0.14 0.659 0.203 0.856
    饲料利用率 FE 0.64±0.06b 0.59±0.07ab 0.61±0.01ab 0.54±0.06ab 0.45±0.05a 0.116 0.016 0.348
    蛋白沉积率 PR/% 28.32±1.75b 27.12±2.86ab 26.21±1.64ab 21.94±3.14ab 17.17±1.78a 0.020 0.002 0.225
    脂肪沉积率 LR/% 76.79±9.80c 67.04±4.14bc 64.41±1.43bc 48.73±4.11ab 25.50±4.63a 0.000 0.000 0.079
    注:同行不同上标字母表示差异显著 (P<0.05),F代表显著性概率。后表同此。 Note: Values with different letters within the same row are significantly different (P<0.05). F represents the probability of significance. The same case in the following tables.
    下载: 导出CSV

    表  3   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的营养组成 (湿基)

    Table  3   Proximate composition of juvenile T. ovatus fed with reference and experimental diets                 containing different FCSM replacements (wet basis)              %

    指标
    Index
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素
    方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear
    trend
    (P>F)
    二次趋势
    Quadratic
    trend
    (P>F)
    0% (对照组
    Control)
    25%50%75%100%
    水分质量分数
    Mass fraction of moisture/%
    65.93±0.67a 66.37±0.32ab 67.13±0.19ab 68.30±0.54bc 70.26±0.58c 0.000 0.000 0.083
    粗蛋白质量分数
    Mass fraction of crude protein/%
    18.00±0.35 18.43±0.22 18.34±0.55 18.25±0.36 17.72±0.31 0.673 0.542 0.189
    粗脂肪质量分数
    Mass fraction of crude lipid/%
    10.31±0.53c 9.72±0.25bc 9.42±0.09bc 8.48±0.35b 6.57±0.25a 0.000 0.000 0.017
    灰分质量分数
    Mass fraction of ash/%
    4.30±0.17 4.21±0.05 4.43±0.13 4.25±0.06 4.65±0.17 0.162 0.089 0.256
    下载: 导出CSV

    表  4   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的形体指标

    Table  4   Physical indexes of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    指标
    Index
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear trend
    (P>F)
    二次趋势
    Quadratic trend
    (P>F)
    0% (对照组 Control)25%50%75%100%
    肝体比 HIS/% 1.39±0.13b 0.91±0.05a 1.02±0.05a 1.14±0.08ab 1.06±0.04a 0.002 0.083 0.007
    脏体比 VSI/% 6.34±0.16 6.21±0.14 5.80±0.41 6.31±0.16 6.44±0.19 0.388 0.686 0.124
    肥满度 CF/(g·cm−3) 3.09±0.06 3.11±0.06 3.09±0.05 3.18±0.05 3.04±0.05 0.395 0.837 0.241
    下载: 导出CSV

    表  5   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的肠道消化酶活性和肝脏抗氧化酶活性

    Table  5   Digestive enzyme activities and hepatic antioxidant enzyme activities of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    指标     
    Index     
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素
    方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear
    trend
    (P>F)
    二次趋势
    Quadratic
    trend
    (P>F)
    0%
    (对照组 Control)
    25%50%75%100%
    胃蛋白酶活性
    Pepsin activity/(U·mg−1)
    71.73±6.91 60.93±6.15 62.17±4.13 62.08±5.94 58.18±4.95 0.518 0.133 0.637
    肠道胰蛋白酶活性
    Intestinal trypsin activity/(U·mg−1)
    2 119.7±392.6 1 902.7±619.7 1 606.1±223.0 1 705.5±390.6 1 482.0±232.6 0.700 0.193 0.760
    肠道α-淀粉酶活性
    Intestine α-amylase activity /(U·mg−1)
    1.53±0.17 1.39±0.24 1.36±0.13 0.97±0.21 0.98±0.13 0.123 0.015 0.944
    肠道脂肪酶活性
    Intestinal lipase activity/(U·g−1)
    1.40±0.06a 1.73±0.08b 1.60±0.02ab 1.54±0.03ab 1.73±0.11b 0.018 0.026 0.536
    肝脏超氧化物歧化酶活性
    T-SOD of liver/(U·mg−1)
    444.86±33.68 432.68±29.54 445.68±17.98 484.21±37.00 450.95±13.16 0.794 0.540 0.802
    肝脏过氧化氢酶活性
    CAT of liver/(U·mg−1)
    39.59±7.73 46.32±6.51 41.83±3.32 50.94±4.31 48.02±0.49 0.494 0.174 0.792
    肝脏总抗氧化能力
    T-AOC of liver/(mmol·g−1)
    0.33±0.03 0.20±0.02 0.25±0.02 0.24±0.01 0.25±0.04 0.063 0.125 0.061
    下载: 导出CSV
  • [1]

    FAO. The state of the world fisheries and aquaculture [M]. Rome: Food and Agricultural Organization of the United Nations, 2022: 1-3.

