低鱼粉饮食中添加半胱氨酸对卵形鲳鲹幼鱼脂质和蛋白质代谢的影响

刘佳兴, 郭华阳, 朱克诚, 刘宝锁, 张楠, 冼霖, 张殿昌

刘佳兴, 郭华阳, 朱克诚, 刘宝锁, 张楠, 冼霖, 张殿昌. 低鱼粉饮食中添加半胱氨酸对卵形鲳鲹幼鱼脂质和蛋白质代谢的影响[J]. 南方水产科学, 2023, 19(4): 116-125. DOI: 10.12131/20230030
引用本文: 刘佳兴, 郭华阳, 朱克诚, 刘宝锁, 张楠, 冼霖, 张殿昌. 低鱼粉饮食中添加半胱氨酸对卵形鲳鲹幼鱼脂质和蛋白质代谢的影响[J]. 南方水产科学, 2023, 19(4): 116-125. DOI: 10.12131/20230030
LIU Jiaxing, GUO Huayang, ZHU Kecheng, LIU Baosuo, ZHANG Nan, XIAN Lin, ZHANG Dianchang. Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2023, 19(4): 116-125. DOI: 10.12131/20230030
Citation: LIU Jiaxing, GUO Huayang, ZHU Kecheng, LIU Baosuo, ZHANG Nan, XIAN Lin, ZHANG Dianchang. Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2023, 19(4): 116-125. DOI: 10.12131/20230030

低鱼粉饮食中添加半胱氨酸对卵形鲳鲹幼鱼脂质和蛋白质代谢的影响

基金项目: 国家自然科学基金重点项目 (U20A2064);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD12);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2022TD29);国家海水鱼产业技术体系资助 (CARS-47);广东省现代农业产业技术体系海水鱼产业创新项目(2019KJ143)
详细信息
    作者简介:

    刘佳兴 (1996—),男,硕士研究生,研究方向为水产动物营养。E-mail: liujiaxing96@163.com

    通讯作者:

    张殿昌 (1977—),男,研究员,博士,研究方向为水产种质资源与遗传育种。E-mail: zhangdch@scsfri.ac.cn

  • 中图分类号: S 963.73

Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus

  • 摘要: 为研究半胱氨酸对低鱼粉引起的卵形鲳鲹 (Trachinotus ovatus) 幼鱼 [(10.05 ± 0.05) g] 代谢紊乱的影响,采用动植物蛋白 (鸡粉、大豆浓缩蛋白、发酵豆粕等) 部分替代鱼粉制作卵形鲳鲹基础饮食,分别添加0 (C0组,对照组)、0.30% (C1组)、0.60% (C2组)、0.90% (C3组) 和1.20% (C4组) 半胱氨酸制成5种等氮等脂饲料。56 d的饲养实验结果显示:1) 半胱氨酸通过激活S6K/PI3K/TOR/4E-BP1通路,提高卵形鲳鲹蛋白质合成代谢能力。补充0.6%~0.9%半胱氨酸通过上调肌肉核糖体蛋白S6激酶 (S6K)、雷帕霉素靶蛋白 (TOR)、磷脂酰肌醇-3-激酶 (PI3K)和4E结合蛋白1 (4E-BP1) 基因的mRNA水平,增加肌肉和血清总蛋白 (Total protein, TP) 含量与肌肉粗蛋白含量,降低血氨 (Serum ammonia, SA) 、肌肉和肝脏尿素氮 (Urea nitrogen, UN) 含量,促进肌肉蛋白质沉积。2) 补充0.6%~0.9%半胱氨酸通过下调肌肉中过氧化物酶体增殖物激活受体γ (PPARγ) 基因的mRNA水平,降低乙酰辅酶A羧化酶 (ACC)、脂肪酸合成酶 (FAS) 基因的mRNA水平与酶活水平,抑制脂肪合成代谢;同时,上调肌肉中过氧化物酶体增殖物激活受体α (PPARα) 基因的表达水平,使激素敏感性脂肪酶 (HSL) 和肉毒碱棕榈酰转移酶1 (CPT1) 基因高表达并伴随酶活提高,进而促进肌肉中脂肪酸β氧化反应,减少蛋白质因分解供能所带来的消耗,促进肌肉中蛋白质沉积。
    Abstract: To investigate the effect of cysteine on the metabolic disorders of juvenile Trachinotus ovatus [(10.05±0.05) g] caused by low fishmeal, we prepared a basal pomfret diet by using plant and animal proteins (Chicken meal, soybean protein concentrate, fermented soybean meal, etc.) as partial substitutes for fishmeal, and then added 0 (Group C0, control group), 0.30% (Group C1), 0.60% (Group C2), 0.90% (Group C3) and 1.20% (Group C4) cysteine to make five isonitrogenous and isoenergetic diets. The results of a 56-day feeding trial show that: 1) Cysteine enhanced the protein synthesis and metabolism ability of T. ovatus by activating the S6K/PI3K/TOR/4E-BP1 pathway. Supplementation with 0.6%−0.9% cysteine up-regulated the mRNA levels of ribosomal protein S6 kinase (S6K), target of rapamycin (TOR), phosphoinositide 3-kinase (PI3K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in muscle, increased total protein (TP) in muscle and serum as well as muscle crude protein content, reduced serum ammonia (SA) and urea nitrogen (UN) in muscle and liver, promoting protein deposition in muscle. 2) Supplementation with 0.6%−0.9% cysteine inhibited lipid anabolism by down-regulating the expression level of peroxisome proliferator-activated receptors gamma (PPARγ) in muscle, decreasing the transcript level and enzyme activity level of Acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS), while it up-regulated the expression level of peroxisome proliferator activated receptors-alpha (PPARα) in muscle, resulting in high hormone-sensitive lipase (HSL) and carnitine palmitoyl transferase 1 (CPT1) expression with increasing enzyme activity, which in turn promoted β-oxidation of fatty acids in muscle, reducing protein consumption due to catabolism for energy supply. Thus, protein deposition in muscle is promoted.
  • 任何形式的捕捞均有选择性, 其选择性主要取决于渔具选择性,它强烈影响着捕捞群体结构。为了实现渔业资源的可持续利用,开展生态渔业、负责任渔业的研究有重要的意义,渔具选择性和选择性渔具是生态渔业的核心内容之一。而在我国开展的渔具选择性研究尤其是定置渔具选择性能的研究并不多见。

