Site selection of marine ranching in Wailingding Island sea area of Zhuhai
-
摘要: 海洋牧场选址是海洋牧场建设前需首要考虑的重要环节,适宜的选址是确保海洋牧场建设成功的前提。文章从海岸线稳定性、海洋功能区划、海洋生态红线、养殖水域滩涂规划、海洋工程和设施等5个方面选取了34个指标作为海洋牧场适宜性评价的因素,建立海洋牧场选址指标体系。在此基础上,根据珠海外伶仃岛海域实际情况,选取岛屿海岸线长度和面积变化强度、海洋功能区划、海洋生态红线、养殖水域滩涂规划、港口、锚地、通航密集区、海底管线等8个指标,采用地理信息系统空间分析方法,对珠海外伶仃岛海域海洋牧场选址进行适宜性评价。结果表明,研究区域内无最适宜和较适宜进行海洋牧场建设的区域,一般适宜和不适宜的区域所占面积分别为33.09和45.59 km2,其中适宜海洋牧场建设区域与珠海市目前已建人工鱼礁和规划海洋牧场区域范围相近。Abstract: Site selection of marine ranching plays a key role in marine ranching construction. Appropriate site is the precondition of a successful marine ranching construction. In this study, we selected 34 indicators as the factors for marine ranching suitability evaluation (Coastline stability, marine functional zoning, marine ecological red lines, aquaculture water tidal flat planning, marine engineering and facilities), and established an index system for marine ranching site selection. On this basis, according to the actual situation of Wailingding Island of Zhuhai, we selected eight indexes including length and area change intensity of island coastline, marine functional zoning, marine ecological red line, beach planning of aquaculture waters, ports, anchorages, navigable areas and submarine pipelines, to evaluate the suitability of marine ranching site selection in that sea area by using the spatial analysis method of GIS. The results show that there was no most suitable and more suitable area for marine ranching construction, and the areas of generally suitable and unsuitable areas for marine pasture construction were 33.09 and 45.59 km2, respectively. The suitable area for marine ranching construction was similar to the existing artificial reefs and planned marine ranching areas in Zhuhai.
-
宽口裂腹鱼 (Schizothorax eurystomus) 属于鲤形目、鲤科、裂腹鱼亚科、裂腹鱼属,主要分布于土库曼斯坦和乌兹别克斯坦的阿姆河,乌兹别克斯坦、塔吉克斯坦和哈萨克斯坦的锡尔河[1],中国新疆北疆的伊犁河流域[2],南疆的阿克苏河、木扎提河、克孜尔河、渭干河、克孜尔水库、东方红水库、塔什库尔干河、叶尔羌河与提孜那普河,曾是中国新疆渔业产区的主要经济鱼类[3]。近年来,由于捕捞强度过大,生态环境遭到破坏,宽口裂腹鱼的种群数量明显下降,现已被列入新疆维吾尔自治区保护鱼类 [新疆维吾尔自治区重点保护水生野生动物名录〔新政发 (2004) 67号〕。关于宽口裂腹鱼的研究多集中于资源分布与分类[1-6]、外部形态[7-9]、不同组织RNA提取质量[10]、线粒体基因组全序列分析[11]、系统发育[12-13]等方面。目前,国内外学者在鱼类消化系统的胚后发育[14-16]、形态学、组织学与组织化学[17]、消化酶活性[18]、结构特征与食性的关系[19]等方面也开展了详细的研究,但尚未见有关宽口裂腹鱼消化系统外部形态与组织结构的相关报道,其消化器官形态结构与食性相适应方面的研究亦未见报道。因此,本文以宽口裂腹鱼为研究对象,运用解剖学方法和连续石蜡切片技术,研究其消化系统组织结构特征,旨在为宽口裂腹鱼消化系统的组织结构特征与其食性相适应性提供理论依据,丰富宽口裂腹鱼的基础生物学内容,为其人工繁殖和养殖研究奠定基础,从而有效保护该物种和塔里木河流域生物多样性。
1. 材料与方法
1.1 试验材料
笔者课题组于2017年6月,采用拖网在新疆渭干河收集宽口裂腹鱼样本66尾,现场进行体长 [(179.07±35.79) mm] 和体质量 [(76.26±49.23) g] 等常规生物学测量,活体运回实验室暂养1周后,随机取10尾健康鱼,用于消化系统解剖与组织学观察。
1.2 试验方法
活体解剖先观察颌齿、舌、鳃耙数、咽喉齿、口裂大小等特征,再取食道、肠 (前、中、后)、肝胰脏组织,分别固定于波恩氏液,固定时间24 h,组织固定后用70%乙醇清洗多余的波恩氏液,再保存于70%乙醇中备用。梯度乙醇脱水,二甲苯透明,连续石蜡切片,切片厚度为5~7 μm,HE染色,中性胶封片,Olympus显微镜下观察拍照。
