鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究

邵燕秋, 黄卉, 李来好, 杨贤庆, 陈胜军, 郝淑贤, 吴燕燕, 岑剑伟, 邓尚贵

邵燕秋, 黄卉, 李来好, 杨贤庆, 陈胜军, 郝淑贤, 吴燕燕, 岑剑伟, 邓尚贵. 鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究[J]. 南方水产科学, 2022, 18(6): 137-145. DOI: 10.12131/20210358
引用本文: 邵燕秋, 黄卉, 李来好, 杨贤庆, 陈胜军, 郝淑贤, 吴燕燕, 岑剑伟, 邓尚贵. 鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究[J]. 南方水产科学, 2022, 18(6): 137-145. DOI: 10.12131/20210358
SHAO Yanqiu, HUANG Hui, LI Laihao, YANG Xianqing, CHEN Shengjun, HAO Shuxian, WU Yanyan, CEN Jianwei, DENG Shanggui. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)[J]. South China Fisheries Science, 2022, 18(6): 137-145. DOI: 10.12131/20210358
Citation: SHAO Yanqiu, HUANG Hui, LI Laihao, YANG Xianqing, CHEN Shengjun, HAO Shuxian, WU Yanyan, CEN Jianwei, DENG Shanggui. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)[J]. South China Fisheries Science, 2022, 18(6): 137-145. DOI: 10.12131/20210358

鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究

基金项目: 国家现代农业产业技术体系资助 (CARS-46);“扬帆计划”引进创新创业团队专项 (2015YT02H109);广东省重点领域研发计划项目 (2019B020225001);中国水产科学研究院基本科研业务费专项资金 (2020TD69, 2020TD73)
详细信息
    作者简介:

    邵燕秋 (1994—),女,硕士研究生,研究方向为食品加工与贮藏工程。E-mail: 1802643584@qq.com

    通讯作者:

    黄 卉 (1980—),女,副研究员,博士,研究方向为水产品加工与质量安全。E-mail: huanghuigd@aliyun.com

    邓尚贵 (1966—),男,教授,博士,研究方向为水产品加工与贮藏。E-mail: dengshanggui@163.com

  • 中图分类号: TS 201.2

Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)

  • 摘要: 为研究鳗鱼加工副产物的综合利用,以鳗鱼骨胶原蛋白为原料,采用酶解法制备血管紧张素转化酶 (Angiotensin-converting enzyme, ACE) 抑制肽。以ACE抑制活性和水解度为评价指标,通过单因素和响应面试验确定最佳的酶解制备条件,并分析酶解产物的分子质量分布和氨基酸组成。结果显示,碱性蛋白酶为最适水解酶,最佳酶解条件为:温度50 ℃,质量浓度15 g·L–1,酶解时间5.25 h,加酶量3.1% (质量分数),pH 9.2。在此条件下,鳗鱼胶原蛋白肽的ACE抑制活性为70.33%,与预测值接近;酶解产物中分子质量小于1 kD的肽占57.02%,1~3 kD的肽占36.55%;氨基酸组成分析表明,酶解产物中与ACE抑制活性有关的疏水性氨基酸 (如脯氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸) 含量增加。
    Abstract: To study the comprehensive utilization of by-products from eel processing, the angiotensin-converting enzyme inhibitory peptide was prepared from eel (Anguilla japonica) bone collagen by enzymatic hydrolysis. The ACE inhibitory activity and degree of hydrolysis were used as evaluation indexes, we determined the optimal hydrolysis conditions by single factor and response surface experiments. Furthermore, the amino acid composition and molecular mass distribution of the hydrolysate prepared under the optimized conditions were determined. The results show that alkaline protease was the optimal enzyme, and the optimal hydrolysis conditions were as follows: temperature of 50 ℃, mass concentration of 15 g·L−1, hydrolysis time of 5.25 h, enzyme dosage of 3.1% (Mass fraction) and pH of 9.2. Under these conditions, the ACE inhibitory activity was 70.33%, which was close to the predicted value. The molecular weight of peptides below 1 000 D and 1 000–3 000 D in enzymatic hydrolysate accounted for 57.02% and 36.55%, respectively. Amino acid composition analysis shows that the content of hydrophobic amino acids related to ACE inhibition activities (Such as Pro、Val、Ile、Leu、Phe) increased.
  • 耳石是真骨鱼类内耳中的一种硬组织,其形态结构常被用作物种鉴定[1-2]、摄食研究[3-4]、群体区分[5-6]等的重要工具。目前耳石形态学分析方法主要分为传统的框架分析法[7-9]和几何形态测量学法,后者又根据研究方式的不同进一步分为研究耳石轮廓的傅里叶分析法[10-12]以及基于笛卡尔地标的地标点法[13-15]。与其他形态学研究方法不同,地标点法工作的重点和难点在于地标点的选取,因此它除了可以分析轮廓上的特征外,还能就轮廓内部的地标点(如不同组织的分界点)进行分析和研究,并能以网格图的形式直观地显示出种间、甚至种内不同群体形态特征的差异变化[16-17],同时还能分析这些形态变化上的动态趋势[18]。由于地标点法能够有效地把握研究对象形态上的特征差异,所以即使样本量较小(n≤10),依旧可以明显地反映出不同群体的形态特征差异[17,19-20]。然而,目前地标点法应用于耳石的研究较少,现有的耳石地标点法的研究多集中于耳石轮廓上的地标点,而对于耳石近轴面,特别是主凹槽(也称“听沟”)的形态特征端点研究报道较少[14,16]