    日本沿海主要以小型底拖网、笼、筒捕捞星康吉鳗Conger myriaster(以下简称星鳗)。在我国星鳗也是重要的群众渔业捕捞对象,青岛近海渔民用筒、山东日照渔民利用延绳钓捕捞这种鱼。山东沿海渔民在利用地笼诱捕许氏平鲉、欧氏六线鱼时, 往往同时捕获大量星鳗。本文以东京湾星鳗笼为例,利用套网法研究了其网目选择性,以期为定置渔业的科学管理提供科学依据。

    1995~2000年,每年的10~11月在东京湾进行实验。实验笼和生产的相同,不锈钢骨架,展开为640 mm×470 mm×150 mm。每个笼有2个椭圆形开口200 mm×90 mm, 和东京湾渔获对象星鳗(全长190~600 mm, 最大体周长28~104 mm)相比, 开口非常大。因此在研究笼的选择性时, 可以仅考虑网目的选择性。

    笼的底部网目尺寸(内径)为10.8 mm,远小于其他部位的网目尺寸(表 1), 星鳗从笼中逃逸的部位是底部以外的其他部分。实验时,笼的底部以外结覆网目内径为10.8 mm的套网, 套网和笼之间有足够大的空间, 且所有套网的规格相同。套网、笼均为锦纶制造,有结节菱形网片。实验时的作业方法和生产相同, 采用延绳钓作业方式。

    表  1  实验笼的数量以及网目尺寸(MC)
    Table  1.  The number and mesh size of test net pot(MC)
    网目尺寸/mm mesh size 1995年 1996年 1997年 1998年 1999年 2000年
    21.0±0.68 4 4 4 4 4 4
    18.1±0.82 3 3 4 4 4 4
    15.5±0.63 3 3 4 4 4 4
    13.6±0.44 3 3 4 4 4 4
    11.6±0.38 3 3 4 4 4 4
    下载: 导出CSV 
    | 显示表格

    将笼网、套网捕获的星鳗分别装入化纤袋,回实验室测量全长、最大体周长,体重。最大体周长是胸鳍稍后鱼体最粗部位的周长。

    如果1尾鱼被捕获的概率是p, 那么Ni尾行为独立有相同特征的鱼遭遇笼,ni尾鱼被捕获的概率$p=C_{N_i}^{n_i} p^{n_i}(1-\$p)^{N_i-n_i}$。

    假设1群鱼遭遇渔具, 该鱼群依据全长可以划分为k组,组中值为li,每组鱼Ni,每组被捕的数量mi,那么$\sum_\limits{i=1}^k$尾鱼被捕获的概率$F=\prod_\limits{i=i}^k C_{N_i}^{n_i} p^{n_i}(1-p)^{N_i-n_i}$。

    如果套网和笼捕获的鱼的数量为nli, mli(i=1,2,3,…,k), 那么笼捕获的全长li鱼的占该类鱼总渔获量的比例为

    $$ \phi_{l_i}=\frac{n_{l_i}}{n_{l_i}+m_{l_i}} $$ (1)