用Image J软件测量10个个体肠道黏膜褶皱高度、黏膜下层、肌肉层 (内肌层、外肌层) 和浆膜层的厚度,并计算100 μm肠道黏膜上皮中杯状细胞、柱状上皮、淋巴细胞的数量。其中,黏膜褶皱高度取其顶端至基部凹陷处的垂直距离;黏膜下层厚度为肌层到黏膜层的垂直距离;肌肉层厚度分别测量内肌层和外肌层的厚度。试验数据采用Excel 2010及SPSS 22.0软件进行统计与分析。
2. 结果
2.1 消化系统解剖特征
宽口裂腹鱼消化系统由消化管和消化腺两部分组成,消化管包括口咽腔、食道、肠、肛门,消化腺则为弥散型肝胰腺 (图1-a)。
图 1 宽口裂腹鱼消化系统的解剖观察a. 消化系统解剖图;b. 口位;c. 咽齿;d. 消化道;A. 肛门;P. 腹膜;G. 性腺;I. 肠道;H. 肝胰腺;SN. 吻部;C. 角质;RB. 吻须;MB. 颌须;PT. 咽喉齿;HO. 弯钩;OE. 食道;FG. 前肠;MG. 中肠;HG. 后肠Figure 1. Anatomical observation of digestive system of S. eurystomusa. Dissection of digestive system; b. Mouth position; c. Pharyngeal teeth; d. Digestive tract; A. Anus; P. Peritonaeum; G. Gonad; I. Intestine; H. Hepatopancreas; SN. Snout; C. Cutin; RB. Rostra barbell; MB. Maxillary barbell; PT. Pharyngeal teeth; HO. Hooks; OE. Oesophageal; FG. Foregut; MG. Midgut; HG. Hindgut宽口裂腹鱼须2对,口下位,口裂小,口内不具颌齿、口腔齿和游离的舌。口须和下颌角质发达 (图1-b)、咽喉齿 (2.3.5/5.3.2) 末端有较发达的弯钩 (图1-c)、鳃耙稀疏,食道粗短,食道与鳔之间有鳔管相连。肠道盘曲在腹腔内,肠道弯曲处比其他部位略细,共3个弯曲 (图1-d)。肠道黏膜层向肠管内表面突出形成许多Z形的黏膜褶皱。肠道由发达的肠系膜与腹腔壁相连,肠系膜上有大量的脂肪包裹肠壁。腹膜为黑色。肠长是体长的 (2.55±0.36) 倍。肝胰脏分左右两叶,每叶分支借脂肪和肠系膜包绕于消化管外。胆囊绿色,埋于肝胰脏内。
2.2 消化管的组织结构
宽口裂腹鱼消化管壁均由黏膜层、黏膜下层、肌层、浆膜4层组成,主要差别在黏膜层和肌层。食道黏膜上皮为复层扁平上皮,上皮间分布有大量杯状细胞;前肠和中肠黏膜上皮为单层柱状上皮,明显可见其间有刷状缘、杯状细胞和淋巴细胞分布;后肠黏膜上皮为假复层柱状上皮,其间亦有杯状细胞核淋巴细胞分布,且杯状细胞明显多于前肠和中肠。食道肌层为内环外纵的骨骼肌;前肠肌层为内环外纵的平滑肌;中肠和后肠为内螺旋外环行的平滑肌。
2.2.1 食道
食道黏膜上皮为复层扁平上皮 (图2-a),表层为扁平上皮,中层细胞呈多角形,基层细胞呈单层立方或矮柱状。复层扁平上皮细胞间分布有4~8层呈空泡状的杯状细胞,某些部位可见杯状细胞从基底层一直抵达表层扁平上皮。上皮下方是固有膜,由较细密的结缔组织构成 (图2-b)。固有膜缺少黏膜肌。黏膜下层为松散的结缔组织,食管前段的黏膜下层含大量纵行骨骼肌纤维 (图2-c),部分可伸向固有膜中 (图2-a),因此固有膜与黏膜下层界限不清。食道后段骨骼肌纤维逐渐减少,近肠处消失。肌层为内环行外纵行的骨骼肌束组成,内环肌较厚 (图2-a、d)。浆膜由结缔组织及其外的单层扁平上皮组成 (图2-e)。
图 2 宽口裂腹鱼消化系统显微图a. 食道横切;b. 食道黏膜上皮;c. 食道固有膜与黏膜下层;d. 食道肌层;e. 食道肌层与浆膜;f. 前肠肠绒毛;g. 前肠肌层与浆膜;h. 中肠横切;i. 中肠肠绒毛;j. 中肠固有膜、肌层与浆膜;k. 后肠横切;l. 后肠肠绒毛;m. 肝胰脏;n. 肝脏;o. 胰脏;BB. 纹状缘;CSM. 环形骨骼肌;GC. 杯状细胞;LP. 固有膜;LSM. 纵形骨骼肌;MC. 肌肉层;MF. 黏膜褶皱;M. 黏膜层;MM. 黏膜肌;S. 浆膜;SE. 复层黏膜上皮;SMC. 黏膜下层;CL. 中央乳糜管;SCE. 单层柱状黏膜上皮;MFB. 肌纤维束;SMS. 骨骼肌;L. 淋巴细胞;RC. 红细胞;SM. 平滑肌;CSMM. 环形平滑肌;LSMM. 纵行平滑肌;MT. 肠系膜;HSM. 螺形平滑肌层;BC. 毛细血管;PIV. 初级肠绒毛;SIV. 次级肠绒毛;CN. 细胞核;LV. 肝脏;CV. 中央静脉;HS. 肝血窦;PA. 胰脏腺泡;PI. 胰岛;PC. 胰岛细胞;ID. 闰管;HC. 肝细胞;KC. 肝巨噬细胞;HSEC. 肝血窦内皮;PS. 窦周隙;AC. 脂肪细胞Figure 2. Microstructure of digestive system of S. eurystomusa. Transverse section of esophagus; b. Epithelium of esophageal mucosa; c. Lamina propria and submucosa of esophagus; d. Muscularis of esophagus; e. Muscularis and serosa of esophagus; f. Intestinal villus of foregut; g. Muscularis and serosa of foregut; h. Transverse section of midgut; i. Intestinal villus of midgut; j. Lamina propria, muscularis and serosa of midgut; k. Transverse section of hindgut; l. Intestinal villus of hindgut; m. Epatopancreas; n. Liver; o. Pancreas; BB. Brush border; CSM. Circular layers of striated muscle; GC. Goblet cell; LP. Lamina