    凤鲚(Coilia mystus)和七丝鲚(C. grayii)属鲚属,是我国南部九龙江口、珠江口等河口水域的重要经济鱼类。我国分布的鲚属鱼类除这2种外,还有刀鲚(C. nasus)。遗传学分析结果显示,这3种鲚属鱼类中以凤鲚最为原始,而其余2种均很可能为后期演化过程中适应了不同气候环境而分化出来的物种[21-22]。作为洄游性鱼类,凤鲚[23]和七丝鲚[24]亲鱼均会选择通海江河作为其产卵场,而幼鱼则顺流而下回到河口半咸水甚至海水中生长、育肥。由此可见,其对应河口的资源群体与海区群体存在关联性,前者对后者存在资源补充的重要作用。值得注意的是,洄游的习性为鱼类提供了更为广阔的活动范围与栖息环境,同时也会使相关种类因栖息地环境的变化而衍生出新的群体[25]。同属的刀鲚即存在这种情况,除了洄游群体外,其在长江流域的太湖、鄱阳湖等水域存在淡水定居或陆封群体[23,26]。此外,即使在洄游型刀鲚群体的内部也会因产卵、孵化起源的河流不同,而分化为不同群体[27]。这种倾向于回到原来孵化场的产卵繁殖洄游的行为被称为“回归”行为[25]。因此,笔者假设九龙江和珠江的凤鲚群体间和七丝鲚群体间可能分属不同地理资源群。为了验证这一假说,同时为了解两者耳石形态的种间和种内差异,笔者以2个水域的凤鲚和七丝鲚的耳石形态作为切入点,对其差异性进行了较为深入的比较研究。

    笔者前期曾利用框架分析法研究过我国刀鲚、凤鲚、湖鲚(C. nasus taihunesis)的耳石形态特征,发现了湖鲚耳石形态与洄游型刀鲚有明显差异,同时瓯江刀鲚与长江口及周边黄海海域的刀鲚耳石形态有明显差异,表现为不同的群体特征[28]。由此可见,耳石形态学分析方法对我国鲚属鱼类的种间(刀鲚和凤鲚)和种内(湖鲚以及不同水域刀鲚)判别均具有较好的效果。然而,在随后的研究中,笔者同样利用框架法研究了刀鲚、短颌鲚(C. brachygnathus,刀鲚的一个淡水生态型)、凤鲚以及七丝鲚,结果发现该法在凤鲚和七丝鲚间发生了较多的误判[29]。鉴于此,本研究首次采用更能反映几何学差异的地标点法,来比较采集自珠江口和九龙江口凤鲚和七丝鲚的耳石形态特征,以期探究凤鲚和七丝鲚种间耳石形态的差异特征,为鲚属鱼类耳石形态学研究引入新的研究方法,以突破其他耳石形态学研究方法较难辨析同种不同群体或者生态类群的现状;另外也希望掌握珠江口和九龙江口同种鲚属鱼类不同地理群体间耳石形态的种内差异特征,并尝试分析不同地理群体间的关联性,以验证它们是否分属不同的地理资源群体。本研究结果也可为建立基于耳石地标学法的鲚属鱼类群体的识别技术体系,以及将其更广泛地应用于其他经济、珍稀、名贵鱼类群体资源的准确识别和合理评价提供新途径。

    于2016年8月在珠江口分别采集10尾凤鲚[全长(17.7±1.0) cm、体质量(16.0±2.3) g] 标本和10尾七丝鲚 [全长(19.4±1.5) cm、体质量(24.0±5.9) g] 标本,另于2016年9月在九龙江口分别采集10尾凤鲚 [全长(17.8±9.0) cm、体质量(14.8±2.4) g] 和10尾七丝鲚标本 [全长(20.2±1.8) cm、体质量(22.3±7.5) g] (图1)。标本采集后于– 20 ℃保存并运回实验室。