    依据概率的统计学定义, F可用$\phi_{l_i}$估计, 而p是渔具的选择率SL[1], 可用Logistic方程表示[2]

    $$ S_L=\frac{\exp (s+b L)}{1+\exp (s+b L)} $$ (2)

    ab为待估参数,L为鱼类的特征变量(全长l,相对体周长$\frac{G}{M_e}$等)。由F和$\phi_{l_i}$, pSL的关系, 利用极大似然估计法可以得到待估参数ab的值。

    由不同网目尺寸得到的不同的网目选择性曲线, 利用不同的处理方式可以得到不同的主选择性曲线。为比较这些曲线, 引入AIC(akayike information criterion),AIC=-2 max {ln F}+2K作为判断标准,为待估参数的数目,AIC较小的模型更合适[3]

    捕获的星鳗的全长l(cm)与体重w(g)、体周长G(cm)的关系分别为,

    w=0.1998l2-7.9106l+93.5290(R2=0.9610, n=2 102),

    G=0.1906l-0.6786(R2=0.8488, n=2 102)。

    笼的选择性由2部分组成,网目选择性、出入口的选择性。在东京湾可仅考虑网目的选择性[4]。以全长为方程2的变量,由算式1, 2得到的网目选择性曲线的各个参数(表 2)。

    表  2  全长选择性曲线的各参数
    Table  2.  Parameters of whole body length selectivity curve
    网目尺寸/mm mesh size a b MLL AIC l0.5 S.R.
    21.0 -17.26 0.58 -22.01 48.02 29.80 3.80
    18.1 -13.83 0.52 -37.65 79.30 26.80 4.30
    15.5 -14.44 0.63 -56.77 117.54 23.00 3.50
    13.6 -16.11 0.73 -53.71 111.42 22.00 3.00
    11.6 -14.65 0.73 -173.71 351.41 20.00 3.00
    注: l0.5, 50%选择全长; S.R., 选择域; MLL=Max{lnF}
    Notes:l0.5, 50% selective whole body length; S.R., selective range; MLL=Max{lnF}
    下载: 导出CSV 
    | 显示表格

    由上述的各参数可知,网目尺寸21.0、18.1、15.5、13.6、11.6 mm笼的全长选择性能,全长0 < l < 25.50 cm、0 < l < 22.50 cm、0 < l < 18.50 cm、0 < l < 18.50 cm、0 < l < 16.50 cm时,全长选择率几乎为0;全长25.50 < l < 35.50 cm、22.50 < l < 32.50 cm、18.50 < l < 27.50 cm、18.50 < l < 26.50 cm、16.50 < l < 24.00 cm时,全长选择率随全长不断增长而逐渐增大;全长在l>35.50 cm、l>32.50 cm、l>27.50 cm、l>26.50 cm、l>24.00 cm时,全长选择率几乎接近于1.00,50%选择全长l0.5分别为29.8、26.8、23.0、22.0、20.0 cm;全长选择域为3.80、4.30、3.50、3.00、3.00 cm。因此,全长选择性曲线沿全长增加方向,随网目增大而向右移,并且网目越小,选择越尖锐。

    笼的网目尺寸分别为21.0、18.1、15.5、13.6、11.6 mm,和套网的网目尺寸的比值依次为1.07、1.26、1.44、1.68、1.94。所对应的AIC逐渐减少(表 2)。由于实验中,除笼的网目尺寸有差别外,其他条件尽可能相同,因此造成这种趋势的原因很可能来自套网对实验笼的影响(例如局部流场的改变程度),即可能是在一定范围内,实验网和套网的网目尺寸差别越大,套网对实验网的影响越小;而当两者相当时,套网的影响相当显著。是否是这种原因,有待于更多关于鱼类行为以及渔具和捕捞对象相互作用的实验检验。

    鱼能否穿过网目,主要取决于鱼沿体高方向的截面形状以及相对于网目内径的大小[4]。由或为方程1的变量,所得到的方程为主选择性方程,它描绘的曲线为主选择性曲线(master selectivity curve)。有2种方法,each curve model和single curve model可得到主选择性曲线。前者是求得每一网目尺寸所对的主选择性曲线。后者将所有的网目尺寸所对应的相对体周长$\frac{G}{M_c}$或相对全长$\frac{l}{M_c}$值合并,看作一组数值,求得一条反映渔具选择性的曲线。

    以$\frac{G}{M_c}$为方程2的变量,由single curve model和each curve model,利用极大似然估计法,得到待估参数(表 3)。因∑ (AICeach curve model)=250.18,而AICsingle curve model=244.32,其差值│244.32-250.18│>1,所以可以认为single curve model与each curve model之间的差异并非偶然,single curve model得到的主选择性曲线可更好地反映网目选择性。