propria; LSM. Longitudinal layers of striated muscle; MC. Muscular coat; MF. Mucosal fold; M. Mucosa; MM. Muscularis mucosa; S. Serosa; SE. Stratified epithelium; SMC. Submucosa; CL. Central lacteal; SCE. Single columnar epithelium; MFB. Muscular fibril beam; SMS. Skeletal muscle; L. Lymphocyte; RC. Red cell; SM. Smooth muscle; CSMM. Circular layers of smooth muscle; LSMM. Longitudinal layers of smooth muscle; MT. Mesentery;HSM. Helical layers of smooth muscle; BC. Blood capillary; PIV. Primary intestinal villus; SIV. Secondary intestinal villus; CN. Cell nucleus; LV. Liver; CV. Central veins; HS. Hepatic sinusoid; PA. Pancreas acinus; PI. Pancreatic islets; PC. Islet cell; ID. Intercalated duct; HC. Hepatocyte; KC. Kupffer cells; HSEC. Hepatic sinusoidal endothelial cell; PS. Perisinusoidal space; AC. Adipocyte2.2.2 前肠
黏膜上皮细胞为单层柱状,主要由高柱状的吸收细胞构成,长椭圆形核位于柱状细胞的基部偏下,细胞核内核仁明显,因细胞排列紧密,椭圆形的细胞核呈上下2~3层分布,吸收细胞游离面的刷状缘明显 (图2-f)。黏膜上皮中除吸收细胞外,还含有呈高脚杯样的杯状细胞和核圆球形染成蓝色的淋巴细胞 (图2-f)。淋巴细胞浸润于黏膜上皮细胞间,杯状细胞数量相对吸收细胞较少,散于吸收细胞之间。固有膜中有毛细血管分布,管内血细胞可见,未见黏膜肌,固有膜与黏膜下层界限不清 (图2-f)。肌层为外纵、内环2层平滑肌,其间有少量疏松结缔组织,可见肌间神经丛及毛细血管内的红细胞 (图2-g)。外膜为较薄的浆膜,是由较为疏松的结缔组织和间皮组成 (图2-g)。
2.2.3 中肠
中肠结构与前肠相似,也是由黏膜层、肌层、黏膜下层和浆膜组成 (图2-h)。单层柱状上皮细胞变矮,细胞核随之变成卵圆形,核仁明显,杯状细胞和淋巴细胞增多 (图2-i)。黏膜下层由结缔组织组成,其间可见毛细血管及管内的红细胞。肌层有2层,均由平滑肌组成,但内肌层的平滑肌呈螺旋形排列,外肌层呈环形排列 (图2-j)。浆膜外可见肠系膜 (图2-h)。
2.2.4 后肠
后肠黏膜层上皮与前肠、中肠差异较大。由切片可见,肠绒毛有初级分支和次级分支 (图2-k)。柱状上皮的细胞核呈多层排列,和假复层纤毛柱状上皮细胞的细胞核排列类似,表层为高柱状上皮细胞,深部为较矮的基底细胞;高柱状上皮细胞中分布较多的杯状细胞,基底层细胞中分布有大量淋巴细胞 (图2-l);上皮表面较平坦,微绒毛较短而密,细胞界限不清楚。固有膜中有丰富的毛细血管,而黏膜下层中较少。肌层与中肠类似,有内螺旋外环行的平滑肌组成。浆膜层很薄,由少量结缔组织和间皮组成 (图2-k)。
2.3 消化管的组织形态指数
消化管中食道中黏膜层与黏膜下层界限不清 (图2-a),因此消化管组织形态指数只统计前、中、后肠各层高度 (表1) 及其黏膜上皮中柱状上皮、淋巴细胞及杯状细胞的数量 (表2)。
表 1 宽口裂腹鱼肠道组织形态指数Table 1. Features of tissue on digestive tract of S. eurystomusμm 项目
Item前肠
Foregut中肠
Midgut后肠
Hindgut黏膜褶皱高
Spiral valve height1 207.36±170.85ab 1 333.96±239.79a 979.14±275.83c 黏膜下层厚
Sub mucosa thick382.37±110.10a 192.12±68.80cd 144.01±37.59cd 内肌层厚
Intimal muscle thick499.37±85.32a 290.08±96.81c 155.70±37.44e 外肌层厚
Outer muscle thick166.06±16.52a 82.72±32.41c 80.22±25.28c 浆膜层厚
Serosa thick70.48±17.62a 39.90±15.44c 28.31±8.91c 注:同一肠道性状同行肩标有相同字母者表示组间差异不显著 (P>0.05),字母相邻者表示组间差异显著 (P<0.05),字母相隔者表示组间差异极显著 (P<0.01);下表同此 Note: The same intestinal traits with the same superscript letters indicate no significant difference between groups (P>0.05), while there was significant difference for those with adjacent letters (P<0.05) and very significant difference for those with separated letters (P<0.01); the same case in the following table 表 2 宽口裂腹鱼肠道黏膜上皮各类细胞的相对密度比较Table 2. Number of mucosal epithelial cells in digestive tract of S. eurystomus100 μm 项目
Item前肠
Foregut中肠
Midgut后肠
Hindgut柱状上皮