    图  1  珠江口 (SⅠ) 和九龙江口 (SⅡ) 凤鲚和七丝鲚采样点
    Figure  1.  Sampling sites of C. mystus and C. grayii in Pearl River estuary (SⅠ) and Jiulong River estuary (SⅡ)

    解剖鱼标本并摘取矢耳石。使用去离子水和乙醇去除耳石表面有机质,随后于室温下干燥保存待用。待耳石干燥后,将其以最长轴水平方向放置于电子显微镜(QX800HD720P3D,ASONE株式会社,日本)下,拍摄耳石近轴面(有主凹槽面)。

    本研究选取凤鲚和七丝鲚耳石形态上的耳石轮廓上端点(图2-1~6)和主凹槽轮廓拐点(图2-7~10)。地标点软件使用参考郑朝臣等[17],具体为利用tpsdig2.12软件根据以上选定好的地标点对耳石照片建立坐标点(图2),并获取相关坐标值建立相应数据文件;利用tipsmall 1.2软件进行最小平方和法则(least-square criterion)回归分析检验地标点选取的有效性;利用tpsRelw 1.46经普式叠加得出地标点,并对其进行一系列旋转、放大,并计算平均型(mean shape)和相对扭曲得分(relative warps scores);最后利用tpsRegr 1.36进行薄板样条分析以勾勒凤鲚和七丝鲚耳石网格图,并比较其与平均形之间的形态扭曲和变化差异。

    图  2  凤鲚 (a) 和七丝鲚 (b) 耳石地标点位置图
    Figure  2.  Landmark points for morphological measurements of C. mystus (a) and C. grayii (b)

    用SPSS 20.0对相对扭曲得分进行凤鲚和七丝鲚不同群体间的判别分析和聚类分析。

    最小平方回归分析结果显示,凤鲚和七丝鲚的切空间距离(distance in tangent space,y轴)和普式距离(procrustes distance,x轴)的回归系数为0.999,接近于1,说明本研究所选地标点有效,去除了在地标点选取时发生的位置、取向和比例等的变化。进一步分析各地标点的相对扭曲贡献率发现,虽然外部轮廓上地标点3贡献率达12.6%,但总体而言,主凹槽上地标点的贡献率(76.1%)要远高于余下的耳石外部轮廓上的地标点(23.9%,表1),说明本研究在区分不同水域凤鲚和七丝鲚耳石形态差异中,主凹槽上地标点的作用较大。凤鲚和七丝鲚种间耳石形态差异以及珠江口和九龙江口凤鲚和七丝鲚种内不同群体间形态差异均主要表现在主凹槽的末端(8、9)以及头颈部(7、10)。

    表  1  不同地标点贡献率
    Table  1.  Contribution rate of different landmarks
    地标点
    landmark
    贡献率/%
    contribution rate
    1 1.9
    2 5.3
    312.6
    4 0.7
    5 0.4
    6 3.0
    716.3
    819.3
    930.7
    10 9.8
    下载: 导出CSV 
    | 显示表格

    为了更好地分析不同水域凤鲚和七丝鲚耳石形态特征差异,在利用tpsRegr 1.36软件进行平均形计算后,对结果进行绝对扭曲、回归分析和置换检验,对最后的结果进行网格化和差异矢量化处理,并将结果进行10倍放大。通过网格图不难发现,凤鲚和七丝鲚间耳石轮廓上的地标点4和6区别较明显,具体为凤鲚较七丝鲚地标点4更向内而地标点6更向外,表现在耳石形态上即七丝鲚翼叶部分较凤鲚更向外凸出,而凤鲚较七丝鲚耳石腹部更向外凸出。而在主凹槽轮廓上,凤鲚耳石上地标点7、8、9、10均较七丝鲚向外变化,表现为前者主凹槽更宽(图3)。

    图  3  珠江口和九龙江口凤鲚及七丝鲚耳石形态判别分析及网格变形图与变异可视化 (变异扩大10倍)
    a1. 九龙江七丝鲚(□);a2. 九龙江凤鲚(◇);b1. 珠江七丝鲚(△);b2. 珠江凤鲚(○);×. 组质心
    Figure  3.  Discriminate analysis plots, grid deformation and variation visualization of otolith for C. mystus (CM) and C. grayii (CG) (variation enlarged 10 times)
    a1. C. grayii from the Jiulong River estuary (□); a2. C. mystus from the Jiulong River estuary (◇); b1. C. grayii from the Pearl River estuary (△); b2. C. mystus from the Pearl River estuary (○); ×. group center

    比较不同水域同种鱼类耳石形态可以发现珠江口的凤鲚和七丝鲚较九龙江的凤鲚和七丝鲚耳石形态变化更为明显,特别是地标点6和8;表现为珠江的七丝鲚翼叶要较九龙江明显,而凤鲚则相反;珠江的七丝鲚主凹槽较九龙江更窄,而珠江凤鲚则较九龙江凤鲚更宽(图3)。进一步利用16个相对扭曲得分建立判别函数,结果显示4个群体间差异较为明显(图3),判正率为100%,不存在误判个体(表2)。