    表  3  主选择性曲线的各参数
    Table  3.  Parameters of master selectivity curve
    模式models a b $\frac{G}{M_{e0.5}}$ S.R. MLL AIC
    single curve model -4.71 4.25 1.11 0.52 -120.16 244.32
    each curve model- 115.09 250.18
    21.0 mm -10.47 8.68 1.21 0.25 -16.96 37.92
    18.1 mm -8.92 7.70 1.16 2.87 -24.45 52.90
    15.5 mm -1.58 2.87 0.55 0.77 -24.54 53.07
    13.6 mm -4.87 4.62 1.06 0.48 -16.95 37.91
    11.6 mm -0.01×10-2 1.08 9.20×10-5 2.03 -32.19 68.38
    下载: 导出CSV 
    | 显示表格

    50%选择相对体周长1.11,相对体周长的选择域为0.52。$0<\frac{G}{M_c}<0.55$,相对体周长选择率几乎为0;$0.55< \frac{G}{M_c}<1.60$,选择率随相对体周长增加而增加;$\frac{G}{M_c}>1.60$,选择率趋向于1.00。一般认为当$\frac{G}{M_c}=1$时,选择率就应当趋向于1.0,而本实验当$\frac{G}{M_c}>1.60$,选择率才趋向1.00。这种结果和星鳗底拖网的网目选择性中的类似[5]。其最可能的原因是星鳗体表鳞片退化,凸起减少,且分泌大量粘液,使之容易穿过网目。另外,网线对星鳗的刺激,也有促进星鳗积极逃逸的可能。

    比较显示,套网和实验网的网目尺寸差别较大时,套网的影响较小。而在两者接近时,套网的影响极为显著。

    此外,本文中给出了利用套网法得到的星鳗笼的网目选择性能, 但套网对入笼的星鳗行为存在影响, 这种影响到底有多大, 以及入网的星鳗如何从笼中逃逸, 逃逸后的残存率有多大, 都是将来要研究的重点所在。

  • 图  1   半胱氨酸对卵形鲳鲹肌肉、肝脏和血清中蛋白质代谢参数的影响

    注:同组数据不同字母上标表示差异显著 (P<0.05)。后图同此。

    Figure  1.   Effects of cysteine on protein metabolism parameters in muscle, liver and serum of T. ovatus

    Note: Values with different superscripts for the same group are significantly different (P<0.05). The same case in the following figures.

    图  2   半胱氨酸对卵形鲳鲹肌肉、肝脏和血清脂代谢参数的影响

    Figure  2.   Effects of cysteine on lipid metabolism parameters in muscle, liver and serum of T. ovatus

    图  3   半胱氨酸对卵形鲳鲹肌肉、肝脏和血清脂代谢酶活的影响

    Figure  3.   Effect of cysteine on lipid metabolism enzyme activity in muscle, liver and serum of T. ovatus

    图  4   半胱氨酸对卵形鲳鲹肌肉脂肪合成代谢 (a) 与分解代谢 (b) 相关基因相对表达水平的影响

    Figure  4.   Effect of cysteine on relative expression levels of genes related to lipid synthesis (a) and catabolism (b) in T. ovatus muscle

    图  5   半胱氨酸对卵形鲳鲹肌肉蛋白质合成代谢相关基因相对表达水平的影响

    Figure  5.   Effect of cysteine on relative expression levels of genes related to protein anabolism in T. ovatus muscle

    表  1   实验日粮配方和营养水平 (以干物质百分比为基础)

    Table  1   Formulation and nutrition level of the experimental diets (Dry matter basis) %