Cylindrical epithelium18.80±3.71a 30.70±6.29c 53.50±7.04e 淋巴细胞 Lymphocyte 10.10±2.81a 16.40±5.56b 23.50±6.80e 杯状细胞 Goblet cell 3.30±0.67a 6.70±2.45c 7.20±2.20c 黏膜褶皱高为中肠>前肠>后肠,但前肠与中肠差异不显著,与后肠差异显著,中肠与后肠差异极显著;黏膜下层厚为前肠>中肠>后肠,前肠与中肠、后肠均差异极显著,但中肠和后肠差异不显著;内肌层厚为前肠>中肠>后肠,三者两两间均差异极显著;外肌层厚为前肠>中肠>后肠,前肠与中肠、后肠均差异极显著,中肠与后肠差异不显著;浆膜层厚为前肠>中肠>后肠,前肠与中肠、后肠均差异极显著,中肠与后肠差异不显著(表1)。
100 μm长度的肠道黏膜上皮中,柱状上皮的数量为后肠>中肠>后肠,且三者数量均差异极显著;淋巴细胞数量为后肠>中肠>后肠,且前肠与中肠差异显著,前肠、中肠与后肠均差异极显著;杯状细胞数量为后肠>中肠>后肠,前肠与中肠、后肠均差异极显著,中肠与后肠差异不显著(表2)。
2.4 消化腺的组织结构
宽口裂腹鱼的消化腺主要为肝胰脏,胰腺弥散分布于肝脏中 (图2-m)。肝胰脏由实质和间质两部分组成,外包结缔组织的被膜,被膜伸入实质,将实质分成许多小叶,小叶间界限不明显,即肝小叶不明显。肝小叶的中央静脉形状、大小不一,但清晰可见。中央静脉周围的肝细胞呈放射状排列,组成肝细胞索 (图2-n)。肝细胞形状不规则,细胞排列紧密,界线不清,核大而圆呈空泡状,核仁明显,位于细胞中央。脂肪细胞丰富,散在分布于肝细胞间,经HE染色后,呈空泡状,扁圆形的细胞核被挤于细胞一侧 (图2-n)。相邻肝细胞索间为肝血窦,肝血窦狭窄、形状各异。高倍镜下可见肝血窦内皮细胞为单层扁平上皮,血窦间可见肝巨噬细胞、淋巴细胞和红细胞,肝血窦内皮与肝细胞索围成窦周隙 (图2-n)。胰腺呈条索状分布在肝脏中,由外分泌部和内分泌部组成 (图2-m)。外分泌部的腺泡细胞呈立方形或锥体形,腺泡细胞内有许多粗大紫红色的酶原颗粒将圆形的细胞核挤向细胞的一侧,细胞染色较深,核仁明显。可观察到腺泡细胞间由单层扁平上皮构成的闰管和静脉管。内分泌部的胰岛染色较浅呈淡粉色,胰岛细胞呈团索状盘绕在一起,细胞间遍布毛细血管和红细胞 (图2-o)。
3. 讨论
3.1 消化系统形态特征与食性的适应性
根据殷名称[20]对鱼类食性的分类可知,鱼类口的大小及比肠长 (肠长与体长的比例) 与食性的关系密切。一般肉食性鱼类口裂大,肠无弯曲或个别弯曲;草食性和杂食性鱼类肠盘曲较多。林浩然[21]报道了鲢 (Hypophthalmichthys molitrix)、鳙 (Aristichthys nobilis)、鲤 (Cyprinus carpio)、草鱼 (Ctenopharyngodon idellus) 和鳡 (Elopichthys bambusa) 5种鱼类中,肉食性鱼类肠没有盘曲,比肠长小于1;草食性和杂食性鱼类肠盘曲复杂,比肠长为1.64~7.77,肠长与盘曲数与具体的食物组成有关。王起等[22]研究指出怒江裂腹鱼 (S. nukiangensis) 和裸腹叶须鱼 (Ptychobarbus kaznakovi) 的比肠长分别为 2.96±0.92和 1.46±0.39,热裸裂尻鱼 (Schizopygopsis thermalis) 比肠长为3.41±1.26,前二者为杂食性偏动物食性,后者为杂食性偏植食性。宽口裂腹鱼口下位、口裂小、口不能伸缩,口须发达、下颌上的角质锐利,利于刮食砂石底质上的底栖硅藻和摄取水生昆虫;咽喉齿 (2.3.5/5.3.2) 与角质垫的磨擦有助于磨碎吞食的水生昆虫;咽喉齿末端有较发达的弯钩,可撕裂水生昆虫,肠长是体长的 (2.55±0.36) 倍。虽然同为杂食性鱼类,但不同鱼类具体的食物偏好有所不同,从宽口裂腹鱼消化道食物组成可知,其食性与怒江裂腹鱼不同,而与热裸裂尻鱼相似,均为杂食偏植食性鱼类。
3.2 消化系统组织结构特征与食性的适应性
宽口裂腹鱼食道粗短,食道黏膜层有发达的皱褶,在黏膜下层和肌层中具有伸展性强的横纹肌,能迅速而强劲地收缩,从而有力地推动较大食物团进入消化管下一段。食道黏膜上皮为复层扁平上皮,黏液细胞4~8层,多于大刺鳅 (Mastacembelue armatus)[23]的1~3层、中华刺鳅 (Sinobdella sinensis)[19]和黄石爬 (Euchiloglanis kishinouyei)[24]的2~4层、泥鳅 (Missgurnus arguillicaudatus)[25]的3~4层、切尾拟鲿 (Pseudobagrus truncatus)[26]和太门哲罗鱼 (Hucho taimen)[27]的3~5层,而黄唇鱼 (Bahaba flavolabiata)[28]的食道黏膜上皮中则没有黏液细胞分布,其食道主要作用是容纳食物,并将食物输送到胃里。对于食道黏膜上皮中有黏液细胞的鱼类,食道除容纳和输送食物外,还起润滑的作用[29]。宽口裂腹鱼在利用锐利的角质刮取砾石上的藻类时会携带大量泥沙,这些大量的黏液细胞可分泌丰富的黏液,将泥沙和藻类一起混合成润滑的团块,利于吞咽以减少食物对黏膜的机械损伤,因此宽口裂腹鱼食道黏膜层中的粘液细胞层数多余其他几种鱼类,这与其杂食性偏植食性的特点相适应。
宽口裂腹鱼食道的黏膜下层中有发达的纵行骨骼肌纤维,食道前段黏膜下层的骨骼肌纤维可伸达固有膜中,该结构可对食物进一步物理消化,这和云南盘 (Discogobio yunnanensis) 相似[17]。食道肌肉层的骨骼肌后段厚于前段,该结构在前人的研究中尚未见报道,这种结构结合4~8层黏液细胞分泌的大量黏液,更有利于将食物运送至肠管中。此外,食道肌肉层内环外纵的骨骼肌与黄唇鱼[29]食道肌肉层内纵外环的骨骼肌排列方式相反,这可能与宽口裂腹鱼为杂食性鱼类、而黄唇鱼是肉食性鱼类有关。宽口裂腹鱼的杯状细胞自前肠至后肠逐渐增多,这与同样具有锐利角质的湘华鲮 (Sinilabeo decorus tungting) 后肠黏液细胞减少相反[30],这种现象可能与湘华鲮为碎屑食性、而宽口裂腹鱼为杂食性有关。
宽口裂腹鱼肝胰脏的组织结构中肝小叶不明显,脂肪细胞丰富,中央静脉、肝血窦明显。鱼类肝脏中脂肪的积累始于仔鱼期,幼鱼期后肝脏成为主要贮脂场所[31];在鱼类的不同性别中,脂肪数量和作用也不同。如食蚊鱼 (Gambusia affinis) [32]雄性肝细胞排列紧密,肝细胞数量少,而雌性肝细胞排列疏松,其间的脂肪细胞数量多,这可为雌性的生殖活动提供足够的储备能量。宽口裂腹鱼肝脏中的脂肪细胞从生活史的哪个阶段开始积累,数量在不同生活阶段和不同性别间的变化规律还需进一步研究。