    表  2  珠江口和九龙江口凤鲚和七丝鲚耳石形态判别分析结果
    Table  2.  Discriminate analysis for otolith of C. mystus (CM) and C. grayii (CG) from Pearl River estuary (PRE) and Jiulong River estuary (JRE)
    实际组
    actual group
    预测组 (判正率) prediction group (accuracy rate)
    九龙江口七丝鲚
    CG from JRE
    九龙江口凤鲚
    CM from JRE
    珠江口七丝鲚
    CG from PRE
    珠江口凤鲚
    CM from PRE
    九龙江口七丝鲚 CG from JRE10 (100%)000
    九龙江口凤鲚 CM from JRE010 (100%)00
    珠江七口丝鲚 CG from PRE0010 (100%)0
    珠江口凤鲚 CM from PRE00010 (100%)
    下载: 导出CSV 
    | 显示表格

    层次聚类结果显示,本研究中4个鲚属群体间,珠江口凤鲚和九龙江口凤鲚聚为第一小类,其个体的平方欧式距离为0.01;而珠江口七丝鲚和九龙江口七丝鲚聚为第二小类,其个体的平方欧式距离为0.03;凤鲚和七丝鲚两者间平方欧式距离则为0.06 (图4)。

    图  4  珠江口和九龙江口凤鲚和七丝鲚耳石形态聚类分析结果
    Figure  4.  Dendrogram for hierarchical cluster analysis by otolith morphology of C. mystus and C. grayii from Pearl River estuary and Jiulong River estuary

    在鱼类资源调查和保护工作中,群体识别工作十分重要。在洄游习性的作用下,不同地理群体的个体往往会发生交流,特别是具有海洋生活史的鱼类,其在幼鱼阶段可以通过扩散作用将很大范围内的群体互相关联[30-32];换言之,空间上不同水域的鱼类资源,其部分群体的起源往往来自相同群体,不同群体间由于资源补充的作用而互相关联。虽然遗传学手段已被证实为研究物种分类的一种十分有效的手段,然而受限于遗传水平需较长时间才会形成足够的差异[33],故在一些遗传分化不明显的群体上并不十分有效。而对于这部分群体的研究,形态学分析则显得更具优势。由于其同时受到遗传和环境因子的共同作用[34],某种意义上形态学特征更能反映出不同地理群体间的差异。然而,由于传统形态学研究手段的限制,研究对象所含的形态学信息无法充分提取出来,从而使得形态学判别效果不及其他判别方法[35-36]。随着科学技术的进步,特别是傅里叶法和地标点法的加入,形态学研究也得到了长足的发展。前者可用于提取研究对象较全面的轮廓信息,后者则针对研究对象的某些特征地标点深入分析,才使得前述局限大为改观。本研究利用地标点法对珠江口和九龙江口的凤鲚和七丝鲚的耳石形态进行分析和研究,并探究其群体结构和关联性,结果明显显示相较于耳石轮廓上的地标点,其主凹槽上的地标点更能反映出2种鲚属鱼类不同群体间的差异。尤其值得注意的是,虽然本研究样本量较少,但通过比较前人类似样本量受限的研究报道[17,19-20],笔者认为本研究所用样本量亦能够反映出不同群体的差异;同时从结果来看,地标点法对前期利用框架法较难区分的凤鲚和七丝鲚耳石[29]均已能够有效地进行判别(判正率均达100%)。由此可见,在基于耳石形态的鱼类种群识别上,地标点法具有传统形态学研究方法不可比拟的优势。

    主凹槽是鱼类耳石表面的凹槽,其主要作用是连接听觉神经与耳石,并被证实可以用来作为鱼类种间和种内形态分析的重要工具[37]。本研究发现,凤鲚与七丝鲚主凹槽形态差异明显,主要表现为凤鲚较七丝鲚更宽,而在种间不同地理群体间,珠江个体比九龙江个体的变异程度更大,具体表现为珠江的七丝鲚主凹槽较九龙江更窄,但珠江凤鲚则较九龙江凤鲚更宽。值得注意的是,与多选择河口以及通海河流等作为栖息地的七丝鲚相比[24],凤鲚更多选择河口以及离岸较远的高盐度海水栖息[23]。由此可见,耳石上主凹槽的发达程度或许与其洄游履历的复杂程度有一定相关性。类似情况也可从种内不同地理群体间的比较中发现,珠江口较九龙江口更宽,地理条件更为复杂,是以倾向于河口及外海栖息的凤鲚群体内珠江口群体的耳石主凹槽较九龙江口群体更宽;而又由于珠江较九龙江河口更宽、流量更大,所以能为七丝鲚提供一个更为稳定的偏低盐度水体环境,因此与凤鲚不同群体的情况正好相反,即珠江口七丝鲚群体耳石主凹槽较九龙江口群体更窄。当然,耳石主凹槽是否与其生境履历的复杂程度有关尚待进一步证实。