    参数
    Parameter
    半胱氨酸添加量 Added amount of cysteine
    C0 (0)C1 (0.3%)C2 (0.6%)C3 (0.9%)C4 (1.2%)
    鱼粉 Fish meal 20.00 20.00 20.00 20.00 20.00
    鸡肉粉 Chicken meal 10.00 10.00 10.00 10.00 10.00
    大豆浓缩蛋白 Soy protein concentrate 10.00 10.00 10.00 10.00 10.00
    鱿鱼膏 Squid paste 5.00 5.00 5.00 5.00 5.00
    豆粕 Soybean meal 12.00 12.00 12.00 12.00 12.00
    发酵豆粕 Fermented soybean meal 5.00 5.00 5.00 5.00 5.00
    玉米蛋白粉 Corn gluten meal 6.00 6.00 6.00 6.00 6.00
    高筋面粉 High gluten flour 18.37 18.07 17.77 17.47 17.17
    鱼油 Fish oil 6.00 6.00 6.00 6.00 6.00
    豆油 Soybean oil 3.00 3.00 3.00 3.00 3.00
    磷酸二氢钙 Ca(H2PO4)2 1.50 1.50 1.50 1.50 1.50
    氯化胆碱 Choline chloride 0.30 0.30 0.30 0.30 0.30
    维生素预混 Vitamin mix ①② 1.00 1.00 1.00 1.00 1.00
    矿物质预混 Mineral mix ①③ 1.00 1.00 1.00 1.00 1.00
    L-赖氨酸盐酸盐 L-lysine monohydrochloride 0.50 0.50 0.50 0.50 0.50
    DL-蛋氨酸 DL-Methionine 0.20 0.20 0.20 0.20 0.20
    苏氨酸 Threonine 0.10 0.10 0.10 0.10 0.10
    乙氧喹 Ethoxyquin 0.03 0.03 0.03 0.03 0.03
    半胱氨酸 Cysteine 0.00 0.30 0.60 0.90 1.20
    营养水平 Nutrition level
    粗蛋白 Crude Protein (%, dry matter) 42.79 42.74 42.69 42.63 42.58
    粗脂肪 Crude Lipid (%, dry matter) 13.42 13.40 13.38 13.37 13.35
    水分 Moisture (%, dry matter) 10.15 10.76 11.24 10.98 11.32
    灰分 Ash (%, dry matter) 8.53 8.65 8.33 8.71 8.39
    半胱氨酸 Cysteine 0.52 0.82 1.13 1.45 1.84
    注:① 维生素预混料提供以下 (每千克):维生素 A 8×106 IU,维生素 D3 2×106 IU,维生素 E 40 000 mg,维生素 B 17 000 mg,维生素 B6 12 000 mg,维生素 B12 100 mg,维生素 K3 10 000 mg,D-泛酸 35 000 mg,叶酸 1 000 mg,烟酰胺 90 000 mg,生物素 200 mg,肌醇 80 000 mg;② 矿物混合物提供以下 (每千克):铁 10 000 mg,铜 1 200 mg,锌 7 000 mg,锰 5 500 mg,钴 250 mg,碘 250 mg,硒 50 mg,钾 60 000 mg,钠 24 000 mg,镁 60 000 mg;③ 营养水平为实测值。 Note: ① Vitamin mix provides the following (Per kilogram): vitamin A 8×106 IU, vitamin D3 2×106 IU, vitamin E 40 000 mg, vitamin B 17 000 mg, vitamin B6 12 000 mg, vitamin B12 100 mg, vitamin K3 10 000 mg, D-pantothenic acid 35 000 mg, folic acid 1 000 mg, nicotinamide 90 000 mg, Biotin 200 mg, inositol 80 000 mg. ② Mineral provides the following (Per kilogram content): Fe 10 000 mg, Cu 1 200 mg, Zn 7 000 mg, Mn 5 500 mg, Co 250 mg, I2 250 mg, Se 50 mg, K 60 000 mg, Na 24 000 mg, Mg 60 000 mg; ③ Nutrition level is measured.
    下载: 导出CSV

    表  2   每 100 g 实验日粮的氨基酸组成

    Table  2   Amino acid composition of per 100 g          experimental diets        g

    氨基酸
    Amino acid
    半胱氨酸添加量
    Added amount of cysteine
    C0 (0)C1 (0.3%)C2 (0.6%)C3 (0.9%)C4 (1.2%)
    天冬氨酸 Aspartic acid 4.35 4.39 4.24 4.31 4.45
    苏氨酸 Threonine 1.90 2.02 2.11 1.91 2.02
    丝氨酸 Serine 2.04 2.05 2.04 2.12 2.05
    谷氨酸 Glutamic acid 8.41 8.66 8.69 8.36 8.62
    甘氨酸 Glycine 3.04 3.10 3.02 2.98 3.08
    丙氨酸 Alanine 3.06 3.09 3.06 2.95 3.07
    脯氨酸 Proline 3.21 3.13 3.04 3.16 3.13
    缬氨酸 Valine 2.13 2.11 2.07 2.12 2.11
    蛋氨酸 Methionine 1.18 1.15 1.12 1.31 1.12
    异亮氨酸 Isoleucine 1.77 1.84 1.84 1.82 1.80
    亮氨酸 Leucine 4.42 4.50 4.42 4.41 4.39
    酪氨酸 Tyrosine 1.27 1.30 1.31 1.29 1.22
    苯丙氨酸 Phenylalanine 2.24 2.32 2.25 2.37 2.25
    赖氨酸 Lysine 3.54 3.43 3.50 3.54 3.50
    组氨酸 Histidine 1.11 1.13 1.12 1.07 1.15
    精氨酸 Arginine 3.15 3.10 3.14 3.15 3.11
    半胱氨酸 Cysteine 0.52 0.82 1.13 1.45 1.84
    下载: 导出CSV