宽口裂腹鱼胰腺弥散分布在肝脏中,外分泌部的腺泡细胞游离端有大量红色粗大酶原颗粒,说明细胞分泌活动旺盛,酶原颗粒始于仔鱼开口时具有蛋白质分解酶的作用,这与宽口裂腹鱼杂食性相适应。宽口裂腹鱼胰腺的内分泌部胰岛周围毛细血管丰富,有利于分泌物及时运送至全身各个器官系统;胰岛部染色较浅,呈嗜酸性,这与哲罗鱼[33]的胰腺内分泌部相反;而与驼背鲈 (Cromileptes altivelis)[34]的胰岛细胞染色结果相似。由上所述,宽口裂腹鱼消化系统形态学、组织学与食性具有适应性。
3.3 肠道的分段
宽口裂腹鱼无胃、有鳔管,食道与肠的分界点即为鳔管与消化道的连接点,这与秉志[35]的观点一致。而有关鲤科鱼类肠道分段的问题,不同学者见解不同。Escaffre等[36]、倪达书和洪雪峰[37]将肠道分为前、中、后三段;Mevay和Kaan[38]把肠管分为肠球和肠本部两部分;林浩然[21]认为没有分段的必要,食道之后即是肠。Petrinec等[39]在研究白斑狗鱼 (Esox lucius L.) 和欧鲶 (Silurus glanis L.) 时也认为这两种鱼的胃后即为肠。何敏[40]在研究重口裂腹鱼 (S. davidi) 时发现,肠管各段管径粗细、黏膜皱褶和上皮细胞的高矮、肌肉层内环肌层数、黏液细胞与内分泌细胞的数量均有明显不同,从而将重口裂腹鱼的肠道分成前、中、后三段。Purushothaman等[41]则依据尖吻鲈 (Lates calcarifer) 杯状细胞数量的明显差异将肠道分成前肠、中肠、后肠、前直肠和后直肠。本研究发现宽口裂腹鱼肠的前段黏膜上皮为高柱状吸收细胞,杯状细胞少;中肠黏膜上皮为矮柱状细胞,杯状细胞增多;后肠黏膜上皮似假复层柱状上皮,杯状细胞数量最多,由此可见宽口裂腹鱼肠的黏膜上皮在不同肠段杯状细胞数量不同,而上皮细胞高矮与形态也各不同。此外,宽口裂腹鱼各肠段的肌层也有差异,前段为内环外纵的平滑肌,中段和后段则为内螺旋外环的平滑肌,这在其他鱼类中尚未见报道。因此,为更好地反映出各肠段的组织机能特性,本研究结果支持倪达书和洪雪峰[37]及何敏[40]的分段方法,即将宽口裂腹鱼肠道分为前、中、后3段。
-
表 1 基于海岸线变迁强度的海洋牧场选址评价指标分析
Table 1 Evaluation index of marine ranching location based on coastline change intensity
评价阈值范围
Evaluation threshold range/%评价结果
Evaluation
result海洋牧场选址
适宜程度赋值
Evaluation of
suitability of
marine ranching
site selection−0.5≤LCIij≤0.5 最适宜 3 −1≤LCIij<−0.5或0.5≤LCIij<1 较适宜 2 LCIij<−1或≤LCIij>1 一般适宜 1 注:LCIij表示LIij或AIij,表 8同此。 Note: LCIij indicates LIij or AIij. The same case in Table 8. 表 5 基于海洋工程和设施的海洋牧场选址评价指标分析
Table 5 Evaluation index of marine ranching site selection based on marine engineering and facilities
指标
Index主要管理要求
Main management requirements适宜性
Suitability适宜程度赋值
Evaluation of suitability水利 Water conservancy 需设置缓冲区安全范围 不适宜 0 海上开采 Offshore mining 需设置缓冲区安全范围 不适宜 0 航道 Channel 需设置缓冲区安全范围 不适宜 0 港区 Port Area 泊船进出停泊装卸货物或者旅客集散 不适宜 0 锚地 Anchorage 船舶在水上抛锚以便安全停泊、避风防台、等待检验引航、从事水上过驳、编解船队及其他作业 不适宜 0 通航密集区 Navigable dense area 单位时间内通过某一航道断面的船舶或船队数量多 不适宜 0 倾废区 Dumping area 向海洋倾泻废物 不适宜 0 海底管线 Submerged pipeline 需设置缓冲区安全范围 不适宜 0 其他海洋工程或设施
Other offshore projects or facilities海洋工程用海 不适宜 0 表 2 基于海洋基本功能分区及管理要求的海洋牧场选址评价指标分析
Table 2 Evaluation index of marine ranching site selection based on marine basic function zoning and management requirements
指标
Index二级功能区划分
Secondary functional zoning主要管理要求
Main management requirements适宜程度
Suitability适宜程度赋值
Evaluation of suitability农渔业区
Agriculture and fishery area农业围垦区 围垦设施建设 不适宜 0 养殖区 底播养殖 最适宜 3 筏式养殖 一般适宜 1 网箱养殖 一般适宜 1 增殖区 海水增殖 最适宜 3 捕捞区 海水捕捞生产 最适宜 3 水产种质资源保护区 与其他类型保护区重叠 不适宜 0 剩余区域 最适宜 3 渔业基础设施区 渔港和育苗场等渔业基础设施 不适宜 0 港口航运区
Port shipping area港口区 开发利用港口航道资源 不适宜 0 航道区 0 锚地区 0 工业与城镇用海区
Industrial and urban sea area工业用海区 临海工业、工业园区建设 不适宜 0 城镇用海区 城镇建设 不适宜 0 矿产与能源区
Mineral and energy area油气区 油气和固体矿产等勘探、开采作业,盐田、可再生能源开发利用 不适宜 0 固体矿区 0 盐田区 0 可再生能源区 0 旅游休闲娱乐区