    [2]

    WU G Y. Recent advances in animal nutrition and metabolism [M]. Berlin: Springer Cham, 2022: 237-261.

    [3]

    BRITTEN G L, DUARTE C M, WORM B. Recovery of assessed global fish stocks remains uncertain[J]. Proc Natl Acad Sci USA, 2021, 118(31): e2108532118. doi: 10.1073/pnas.2108532118

    [4]

    COTTRELL R S, BLANCHARD J L, HALPERN B S, et al. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030[J]. Nat Food, 2020, 1: 301-308. doi: 10.1038/s43016-020-0078-x

    [5]

    KHAN M A, WAHID A, AHMAD M, et al. Cotton production and uses [M]. Berlin: Springer, 2020: 978-981.

    [6]

    WANG J, CLARK G, JU M, et al. Effects of replacing menhaden fishmeal with cottonseed flour on growth performance, feed utilization and body composition of juvenile red drum Sciaenops ocellatus[J]. Aquaculture, 2020, 523: 735217. doi: 10.1016/j.aquaculture.2020.735217

    [7] 余忠丽, 恽辉, 王俊青, 等. 一种酶解发酵生产棉籽蛋白的方法: CN112219934B [P]. 2021-07-16.
    [8]

    LIM S J, LEE K J. A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia, Oreochromis niloticus[J]. J World Aquac Soc, 2011, 42(4): 494-503. doi: 10.1111/j.1749-7345.2011.00491.x

    [9] 孙宏, 叶有标, 姚晓红, 等. 发酵棉籽粕部分替代鱼粉对黑鲷幼鱼生长性能, 体成分及血浆生化指标的影响[J]. 动物营养学报, 2014, 26(5): 1238-1245. doi: 10.3969/j.issn.1006-267x.2014.05.014
    [10]

    SUN H, TANG J W, YAO X H, et al. Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931[J]. Aquac Res, 2016, 47(8): 2623-2632. doi: 10.1111/are.12711

    [11]

    LIU B, GUO H Y, ZHU K C, et al. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities[J]. Fish Physiol Biochem, 2019, 45: 1879-1893. doi: 10.1007/s10695-019-00684-9

    [12]

    XUN P W, ZHOU C P, HUANG X L, et al. Effects of dietary sodium acetate on growth performance, fillet quality, plasma biochemistry, and immune function of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2022, 2022: 1-11.

    [13] 农业农村部渔业渔政管理局, 全球水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2022: 22.
    [14]

    WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquac Nutr, 2013, 19(3): 360-367. doi: 10.1111/j.1365-2095.2012.00964.x

    [15]

    ZHOU C P, HUANG Z, LIN H Z, et al. Effects of dietary leucine on glucose metabolism, lipogenesis and insulin pathway in juvenile golden pompano Trachinotus ovatus[J]. Aquac Rep, 2021, 19: 100626. doi: 10.1016/j.aqrep.2021.100626

    [16]

    LIU K, LIU H, CHI S Y, et al. Effects of different dietary lipid sources on growth performance, body composition and lipid metabolism-related enzymes and genes of juvenile golden pompano, Trachinotus ovatus[J]. Aquac Res, 2018, 49(2): 717-725. doi: 10.1111/are.13502

    [17]

    LI M M, ZHANG M, MA Y C, et al. Dietary supplementation with n-3 high unsaturated fatty acids decreases serum lipid levels and improves flesh quality in the marine teleost golden pompano Trachinotus ovatus[J]. Aquaculture, 2020, 516: 734632. doi: 10.1016/j.aquaculture.2019.734632

    [18]

    FANG H H, ZHAO W, XIE J J, et al. Effects of dietary lipid levels on growth performance, hepatic health, lipid metabolism and intestinal microbiota on Trachinotus ovatus[J]. Aquac Nutr, 2021, 27(5): 1554-1568. doi: 10.1111/anu.13296

    [19]

    ZHOU C P, GE X P, LIN H Z, et al. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus)[J]. Fish Shellfish Immunol, 2014, 41(2): 183-190. doi: 10.1016/j.fsi.2014.08.024

    [20]