    表  3   qPCR 引物序列

    Table  3   qPCR primer sequences

    引物
    Primer
    引物序列 (5'—3')
    Primer sequence (5'–3')
    来源
    Source
    FAS-F GATGGATACAAAGAGCAAGG [19]
    FAS-R GTGGAGCCGATAAGAAGA
    PPARγ-F TCAGGGTTTCACTATGGCGT [19]
    PPARγ-R CTGGAAGCGACAGTATTGGC
    ACC-F GTTGTCAATCCCAGCCGATC [19]
    ACC-R ATCCACAATGTAGGCCCCAA
    PPARα-F AATCTCAGCGTGTCGTCTT [19]
    PPARα-R GGAAATGCTTCGGATACTTG
    CPT1-F CTTTAGCCAAGCCCTTCATC [19]
    CPT1-R CACGGTTACCTGTTCCCTCT
    HSL-F TCATACCTCCACACCAACCC [19]
    HSL-R GTCTCGCAGTTTCTTGGCAA
    PI3K-F AACGGCAAGAGCAAGAAGGGC [20]
    PI3K-R CTATGGGCAGGCAGAGGAGGG
    4E-BP1-F ACACCCCAGCAGGAACTTT [19]
    4E-BP1-R GTGACCATCAACGACGCAG
    TOR-F GGGTCTTATGAGCCAGTGCCAGG [19]
    TOR-R CTTCAGGGTTGTCAGCGGATTGT
    S6K-F GCTGGCTGGCTTTACTCCATTTG [20]
    S6K-R CCTGCCTAGCAGTCAGTCTCTGA
    EF-1α-F AAGCCAGGTATGGTTGTCAACTTT [21]
    EF-1α-R CGTGGTGCATCTCCACAGACT
    下载: 导出CSV

    表  4   每 100 g 全鱼常规营养组成

    Table  4   Conventional nutritional composition of per 100 g whole fish g

    成分
    Component
    半胱氨酸添加量 Added amount of cysteine
    C0 (0)C1 (0.3%)C2 (0.6%)C3 (0.9%)C4 (1.2%)
    粗蛋白 Crude protein 15.27±0.32a 16.40±0.41ab 17.80±0.50bc 18.13±0.81c 16.83±0.58bc
    粗脂肪 Crude lipid 6.77±0.35 7.13±0.21 6.60±0.30 6.63±0.15 6.43±0.35
    水分 Moisture 69.10±0.26a 71.23±0.15b 71.33±0.98bc 71.30±0.87bc 72.93±0.42c
    灰分 Ash 3.07±0.06 3.10±0.10 3.13±0.06 3.07±0.06 3.07±0.06
    注:同行数据不同字母上标表示差异显著 (P<0.05)。 Note: Values with different superscript letters within the same line are significantly different (P<0.05).
    下载: 导出CSV
  • [1] 李宁宇, 刘利平, 华雪铭, 等. 豆粕影响日本鳗鲡黑仔鳗饲料中发酵豆粕对鱼粉的替代效果: 生长、抗氧化能力以及生化指标[J]. 海洋渔业, 2020, 42(3): 352-364. doi: 10.3969/j.issn.1004-2490.2020.03.011
    [2] 冯建, 王萍, 何娇娇, 等. 发酵豆粕替代鱼粉对大黄鱼幼鱼生长性能、体成分、血清生化指标及肝脏组织形态的影响[J]. 动物营养学报, 2016, 28(11): 3493-3502. doi: 10.3969/j.issn.1006-267x.2016.11.016
    [3]

    GUIMARÃES I G, PEZZATO L E, BARROS M M. Amino acid availability and protein digestibility of several protein sources for Nile tilapia, Oreochromis niloticus[J]. Aquac Nutr, 2008, 14(5): 396-404. doi: 10.1111/j.1365-2095.2007.00540.x

    [4] 崔锡帅. 鸡肉粉、黑水虻幼虫粉和乙醇梭菌蛋白替代鱼粉对暗纹东方鲀生长性能、蛋白代谢及相关基因表达的影响[D]. 上海: 上海海洋大学, 2022: 25.
    [5]

    XIE S C, ZHOU Q C, ZHANG X S, et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus)[J]. Aquaculture, 2022, 549: 737820. doi: 10.1016/j.aquaculture.2021.737820

    [6]

    HE Y F, CHI S Y, TAN B P, et al. dl-Methionine supplementation in a low-fishmeal diet affects the TOR/S6K pathway by stimulating ASCT2 amino acid transporter and insulin-like growth factor-I in the dorsal muscle of juvenile cobia (Rachycentron canadum)[J]. Brit J Nutr, 2019, 122(7): 734-744. doi: 10.1017/S0007114519001648

    [7]

    de MOURA L B, DIÓGENES A F, CAMPELO D A V, et al. Nutrient digestibility, digestive enzymes activity, bile drainage alterations and plasma metabolites of meagre (Argyrosomus regius) feed high plant protein diets supplemented with taurine and methionine[J]. Aquaculture, 2019, 511(15): 734231.