    根据本研究的结果不难发现,珠江口和九龙江口2种鲚属鱼类种内不同群体间存在一定差异,判别分析结果显示判正率均达100%。相似的结果也可见于遗传学分析研究,周晓犊等[38]就长江凤鲚和珠江凤鲚的线粒体基因分析发现,两者间遗传距离较远,可能达到了种或亚种级差异水平;程起群等[39]曾就长江、闽江和珠江的凤鲚进行线粒体cyt b基因分析,发现三者间差异明显,甚至可能达亚种水平。由此可见,位于闽江更南端的九龙江口凤鲚与珠江口凤鲚群体很有可能在遗传上也发生了一定的分化,两者应属于不同的地理群体。相较于凤鲚的研究,我国七丝鲚的研究较少。在针对珠江口七丝鲚的洄游生态学研究中,笔者曾发现其生活习性更类似于刀鲚,在孵化和早期生活相当长的一段时间内仔稚鱼均需要在淡水生境(通海江河)中生活,而在随后的生活中也更多地选择靠近河口或者近岸的水域栖息[24]。因此,七丝鲚较凤鲚更易产生地理隔离,从而形成互相独立的地理群体。聚类分析结果也支持这种设想,2种鲚属鱼类间的形态差异大于种内形态差异,2种凤鲚群体间的差异要小于2种七丝鲚。

    本研究结果表明,利用地标点法能够有效地获取凤鲚和七丝鲚种间形态差异特征,未见有误判情况。2种鲚属鱼耳石形态上的差异主要表现在主凹槽,具体表现为前者较后者更宽;同时该方法对九龙江口和珠江口的种内不同地理群体也有很高的辨识效果(判正率均达100%),显示为两处水域同种鲚属鱼类应属于不同地理群体。综上所述,地标点法能够较为有效地揭示凤鲚和七丝鲚种间、种内耳石的形态差异,并可用于同种不同地理群体的识别。地标点法突破了其他形态学分析方法上对于耳石表面形态特征和轮廓特征较难综合分析的瓶颈,从新的角度为研究鲚属鱼类种间和种内群体差异提供了有效工具,并为今后在其他鱼类种群生态学研究上的应用提供了重要的基础资料和技术支持。在下一步的研究中,除了增大样本量、补充不同地理群体、增加更多的特征地标点以更全面地了解我国七丝鲚、凤鲚耳石形态特征外,今后拟将地标点法应用到更多经济、珍稀及名贵鱼类群体资源学的研究中,以期了解这些鱼类耳石形态在种间和种内群体间的特征,有效破解其资源群体关联性及种群演化方面更多的自然之谜。

    致谢:本研究九龙江口凤鲚和七丝鲚样品的收集得到了厦门大学黄邦钦教授和丁少雄教授的大力支持,谨此致谢!

  • 图  1   不同蛋白酶对ACE抑制活性的影响

    Figure  1.   Effect of different proteases on ACE inhibitory activity

    图  2   pH、加酶量、时间、胶原蛋白质量浓度对水解度和ACE抑制活性的影响

    Figure  2.   Effects of pH, enzyme dosage, enzymatic hydrolysis time and collagen mass concentration on degree of hydrolysis and ACE inhibitory activity

    图  3   各因素相互作用对ACE抑制活性的响应面及等高线图

    Figure  3.   Response surface and contour lines of various factors on ACE inhibitory activity

    图  4   鳗鱼骨胶原蛋白酶解产物的高效体积排阻色谱图 (a) 及分子质量分布图 (b)

    Figure  4.   HPSEC chromatogram (a) of hydrolysates of eel bone collagen and its molecular weight distribution (b)

    表  1   5种蛋白酶的最适酶解条件

    Table  1   Optimal enzymatic hydrolysis conditions of five proteases

    蛋白酶
    Protease
    温度
    Temperature/℃
    pH
    木瓜蛋白酶 Papain 55 7.6
    碱性蛋白酶 Alcalase 50 9.0
    中性蛋白酶 Neutrase 45 7.0
    胰蛋白酶 Trypsin 50 7.5
    胃蛋白酶 Pepsin 37 2.0
    下载: 导出CSV