    XUN P W, LIN H Z, WANG R X, et al. Effects of dietary vitamin B1 on growth performance, intestinal digestion and absorption, intestinal microflora and immune response of juvenile golden pompano (Trachinotus ovatus)[J]. Aquaculture, 2019, 506: 75-83. doi: 10.1016/j.aquaculture.2019.03.017

    [21]

    WANG J, GATLIN III D M, LI L H, et al. Dietary chromium polynicotinate improves growth performance and feed utilization of juvenile golden pompano (Trachinotus ovatus) with starch as the carbohydrate[J]. Aquaculture, 2019, 505: 405-411. doi: 10.1016/j.aquaculture.2019.02.060

    [22]

    TAN X H, SUN Z Z, HUANG Z, et al. Effects of dietary hawthorn extract on growth performance, immune responses, growth-and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection[J]. Fish Shellfish Immunol, 2017, 70: 656-664. doi: 10.1016/j.fsi.2017.09.041

    [23] 马学坤. 卵形鲳鲹幼鱼对饲料中蛋白能量比和几种必需氨基酸需求的研究[D]. 青岛: 中国海洋大学, 2013: 26.
    [24]

    HARDY R W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal[J]. Aquac Res, 2010, 41(5): 770-776. doi: 10.1111/j.1365-2109.2009.02349.x

    [25]

    National Research Council. Nutrient requirements of fish and shrimp [M]. Now York: National Academies Press, 2011: 238.

    [26]

    WILSON R P, ROBINSON E H, POE W E. Apparent and true availability of amino acids from common feed ingredients for channel catfish[J]. J Nutr, 1981, 111(5): 923-929. doi: 10.1093/jn/111.5.923

    [27]

    ZHAO W, LIU Z L, NIU J. Growth performance, intestinal histomorphology, body composition, hematological and antioxidant parameters of Oncorhynchus mykiss were not detrimentally affected by replacement of fish meal with concentrated dephenolization cottonseed protein[J]. Aquac Rep, 2021, 19: 100557. doi: 10.1016/j.aqrep.2020.100557

    [28]

    XU X Y, YANG H, ZHANG C Y, et al. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, flesh quality and gossypol deposition of largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 548: 737551. doi: 10.1016/j.aquaculture.2021.737551

    [29]

    LIU H, DONG X H, TAN B P, et al. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forsskál) (1775)[J]. Aquac Nutr, 2020, 26(5): 1724-1735. doi: 10.1111/anu.13123

    [30]

    BU X Y, CHEN A J, LIAN X Q, et al. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila[J]. Aquaculture, 2017, 479: 829-837. doi: 10.1016/j.aquaculture.2017.07.032

    [31]

    XIE S C, ZHOU Q C, ZHANG X S, et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus)[J]. Aquaculture, 2022, 549: 737820. doi: 10.1016/j.aquaculture.2021.737820

    [32]

    LI M H, ROBINSON E H. Use of cottonseed meal in aquatic animal diets: a review[J]. N Am J Aquac, 2006, 68(1): 14-22. doi: 10.1577/A05-028.1

    [33]

    ROMANO G B, SCHEFFLER J A. Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines[J]. Plant breed, 2008, 127(6): 619-624. doi: 10.1111/j.1439-0523.2008.01545.x

    [34]

    GAYLORD T G, GATLIN III D M. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus)[J]. Aquaculture, 1996, 139(3/4): 303-314. doi: 10.1016/0044-8486(95)01175-7

    [35] 王开卓. 棉酚对草鱼肠道结构和免疫屏障的作用及其机制 [D]. 雅安: 四川农业大学, 2019: 1-2.
    [36]

    GONZÁLEZ-PEÑA M C, GOMES S Z, MOREIRA G S. Effects of dietary fiber on growth and gastric emptying time of the freshwater prawn Macrobrachiurn rosenbergii (de Man, 1879)[J]. J World Aquac Soc, 2002, 33(4): 441-447. doi: 10.1111/j.1749-7345.2002.tb00023.x

    [37]

    DIAS J, HUELVAN C, DINIS M T, et al. Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles[J]. Aquat Living Resour, 1998, 11(4): 219-226. doi: 10.1016/S0990-7440(98)89004-9

    [38]

    LIU C, ZHAO L P, SHEN Y Q. A systematic review of advances in intestinal microflora of fish [J]. Fish Physiol Biochem, 2021, 47: 2041-2053.

    [39] 兰鲲鹏, 吴光德, 王珺, 等. 饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响[J]. 南方水产科学, 2022, 18(5): 55-65. doi: 10.12131/20220082
    [40]

    SUN Y G, ZHANG S S, NIE Q X, et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis [J]. Crit Rev Food Sci Nutr, 2022: 1-16. DOI: 10.1080/10408398.2022.2098249.