Tourism leisure and entertainment area风景旅游区 旅游景区开发和海上文体娱乐活动场所建设 最适宜 3 文体休闲娱乐区 3 海洋保护区
Marine conservation area海洋自然保护区 核心区:禁止任何单位和个人进入 不适宜 0 缓冲区:只准进入从事科学研究观测活动 不适宜 0 实验区:可以进入从事科学试验、教学实习、参观考察、旅游以及驯化、繁殖珍稀、濒危野生动植物等活动 一般适宜 (开发旅游、开展驯化繁殖等活动) 1 海洋特别保护区 重点保护区:禁止实施各种与保护无关的工程建设活动 一般适宜 (开展人工鱼礁建设、增殖放流等生态修复活动) 1 适度利用区:鼓励实施与保护区保护目标相一致的生态型资源利用活动,发展生态旅游、生态养殖等海洋生态产业 最适宜 3 生态与资源恢复区:根据科学研究结果,可以采取适当的人工生态整治与修复措施,恢复海洋生态、资源与关键生境 一般适宜 (开展人工鱼礁建设、增殖放流等生态修复活动) 1 预留区:严格控制人为干扰,禁止实施改变区内自然生态条件的生产活动和任何形式的工程建设活动 不适宜 0 特殊利用区
Special utilization area军事区 限制在军事区从事海洋开发利用活动 不适宜 0 其他特殊利用区 严禁在海底管线、跨海路桥区内建设永久性建筑物 不适宜 0 保留区
Reserved area保留区 通过科学规划和严格论证,可开发利用 最适宜 3 未通过科学规划和严格论证,不可开发利用 不适宜 0 表 3 基于红线区分类管控要求的海洋牧场选址适宜性分析
Table 3 Suitability analysis of marine ranching site selection based on classification and management requirements of red line area
指标
Index主要管理要求
Main management requirement适宜性
Suitability适宜程度赋值
Evaluation of suitability海洋保护区生态红线区
Ecological red line area of marine reserve海洋自然保护区禁止类红线区 核心区和缓冲区:禁止开展任何形式的开发建设活动,无特殊原因,禁止任何单位和个人进入 不适宜 0 海洋自然保护区限制类红线区 实验区:禁止进行捕捞、挖沙等活动,严格控制河流入海污染物排放,不得新增入海陆源工业直排口,控制养殖规模 一般适宜 1 海洋特别保护区禁止类红线区 重点保护区:禁止实施各种与保护无关的工程建设活动 不适宜 0 预留区:禁止实施改变区内自然生态条件的生产活动和任何形式的工程建设活动 不适宜 0 海洋特别保护区限制类红线区 生态与资源恢复区:可采取适当的人工生态整治与修复措施,恢复海洋生态、资源与关键生境 一般适宜 1 适度利用区:确保海洋生态系统安全的前提下,允许适度利用海洋资源,鼓励实施与保护区保护目标相一致的生态型资源利用活动,发展生态旅游、生态养殖等海洋生态产业 一般适宜 1 重要河口生态系统生态红线区
Ecological red line area of important estuary ecosystem鼓励生态化养殖,加强对受损重要河口生态系统的综合整治与生态修复 一般适宜 1 重要海滨湿地生态红线区
Important coastal wetland ecological red line area维持海域自然属性,保持自然岸线形态、长度,保持潮滩地形地貌稳定 一般适宜 1 重要渔业海域生态红线区
Ecological red line area in important fishery sea area开展增殖放流活动,保护和恢复水产资源 一般适宜 1 特别保护海岛生态红线区
Special protection of island ecological red line area禁止类红线区:禁止开展任何形式的开发建设活动 不适宜 0 限制类红线区:加强对受损海岛生态系统的整治与修复,维持海域自然属性,保护渔业资源产卵场、育幼场、索饵场和洄游通道 一般适宜 1 自然景观与历史文化遗迹生态红线区
Ecological red line area of natural landscape and historical and cultural relics严格控制岸线附近的景区建设工程,限制近海养殖活动 不适宜 0 珍稀濒危物种集中分布区生态红线区
Ecological red line area of rare and endangered species concentrated distribution area生产设施与珍稀濒危物种集中分布区之间应保留一定距离 不适宜 0 重要滨海旅游区生态红线区
Important coastal tourist area ecological red line area禁止从事可能改变和影响滨海旅游的开发建设活动 一般适宜 1 重要砂质岸线及邻近海域生态红线区
Important sandy shoreline and ecological red line area of adjacent sea area砂质海岸向海一侧3.5 nmile内禁止采挖海砂、围填海、倾废等开发活动,加强对受损砂质岸线的修复 一般适宜 1 沙源保护海域生态红线区
Ecological red line area of shayuan protected sea area砂质海岸向海一侧3.5 nmile内禁止采挖海砂、围填海、倾废等开发活动,实施沙滩养护等岸线整治修复工程 一般适宜 1 红树林生态红线区
Mangrove ecological red line area除科学试验、教学实习、参观考察、旅游以及驯化、繁殖珍稀濒危野生动植物等活动外,限制开展其他活动 不适宜 0 珊瑚礁生态红线区
Coral reef ecological red line area禁止可能破坏珊瑚礁的开发活动 不适宜 0 海草床生态红线区
Seaweed bed ecological red line area禁止可能毁坏海草床的开发建设活动 不适宜 0 表 4 基于水域滩涂划分管理要求的海洋牧场选址评价指标分析