    表  2   响应面试验因素水平表

    Table  2   Response surface test factors and levels

    水平
    Level
    因素 Factor
    A:酶解时间
    Enzymatic hydrolysis time/h
    B:加酶量
    Enzyme dosage/%
    C:pH
    −1 4 2 8
    0 5 3 9
    1 6 4 10
    下载: 导出CSV

    表  3   响应面试验设计和结果

    Table  3   Design and results of response surface experiment

    编号
    No.
    A:酶解时间
    Enzymatic
    hydrolysis
    time/h
    B:加酶量
    Enzyme
    dosage/%
    C:pH ACE抑制率
    ACE
    inhibitory
    rate/%
    1 –1 1 0 40.83
    2 0 1 –1 62.17
    3 –1 0 –1 34.38
    4 0 0 0 73.55
    5 0 0 0 68.16
    6 1 1 0 57.42
    7 0 0 0 72.82
    8 –1 0 1 51.8
    9 –1 –1 0 39.67
    10 0 –1 –1 59.4
    11 0 0 0 70.05
    12 1 –1 0 51.77
    13 0 0 0 72.75
    14 0 1 1 62.76
    15 1 0 –1 65.43
    16 1 0 1 62.73
    17 0 –1 1 60.83
    下载: 导出CSV

    表  4   回归模型方差分析

    Table  4   Variance analysis of regression model

    方差来源
    Variance source
    自由度
    df
    平方和
    SS
    F P
    模型 Model 9 2 236.3 27.19 0.000 1***
    A:时间 Time 1 624.63 68.36 <0.000 1***
    B:加酶量
    Enzyme dosage
    1 16.56 1.81 0.220 2
    C:pH 1 35.11 3.84 0.090 8
    AB 1 5.04 0.551 6 0.481 9
    AC 1 101.4 11.1 0.012 6*
    BC 1 0.176 4 0.019 3 0.893 4
    A2 1 1 062.69 116.3 <0.000 1***
    B2 1 281.51 30.81 0.000 9***
    C2 1 17.17 1.88 0.212 8
    残差 Residual 7 63.96
    失拟项 Lack of fit 3 42.93 2.72 0.179
    纯误差 Pure error 4 21.04
    总和 Cor total 16 2 300.27
    注:***. 差异极显著 (P<0.001);**. 差异较显著 (P<0.01);*. 差异显著 (P<0.05)。 Note: ***. Extremely significant difference (P<0.001); **. Very significant difference (P<0.01); *. Significant difference (P<0.05).
    下载: 导出CSV

    表  5   鳗鱼胶原蛋白氨基酸组成

    Table  5   Amino composition of collagen from eel bone

    氨基酸   
    Amino acid   
    氨基酸质量分数
    Amino acid mass fraction/%
    胶原蛋白
    Collagen
    酶解产物
    Enzymatic hydrolysis product
    天门冬氨酸 Asp 7.23 6.87
    苏氨酸 Thr 2.04 2.24
    丝氨酸 Ser 4.8 4.37
    谷氨酸 Glu 11.79 11.29
    脯氨酸 Pro* 10.72 11.25
    甘氨酸 Gly 22.79 20.11
    丙氨酸 Ala* 12.21 11.52
    半胱氨酸 Cys 0.11
    缬氨酸 Val* 1.24 2.04
    蛋氨酸 Met* 0.99 0.38
    异亮氨酸 Ile* 0.55 1.42
    亮氨酸 Leu* 2.31 3.21
    酪氨酸 Tyr 0.64 0.94
    苯丙氨酸 Phe* 1.89 2.49
    赖氨酸 Lys 2.94 3.79
    组氨酸 His 1.29 1.59
    精氨酸 Arg 8.98 9.37
    羟脯氨酸 Hyp 7.48 7.12
    疏水性氨基酸总量
    Hydrophobic amino acid
    29.91 32.31
    注:*. 疏水性氨基酸。 Note: *. Hydrophobic amino acid.
    下载: 导出CSV
  • [1]

    FAN Y, YU Z P, ZHAO W Z, et al. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin[J]. Food Sci Hum Well, 2020, 9(3): 257-263. doi: 10.1016/j.fshw.2020.04.001

    [2]

    SUN S Q, XU X T, SUN X, et al. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis[J]. Mar Drugs, 2019, 17(3): 179. doi: 10.3390/md17030179

    [3]

    LIAO P Y, LAN X D, LIAO D K, et al. Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from the enzymatic hydrolysate of carapax trionycis (the shell of the turtle Pelodiscus sinensis)[J]. J Agric Food Chem, 2018, 66(27): 7015-7022. doi: 10.1021/acs.jafc.8b01558

    [4] 于志鹏, 赵文竹, 刘博群, 等. 血管紧张素转化酶抑制肽研究进展[J]. 食品科学, 2010, 31(11): 308-311.
    [5]