    [41]

    THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut bacteroidetes: the food connection[J]. Front Microbiol, 2011, 2: 93.

    [42]

    MENETREY Q, SORLIN P, JUMAS-BILAK E, et al. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: emerging pathogens well-armed for life in the cystic fibrosis patients' lung[J]. Genes, 2021, 12(5): 610. doi: 10.3390/genes12050610

    [43]

    YIN Z Q, LIU X B, QIAN C Q, et al. Pan-genome analysis of Delftia tsuruhatensis reveals important traits concerning the genetic diversity, pathogenicity, and biotechnological properties of the species[J]. Microbiol Spectr, 2022, 10(2): e02072-21.

    [44]

    LIU L, FENG Y, WEI L, et al. Genome-based taxonomy of brevundimonas with reporting Brevundimonas huaxiensis sp. nov[J]. Microbiol Spectr, 2021, 9(1): e00111-21.

    [45]

    SINGH S, SAHU C, PATEL S S, et al. Pandoraea apista bacteremia in a COVID-positive man: a rare coinfection case report from North India[J]. J Lab Phys, 2021, 13(2): 192-194.

    [46]

    ZHANG Z S, WANG X M, HAN S W, et al. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing[J]. Int J Biol Macromol, 2018, 112: 796-802. doi: 10.1016/j.ijbiomac.2018.01.192

    [47]

    LI W J, ZHANG L, WU H X, et al. Intestinal microbiota mediates gossypol-induced intestinal inflammation, oxidative stress, and apoptosis in fish[J]. J Agric Food Chem, 2022, 70(22): 6688-6697. doi: 10.1021/acs.jafc.2c01263

    [48]

    WANG M M, WICHIENCHOT S, HE X W, et al. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends Food Sci Technol, 2019, 88: 1-9. doi: 10.1016/j.jpgs.2019.03.005

    [49]

    ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. doi: 10.1038/nature06450

    [50]

    XU Y Q, ZHU Y, LI X T, et al. Dynamic balancing of intestinal short-chain fatty acids: the crucial role of bacterial metabolism[J]. Trends Food Sci Tech, 2020, 100: 118-130. doi: 10.1016/j.jpgs.2020.02.026

    [51]

    KONDO T, KISHI M, FUSHIMI T, et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J]. J Agric Food Chem, 2009, 57(13): 5982-5986. doi: 10.1021/jf900470c

    [52]

    de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1/2): 84-96.

    [53]

    GE H F, LI X F, WEISZMANN J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J]. Endocrinology, 2008, 149(9): 4519-4126. doi: 10.1210/en.2008-0059

    [54]

    HONG Y H, NISHIMURA Y, HISHIKAWA D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43[J]. Endocrinology, 2005, 146(12): 5092-5099. doi: 10.1210/en.2005-0545

    [55]

    SAHURI-ARISOYLU M, BRODY L P, PARKINSON J R, et al. Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate[J]. Int J Obes, 2016, 40(6): 955-963. doi: 10.1038/ijo.2016.23

    [56]

    JIA Y M, HONG J, LI H F, et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J]. Exp Physiol, 2017, 102(2): 273-281. doi: 10.1113/EP086114

    [57]

    GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517. doi: 10.2337/db08-1637

    [58] 荀鹏伟. 卵形鲳鲹饲料脂肪需求量及短链脂肪酸的营养功能研究 [D]. 上海: 上海海洋大学, 2022: 105.
    [59]

    DU Z Y, TURCHINI G M. Are we actually measuring growth? An appeal to use a more comprehensive growth index system for advancing aquaculture research[J]. Rev Aquac, 2022, 14(2): 525-527. doi: 10.1111/raq.12604

    [60]

    DENG J M, MAI K S, CHEN L Q, et al. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus×O. aureus)[J]. Fish Shellfish Immunol, 2015, 44(2): 436-444. doi: 10.1016/j.fsi.2015.03.018

    [61]

    DODOU K. Investigations on gossypol: past and present developments[J]. Expert Opin Investig Drugs, 2005, 14(11): 1419-1434. doi: 10.1517/13543784.14.11.1419

    [62]

    LIN Q R, LI C G, ZHA Q B, et al. Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway[J]. Toxicol Appl Pharmacol, 2016, 292: 56-64. doi: 10.1016/j.taap.2015.12.027

    [63]

    HE X, WU C Y, CUI Y H, et al. The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell[J]. Oncotarget, 2017, 8(59): 100128-100140. doi: 10.18632/oncotarget.22044

    [64]

    JIANG J, YE W, LIN Y C. Gossypol inhibits the growth of MAT-LyLu prostate cancer cells by modulation of TGFβ/Akt signaling[J]. Int J Mol Med, 2009, 24(1): 69-75.