    [8]

    LI S H, LUO X, LIAO Z B, et al. Additional supplementation of sulfur-containing amino acids in the diets improves the intestinal health of turbot fed high-lipid diets[J]. Fish Shellfish Immunol, 2022, 130: 368-379. doi: 10.1016/j.fsi.2022.09.015

    [9]

    RICHARD N, COLEN R, ARAGÃO C. Supplementing taurine to plant-based diets improves lipid digestive capacity and amino acid retention of Senegalese sole (Solea senegalensis) juveniles[J]. Aquaculture, 2017, 468(1): 94-101.

    [10]

    ESPE M, RUOHONEN K, EL-MOWAFI A. Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar)[J]. Aquac Res, 2012, 43(3): 349-360. doi: 10.1111/j.1365-2109.2011.02837.x

    [11]

    LIU J X, ZHU K C, GUO H Y, et al. Effects of cysteine addition to low-fishmeal diets on the growth, anti-oxidative stress, intestine immunity, and Streptococcus agalactiae resistance in juvenile golden pompano (Trachinotus ovatus)[J]. Front Immunol, 2022, 13: 1066936. doi: 10.3389/fimmu.2022.1066936

    [12]

    ELAHI U, WANG J, MA Y B, et al. The response of broiler chickens to dietary soybean meal reduction with glycine and cysteine inclusion at marginal sulfur amino acids (SAA) deficiency[J]. Animals, 2020, 10(9): 1686. doi: 10.3390/ani10091686

    [13]

    CANDEBAT C L, STEPHENS F, BOOTH M A, et al. Adequate levels of dietary sulphur amino acids impart improved liver and gut health in juvenile yellowtail kingfish (Seriola lalandi)[J]. Brit J Nutr, 2022, 129(8): 1289-1312.

    [14]

    NORDRUM S, KROGDAHL Å, RØSJØ C, et al. Effects of methionine, cysteine and medium chain triglycerides on nutrient digestibility, absorption of amino acids along the intestinal tract and nutrient retention in Atlantic salmon (Salmo salar L.) under pair-feeding regime[J]. Aquaculture, 2000, 186(3): 341-360.

    [15]

    GAO J, LIU M J, GUO H Y, et al. ROS Induced by Streptococcus agalactiae activate inflammatory responses via the TNF-α/NF-κB signaling pathway in golden pompano Trachinotus ovatus (Linnaeus, 1758)[J]. Antioxidants, 2022, 11(9): 1809. doi: 10.3390/antiox11091809

    [16]

    LIU J X, GUO H Y, ZHU K C, et al. Effects of exogenous taurine supplementation on the growth, antioxidant capacity, intestine immunity, and resistance against Streptococcus agalactiae in juvenile golden pompano (Trachinotus ovatus) fed with a low-fishmeal diet[J]. Front Immunol, 2022, 13: 1036821. doi: 10.3389/fimmu.2022.1036821

    [17]

    LIU M J, GUO H Y, ZHU K C, et al. Effects of acute ammonia exposure and recovery on the antioxidant response and expression of genes in the Nrf2-Keap1 signaling pathway in the juvenile golden pompano (Trachinotus ovatus)[J]. Aquat Toxicol, 2021, 240: 105969. doi: 10.1016/j.aquatox.2021.105969

    [18]

    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262

    [19]

    QIN Y W, HE C Q, GENG H Y, et al. Muscle nutritive metabolism changes after dietary fishmeal replaced by cottonseed meal in golden pompano (Trachinotus ovatus)[J]. Metabolites, 2022, 12(7): 576. doi: 10.3390/metabo12070576

    [20]

    ZHOU C P, HUANG Z, LIN H Z, et al. Effects of dietary leucine on glucose metabolism, lipogenesis and insulin pathway in juvenile golden pompano Trachinotus ovatus[J]. Aquac Rep, 2021, 19: 100626. doi: 10.1016/j.aqrep.2021.100626

    [21]

    LIU M J, GUO H Y, LIU B, et al. Gill oxidative damage caused by acute ammonia stress was reduced through the HIF-1α/NF-κb signaling pathway in golden pompano (Trachinotus ovatus)[J]. Ecotox Environ Safe, 2021, 222: 112504. doi: 10.1016/j.ecoenv.2021.112504

    [22]

    MÉTAYER S, SEILIEZ I, COLLIN A, et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status[J]. J Nutr Biochem, 2008, 19(4): 207-215. doi: 10.1016/j.jnutbio.2007.05.006