    GAO D D, ZHANG F M, MA Z R, et al. Isolation and identification of the angiotensin-I converting enzyme (ACE) inhibitory peptides derived from cottonseed protein: optimization of hydrolysis conditions[J]. Int J Food Prop, 2019, 22(1): 1296-1309. doi: 10.1080/10942912.2019.1640735

    [6]

    HUANG Y B, JIA F, ZHAO J S, et al. Novel ACE inhibitory peptides derived from yeast hydrolysates: screening, inhibition mechanisms and effects on HUVECs[J]. J Agr Food Chem, 2021, 69(8): 2412-2421. doi: 10.1021/acs.jafc.0c06053

    [7]

    KASIWUT J, YOURAVONG W, SIRINUPONG N. Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor[J]. J Food Biochem, 2019, 43(12): e13058.

    [8]

    DENG Z Z, LIU Y J, WANG J, et al. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive rats (SHRs)[J]. Mar Drugs, 2018, 16(9): 299. doi: 10.3390/md16090299

    [9]

    ISHAK N H, SHAIK M I, YELLAPU N K, et al. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate[J]. J Food Sci Technol, 2021, 58(12): 4567-4577. doi: 10.1007/s13197-020-04944-y

    [10]

    DEY T K, CHATTERJEE R, MANDAL R S. et al. ACE inhibitory peptides from Bellamya bengalensis protein hydrolysates: in vitro and in silico molecular assessment[J]. Processes, 2021, 9(8): 1316. doi: 10.3390/pr9081316

    [11]

    LI J P, LIU Z Y, ZHAO Y H, et al. Novel natural angiotensin converting enzyme (ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure-activity relationship[J]. Mar Drugs, 2018, 16(8): 271. doi: 10.3390/md16080271

    [12]

    CHEN J, LIU Y, WANG G, et al. Processing optimization and characterization of angiotensin-Ι-converting enzyme inhibitory peptides from lizardfish (Synodus macrops) scale gelatin[J]. Mar Drugs, 2018, 16(7): 228. doi: 10.3390/md16070228

    [13]

    YU F M, ZHANG Z W, LUO L W, et al. Identification and molecular docking study of a novel angiotensin-I converting enzyme inhibitory peptide derived from enzymatic hydrolysates of Cyclina sinensis[J]. Mar Drugs, 2018, 16(11): 411. doi: 10.3390/md16110411

    [14] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2021: 25.
    [15] 张婷婷, 赵峰, 张涛, 等. 中国鳗鱼产业发展及其资源保护建议[J]. 渔业信息与战略, 2019, 34(4): 235-243.
    [16] 钱跃威, 徐瀚麟, 吕奇晏, 等. 鳗鱼骨胶原肽钙螯合物的制备及其稳定性和Caco-2吸收特性[J]. 食品科学, 2020, 41(24): 1-8. doi: 10.7506/spkx1002-6630-20200706-078
    [17] 蔡路昀, 史航, 曹爱玲, 等. 鲽鱼骨胶原蛋白的结构及流变学特性[J]. 中国食品学报, 2020, 20(3): 66-73.
    [18]

    BALTI R, BOUGATEF A, SILA A, et al. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats[J]. Food Chem, 2015, 170: 519-525. doi: 10.1016/j.foodchem.2013.03.091

    [19] 苏盛亿. 小米ACE抑制肽的制备及其降血压活性的研究 [D]. 大连: 大连工业大学, 2019: 8-16.
    [20] 李德俊. 鱼鳞胶原蛋白肽的制备及工厂设计 [D]. 南昌: 南昌大学, 2015: 13-14.
    [21]

    GUO L D, HARNEDY P A, O'KEEFE M B, et a1. Fractionation and identification of Alaska pollock skin collagen-derived minera I chelating peptides[J]. Food Chem, 2015, 173: 536-542. doi: 10.1016/j.foodchem.2014.10.055