    [65]

    ZHANG M C, LIU H P, GUO R B, et al. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells[J]. Biochem Pharmacol, 2003, 66(1): 93-103. doi: 10.1016/S0006-2952(03)00248-X

    [66]

    LIU Y L, LU Q S, XI L W, et al. Effects of replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, liver health, and intestinal histology of largemouth bass (Micropterus salmoides)[J]. Front Physiol, 2021, 12: 2308.

    [67]

    BIAN F, ZHOU H G, WANG C, et al. Effects of replacing fishmeal with different cottonseed meals on growth, feed utilization, haematological indexes, intestinal and liver morphology of juvenile turbot (Scophthalmus maximus L.)[J]. Aquac Nutr, 2017, 23(6): 1429-1439. doi: 10.1111/anu.12518

    [68]

    TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. doi: 10.1038/s41575-018-0011-z

  • 期刊类型引用(8)

    1. 马世豪,肖文富,解绶启,张健敏,董立学,文华,蒋明,郜卫华,田娟. 克氏原螯虾饲料亚麻酸与亚油酸的适宜比值. 水生生物学报. 2025(03): 106-118 . 百度学术
    2. 徐德峰,廖威龙,李彩虹,廖建萌,李欣. 冷藏凡纳滨对虾肌肉软化的生化特性及生物标记物. 广东海洋大学学报. 2024(01): 125-132 . 百度学术
    3. 邹宇凡,吴玮杰,白志毅,李典中,蒋军,程熙,李家乐. 克氏原螯虾三群体双列杂交组合生长性能和耐干露能力比较分析. 上海海洋大学学报. 2024(02): 361-370 . 百度学术
    4. 黄月,陈荔,钟传艳,陈果,龙晓文. 干露胁迫对中华绒螯蟹成体呼吸和能量代谢及抗氧化能力的影响. 水产学杂志. 2024(02): 61-69 . 百度学术
    5. 吴乐,李嘉尧,周文宗,成永旭. 氨氮短期胁迫与恢复对克氏原螯虾的影响. 水产科学. 2024(03): 390-399 . 百度学术
    6. 邹宇凡,吴玮杰,白志毅,冯建彬,吴敏,蒋军,李家乐. 5个群体克氏原螯虾生长和养殖生态适应性比较分析. 水产科学. 2024(03): 420-428 . 百度学术
    7. 苏禹,王力玄,孟泳岐,马源潮,鲁耀鹏,张泽龙,郑佩华,李军涛,冼健安,刘存歧,王冬梅. 环境因素对克氏原螯虾生长与繁育的影响. 中国饲料. 2024(21): 74-82 . 百度学术
    8. 郭子宇,鲁耀鹏. 克氏原螯虾活体运输技术研究进展. 河北渔业. 2022(09): 38-40+46 . 百度学术

    其他类型引用(9)

推荐阅读
低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
贺铮 et al., 南方水产科学, 2025
羊栖菜寡糖的酶法制备及其抗氧化性与抑菌活性研究
董媚 et al., 南方水产科学, 2025
Lh原油和0# 柴油乳化液对凡纳滨对虾肝胰腺抗氧化酶活性及相关功能基因表达的影响
沈楚焰 et al., 南方水产科学, 2025
荷-鱼共养与常规池塘养殖模式下环境微生物群落比较研究
刘美琦 et al., 南方水产科学, 2025
克氏原螯虾三群体双列杂交组合生长性能和耐干露能力比较分析
ZOU Yufan et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2024
熟制方式对克氏原螯虾剥壳效果及品质的影响
谌玲薇 et al., 广东海洋大学学报, 2024
Glycosylation with different saccharides on the gelling, rheological and structural properties of fish gelatin
Geng, Hulin et al., FOOD HYDROCOLLOIDS, 2024
Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: an updated review
Nezamdoost-Sani, Narmin et al., FOOD BIOSCIENCE, 2023
Effect of sterile rice spikelets derived biochar amendment on nutrient leaching and availability in paddy soil under continuous standing water
GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
Therapeutic efficacy of anodonta cygnea and crayfish procambarus clarkii hemolymph extracts on sepsis-induced acute liver injury in neonate rats
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
Powered by
图(6)  /  表(5)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  140
  • PDF下载量:  90
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-04-22
  • 录用日期:  2023-04-24
  • 网络出版日期:  2023-04-27
  • 刊出日期:  2023-08-04

目录

/

返回文章
返回