    [23]

    ZHANG H, LUO Y, LU D L, et al. Diacylglycerol oil reduces fat accumulation and increases protein content by inducing lipid catabolism and protein metabolism in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2019, 510: 90-99. doi: 10.1016/j.aquaculture.2019.05.035

    [24]

    TONG S L, WANG L, KALHORO H, et al. Effects of supplementing taurine in all-plant protein diets on growth performance, serum parameters, and cholesterol 7α-hydroxylase gene expression in black sea bream, Acanthopagrus schlegelii[J]. J World Aquac Soc, 2020, 51(4): 990-1001. doi: 10.1111/jwas.12611

    [25]

    EL DALY E S. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats[J]. J Pharm Belg, 1998, 53(2): 87-93.

    [26]

    DONATO D C Z, SAKOMURA N K, SILVA E P, et al. Manipulation of dietary methionine+cysteine and threonine in broilers significantly decreases environmental nitrogen excretion[J]. Animal, 2016, 10(6): 903-910. doi: 10.1017/S175173111500289X

    [27] 周乐, 常晨城, 王宇, 等. PI3K/Akt/mTOR信号通路调控牛细胞生长作用的研究进展[J]. 饲料研究, 2022, 45(9): 138-142.
    [28] 徐稳. 日粮补充亮氨酸调控IUGR仔猪蛋白质代谢及胰岛素信号通路相关基因的机制研究[D]. 南京: 南京农业大学, 2017: 69.
    [29] 冯文荣, 冯伟, 张明胤, 等. 中华绒螯蟹4E-BP1基因的克隆、表达特征及其在蜕壳中的作用[J]. 中国水产科学, 2022, 29(12): 1714-1727.
    [30]

    TIAN S J, WU Y, YUAN J, et al. Replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, feed utilization and protein metabolism of large yellow croaker Larimichthys crocea[J]. Aquac Rep, 2022, 26: 101313.

    [31]

    HAO Q, WANG L L, ZHANG M H, et al. Taurine stimulates protein synthesis and proliferation of C2C12 myoblast cells through the PI3K-ARID4B-mTOR pathway[J]. Brit J Nutr, 2021, 128(10): 1-12.

    [32]

    SHI X C, JIN A, SUN J, et al. The protein-sparing effect of α-lipoic acid in juvenile grass carp, Ctenopharyngodon idellus: effects on lipolysis, fatty acid β-oxidation and protein synthesis[J]. Brit J Nutr, 2018, 120(9): 977-987. doi: 10.1017/S000711451800226X

    [33]

    WOLBER F M, MCGRATH M, JACKSON F, et al. Cysteic acid in dietary keratin is metabolized to glutathione and liver taurine in a rat model of human digestion[J]. Nutrients, 2016, 8(2): 104. doi: 10.3390/nu8020104

    [34]

    LIU X, DENG H Y, XU Q Q, et al. Effects of tea tree essential oil supplementation in low fish meal diet on growth, lipid metabolism, anti-oxidant capacity and immunity of largemouth bass (Micropterus salmoides)[J]. Aquac Rep, 2022, 27: 101380. doi: 10.1016/j.aqrep.2022.101380

    [35] 史晓晨. 硫辛酸对草鱼脂质代谢、蛋白质代谢及其抗氧化能力影响的研究[D]. 咸阳: 西北林科技大学, 2018: 45.
    [36] 张幸开. 维生素A对肉牛肌内脂肪沉积及ACC/HSLPPARγ基因表达的影响[D]. 咸阳: 西北农林科技大学, 2005: 35-45.
    [37]

    WANG X X, BAI F K, NIU X J, et al. The lipid-lowering effect of dietary taurine in orange-spotted groupers (Epinephelus coioides) involves both bile acids and lipid metabolism[J]. Front Mar Sci, 2022, 9: 859428. doi: 10.3389/fmars.2022.859428

    [38]

    HAJ-YASEIN N N, BERG O, JERNERÉN F, et al. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells[J]. BBA-Mol Cell Biol L, 2017, 1862(6): 623-635.

    [39] 郭亚男, 杨茹艳, 张芷毓, 等. Mstn基因干扰通过上调基因Cpt1b促进肌间脂肪的β氧化[J]. 生物工程学报, 2022, 38(8): 3076-3089.
    [40]

    SHEN J, SUN B F, YU C, et al. Choline and methionine regulate lipid metabolism via the AMPK signaling pathway in hepatocytes exposed to high concentrations of nonesterified fatty acids[J]. J Cell Biochem, 2020, 121(8/9): 3667-3678.

图(5)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-03-29
  • 录用日期:  2023-04-12
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-08-04

目录

/

返回文章
返回