    [22] 张风, 夏旭, 周爱梅, 等. 虾头虾壳蛋白质酶解制备抗氧化肽的研究[J]. 南方水产科学, 2015, 11(6): 79-87. doi: 10.3969/j.issn.2095-0780.2015.06.011
    [23] 魏洁琼, 余群力, 韩玲, 等. 牛骨胶原蛋白肽制备工艺优化及抗氧化活性分析[J]. 甘肃农业大学学报, 2020, 55(5): 203-211, 218.
    [24] 朱迎春, 许小琴, 马俪珍. 鲶鱼骨酶解物的降血压肽活性研究[J]. 青岛农业大学学报 (自然科学版), 2009, 26(1): 61-65.
    [25] 李华亮, 郑雅惠, 冒小妹, 等. 鳄鱼骨胶原活性肽的制备及其抑制血管紧张素酶 (ACE) 的功能研究 [C]//中国生物化学与分子生物学会, 浙江省生物化学与分子生物学会. 中国生物化学与分子生物学会2016年全国学术会议论文集. 杭州: 中国生物化学与分子生物学会, 2016: 235.
    [26] 田海娟, 王蕾, 刘名鑫, 等. 混菌发酵紫苏粕小肽提取工艺优化及体外抗氧化活性研究[J]. 食品与发酵工业, 2021, 47(20): 219-224.
    [27] 田旭静, 段鹏慧, 范三红, 等. 响应面法优化酶解藜麦糠蛋白制备抗氧化肽工艺[J]. 食品科学, 2018, 39(10): 158-164. doi: 10.7506/spkx1002-6630-201810025
    [28] 任海伟, 石菊芬, 蔡亚玲, 等. 响应面法优化超声辅助酶解制备藏系羊胎盘肽工艺及抗氧化能力分析[J]. 食品科学, 2019, 40(24): 265-273. doi: 10.7506/spkx1002-6630-20181101-009
    [29] 王小慧, 戚勃, 杨贤庆, 等. 响应面法优化末水坛紫菜蛋白酶解工艺及其酶解液抗氧化活性研究[J]. 南方水产科学, 2019, 15(2): 93-101. doi: 10.12131/20180099
    [30] 涂宗财, 唐平平, 郑婷婷, 等. 响应面优化鱼鳔胶原肽制备工艺及其抗氧化活性研究[J]. 食品与发酵工业, 2017, 43(5): 160-166.
    [31] 邱娟, 沈建东, 翁凌, 等. 利用牡蛎制备ACE抑制肽的工艺优化[J]. 食品科学, 2017, 38(16): 165-172. doi: 10.7506/spkx1002-6630-201716026
    [32]

    SHI J, SU R Q, ZHANG W T, et al. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein[J]. J Food Sci Technol, 2020, 57(11): 3927-3934. doi: 10.1007/s13197-020-04427-0

    [33]

    KIM H S, LEE W W, JAYAWARDENA T U, et al. Potential precursor of angiotensin-I converting enzyme (ACE) inhibitory activity and structural properties of peptide from peptic hydrolysate of cutlassfish muscle[J]. J Aquat Food Prod T, 2020, 29(6): 544-552. doi: 10.1080/10498850.2020.1773595

    [34] 王晓丹, 薛璐, 胡志和, 等. ACE抑制肽构效关系研究进展[J]. 食品科学, 2017, 38(5): 305-310. doi: 10.7506/spkx1002-6630-201705049
    [35] 王琳琳, 陈立, 李建科. 食源血管紧张素转化酶抑制肽研究进展[J]. 中国果菜, 2020, 40(6): 71-76.
    [36] 管骁, 洪延涵, 刘静, 等. ACEC-结构域选择性抑制二肽与ACE结构域的结合模式[J]. 食品科学, 2017(5): 170-176.
    [37] 周育, 韩三青, 王茹茹, 等. 食源血管紧张素转化酶抑制肽研究进展[J]. 安徽农业大学学报, 2019, 46(5): 751-760.
    [38]

    XUE L, YIN R, HOWELL K, et al. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides[J]. Compr Rev Food Sci F, 2021, 20(2): 1150-1187. doi: 10.1111/1541-4337.12711

    [39]

    MURAPA P, DAI J, CHUNG M, et al. Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes[J]. Phytother Res, 2012, 26: 106-112. doi: 10.1002/ptr.3510

    [40]

    CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of ACE importance of the COOH-terminal dipeptide sequence[J]. J Bio Chem, 1980, 255: 401-407. doi: 10.1016/S0021-9258(19)86187-2

    [41] 于志鹏, 吴雨, 樊玥, 等. 基于三元二次正交设计的文蛤水解肽制备工艺优化及ACE抑制活性分析[J]. 食品工业科技, 2016, 37(24): 181-185.
  • 期刊类型引用(3)

    1. 石肖飞,武孝慈,王佚兮,王啸,石建高,张健. 热带中西太平洋海域大眼金枪鱼摄食生态学. 海洋渔业. 2023(01): 49-59 . 百度学术
    2. 周胜杰,杨蕊,于刚,吴洽儿,马振华. 青干金枪鱼和小头鲔循环水养殖生长研究. 水产科学. 2021(03): 339-346 . 百度学术
    3. 党莹超,戴小杰,吴峰. 北太平洋金枪鱼延绳钓钓钩垂直分布及浸泡时间对渔获物的影响. 南方水产科学. 2020(03): 86-93 . 本站查看

    其他类型引用(1)

图(4)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-11-27
  • 修回日期:  2022-03-09
  • 录用日期:  2022-03-28
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2022-12-04

目录

/

返回文章
返回