Table 4 Evaluation index of marine ranching site selection based on management requirements of tidal flat division
指标
Index二级功能区划分
Secondary functional zoning主要管理要求
Main management requirements适宜性
Suitability适宜程度赋值
Evaluation of suitability养殖区
Culture area底播养殖区 坚硬海底底质类型,投放海域环境条件适宜 最适宜 3 网箱养殖区 一般适宜 1 筏式养殖区 浅海与潮间带设置浮动筏架,筏上挂养养殖对象 一般适宜 1 限养区
Limited maintenance area海洋自然保护区限养区 国家和省已划定的自然保护区实验区和外围保护
地带,即一般控制区一般适宜 1 海洋特别保护区限养区 渔业开发活动限定为生态养殖 一般适宜 1 海洋生态红线限养区 禁止进行捕捞、挖沙等活动,严格控制河流入海污染物
排放,不得新增入海陆源工业直排口,控制养殖规模一般适宜 1 无居民海岛周边海域限养区 进行水产养殖应采取污染防治措施,污染物排放不得
超过国家和地方规定的污染物排放标准较适宜 2 重点近岸海域限养区 保护海域生态环境,促进近岸海洋综合整治 较适宜 2 禁养区
Forbidden area海洋自然保护区禁养区 禁止任何单位和个人进入 不适宜 0 海洋湿地禁养区 保护区之外的其他海洋湿地保护范围 不适宜 0 海洋特别保护区禁养区 用于珍稀、濒危海洋生物物种,自然遗迹和典型
海洋生态系统保护不适宜 0 海洋生态红线禁养区 禁止实施改变区内自然生态条件的生产活动和
任何形式的工程建设活动不适宜 0 建设用海空间禁养区 包括港口航运区、工业与城镇用海区、航道和锚地等 不适宜 0 近岸海域禁养区 保护近岸海域生态环境,禁止在近岸海域进行养殖活动 不适宜 0 无居民海岛周围海域禁养区 无居民海岛周围200 m水域可适当开展增殖 较适宜 2 表 6 研究区域海域使用类型
Table 6 Type of sea area usage in survey area
使用类型
Sea area usage of survey area数据来源
Data source养殖水域滩涂
Tidal flat in aquaculture waters《珠海市养殖水域滩涂规划》[19] 海洋功能区划
Marine functional zoning《广东省海洋功能区划》[15] 海洋生态红线
Ocean ecological red line《广东省海洋生态红线》[17] 水利
Water conservancy无此海洋工程 海上开采
Offshore mining无此海洋工程 航道
Channel无此海洋工程 港区
Port Area《中国航路指南 (南海海区)》[20] 锚地
Anchorage《中国航路指南 (南海海区)》[20] 通航密集区
Navigable dense areaAIS数据 倾废区
Dumping area无此海洋工程 海底管线
Submerged pipeline《中国航路指南 (南海海区)》[20] 其他-禁止抛锚禁止捕鱼
Others-no anchoring, no fishing《中国航路指南 (南海海区)》[20] 表 7 外伶仃岛到周围岛礁的最短距离
Table 7 Shortest distance from Wailingding Island to surrounding island reefs
中点名称
Midpoint name岛屿名称
Island name最短距离
Minimum distance/mA 石鼓洲 9696.2 B 黑洲 6229.3 C 三门洲 4799.6 D 直湾岛 14179.3 E 南丫岛 11000.6 F 长洲 9415.5 表 8 外伶仃岛海域海洋牧场选址适宜性评价结果
Table 8 Suitability of marine ranching site selection in Wailingding Island
项目
Item分类
Classification赋值
Evaluation面积
Area/km2海岸线稳定性
Coastline stability−0.5≤LCI≤0.5 3 — 海洋功能区划
Marine functional zoning万山群岛旅游休闲娱乐区 3 12.31 万山群岛保留区 3 78.68 海洋生态红线
Ocean ecological red line万山群岛重要滨海旅游区生态红线区 1 12.31 万山群岛重要渔业海域生态红线区 1 78.68 养殖水域滩涂规划
Tidal flat planning in aquaculture waters建设用海空间禁养区 0 29.34 海洋生态红线限养区 2 12.31 养殖区 3 37.68 海洋工程和设施
Marine engineering and facilities港口及其缓冲区 0 1.47 锚地 0 3.81 通航密集区 中等及以上密集 0 34.02 一般密集 2 22.31 不密集 3 21.35 海底管线及其缓冲区 0 27 -
[1] 陈丕茂, 舒黎明, 袁华荣, 等. 国内外海洋牧场发展历程与定义分类概述[J]. 水产学报, 2019, 43(9): 1851-1869. [2] 崔晨, 张云岭, 张秀文, 等. 唐山祥云湾海洋牧场渔业资源增殖效果评估[J]. 河北渔业, 2021(1): 25-31. [3] 罗文强, 赵刚, 张彦彦, 等. 海州湾海洋牧场人工鱼礁区建设前后海洋环境变化分析[J]. 海洋湖沼通报, 2021: 33-40. [4] 张涛, 奉杰, 宋浩. 海洋牧场生物资源养护原理与技术[J]. 科技促进发展, 2020, 16(2): 206-212. [5] ERFTEMIJIER P, GRAAFF R D, BOOTO G, et al. Site selection for artificial reefs in Bahrain (Arabian Gulf) based on GIS technology and hydrodynamic modelling[J]. J Mar Sci Environ, 2004(C2): 29-38.
[6] 许强. 海洋牧场选址问题的研究[D]. 上海: 上海海洋大学, 2012: 1-78. [7] 曾旭, 章守宇, 林军, 等. 岛礁海域保护型人工鱼礁选址适宜性评价[J]. 水产学报, 2018, 42(5): 673-683. [8] 李英雪. 基于AHP的江苏省如东县人工鱼礁选址生态适宜性评价[D]. 上海: 上海海洋大学, 2019: 1-62. [9] 许妍, 鲍晨光, 梁斌, 等. 天津市近海海域人工鱼礁选址适宜性评价[J]. 海洋环境科学, 2016, 35(6): 846-852. [10] 冯英明, 许丙彩, 郝义, 等. 日照市海洋牧场示范区人工鱼礁选址适宜性分析[J]. 山东国土资源, 2020, 36(1): 44-50. [11] 许强, 章守宇. 基于层次分析法的舟山市海洋牧场选址评价[J]. 上海海洋大学学报, 2013, 22(1): 128-133. [12] 贾后磊, 谢建, 彭昆仑. 人工鱼礁选址合理性分析[J]. 海洋开发与管理, 2009, 26(4): 72-75. [13] 刘富强, 吴涛, 蒋国俊, 等. 海岸线与海岸景观格局对人为干扰度的动态响应——以营口市南部海岸为例[J]. 生态学报, 2017, 37(22): 7427-7437. [14] 张玉新. 海上丝绸之路海岛岸线时空变化特征研究[D]. 烟台: 中国科学院大学 (中国科学院烟台海岸带研究所), 2021: 40-73. [15] 广东省人民政府. 广东省海洋功能区划(2011-2020)[Z]. 2016: 10-12. [16] 胡斌, 陈妍. 论海洋生态红线制度对中国海洋生态安全保障法律制度的发展[J]. 中国海商法研究, 2018, 29(4): 94-101. [17] 广东省人民政府. 广东省海洋生态红线[Z]. 2017: 36-45. http://nr.gd.gov.cn/zwgknew/tzgg/gg/content/post_3559716.html. [18] 中华人民共和国农业农村部. 国家级海洋牧场示范区管理工作规范[Z]. 2019: 1-3. http://www.yyj.moa.gov.cn/gzdt/201909/t20190917_6328072.htm. [19] 珠海市海洋农业和水务局. 珠海市养殖水域滩涂规划 (2018-2030)[Z]. 2018: 27-34. http://www.zhuhai.gov.cn/nyncj/attachment/0/227/227899/2573803.pdf. [20] 中国人民解放军司令部航海保证部, 中国航路指南 (南海海区) [M].天津: 中国航海图书出版社,2011:15379. [21] 黄杰, 王权明, 黄小露, 等. 国土空间规划体系改革背景下海洋空间规划的发展[J]. 海洋开发与管理, 2019, 36(5): 14-18. [22] 许强, 刘舜斌, 许敏, 等. 海洋牧场建设选址的初步研究——以舟山为例[J]. 渔业现代化, 2011, 38(2): 27-31. [23] 张晓龙, 刘乐军, 李培英, 等. 中国滨海湿地退化评估[J]. 海洋通报, 2014, 33(1): 112-119. [24] 牙韩争, 许尤厚, 李谊纯, 等. 岸线变化对钦州湾水动力环境的影响[J]. 广西科学, 2017, 24(3): 311-315. [25] 左军成, 左常圣, 李娟, 等. 近十年我国海平面变化研究进展[J]. 河海大学学报 (自然科学版), 2015(5): 442-449. [26] 李加林, 王艳红, 张忍顺, 等. 海平面上升的灾害效应研究——以江苏沿海低地为例[J]. 地理科学, 2006(1): 87-93. [27] 黄伟, 曾江宁, 陈全震, 等. 海洋生态红线区划——以海南省为例[J]. 生态学报, 2016, 36(1): 268-276. [28] 李文涛, 张秀梅. 关于人工鱼礁礁址选择的探讨[J]. 现代渔业信息, 2003, 18(5): 3-6. [29] 王飞, 张硕, 丁天明. 舟山海域人工鱼礁选址基于AHP的权重因子评价[J]. 海洋学研究, 2008, 26(1): 65-71. [30] MOUSAVI S H, DANEHKAR A, SHOKRI M R, et al. Identification of effective criteria for artificial reefs site selection using analytical hierarchy process methodology (a case study: coral reefs in the Kish Island)[J]. Oceanography, 2011, 2(5): 78-91.
[31] 杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133-1140. [32] BOHNSACK J A, SUTHERLAND D L. Artificial reef research: a review with recommendations for future priorities[J]. B Mar Sci, 1985, 37(1): 11-39.
[33] BAINE M. Artificial reefs: a review of their design, application, management and performance[J]. Ocean Coast Manage, 2001, 44(3): 241-259.
-
期刊类型引用(9)
1. 王欢,路珂,褚志鹏,吴湘香,徐滨,孙铭雪,马宝珊. 硬刺松潘裸鲤消化系统形态与组织学结构特征及其消化酶活性. 淡水渔业. 2025(02): 33-42 . 百度学术
2. 宋霖,陈小江,高鹏,符江涵. 四川华吸鳅和汉水后平鳅消化系统形态组织结构. 水产科学. 2024(06): 934-943 . 百度学术
3. 史晋绒,王晓娣,周龙,王永明. 云南光唇鱼消化系统形态结构的初步观察. 内江师范学院学报. 2024(12): 46-51 . 百度学术
4. 李武辉,孙成飞,董浚键,杨超,胡婕,田园园,叶星. 大口黑鲈开口摄食与转食人工配合饲料期消化系统发育特征. 渔业科学进展. 2023(01): 80-89 . 百度学术
5. 代金彩,李丽,李学涛,魏杰,聂竹兰. 宽口裂腹鱼尾鳍细胞系的建立及其应用. 水产科学. 2023(01): 30-38 . 百度学术
6. 寇春妮,李捷,陈蔚涛,高尚,武智,刘亚秋. 珠江下游7种典型鲤科鱼类摄食器官形态特征比较. 中国水产科学. 2023(07): 907-920 . 百度学术
7. 曾祥兵,董宏标,韦政坤,段亚飞,陈健,张慧,孙彩云,许晓东,张家松. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响. 南方水产科学. 2021(04): 49-57 . 本站查看
8. 苏家齐,祝华萍,朱长波,张博,李婷,陈素文. 盐度和钠离子/钾离子对凡纳滨对虾幼虾存活与组织结构的影响. 南方水产科学. 2021(05): 45-53 . 本站查看
9. 代金彩,聂竹兰,刘洁雅,洪继彪. 宽口裂腹鱼中肾组织细胞系建立的初步研究. 渔业科学进展. 2021(06): 61-68 . 百度学术
其他类型引用(5)