褐藻寡糖对卵形鲳鲹幼鱼生长性能、抗氧化能力和免疫功能的影响

黄健彬, 迟艳, 周传朋, 黄小林, 黄忠, 虞为, 荀鹏伟, 吴杨, 张宇, 林黑着

黄健彬, 迟艳, 周传朋, 黄小林, 黄忠, 虞为, 荀鹏伟, 吴杨, 张宇, 林黑着. 褐藻寡糖对卵形鲳鲹幼鱼生长性能、抗氧化能力和免疫功能的影响[J]. 南方水产科学, 2022, 18(3): 118-128. DOI: 10.12131/20210161
引用本文: 黄健彬, 迟艳, 周传朋, 黄小林, 黄忠, 虞为, 荀鹏伟, 吴杨, 张宇, 林黑着. 褐藻寡糖对卵形鲳鲹幼鱼生长性能、抗氧化能力和免疫功能的影响[J]. 南方水产科学, 2022, 18(3): 118-128. DOI: 10.12131/20210161
HUANG Jianbin, CHI Yan, ZHOU Chuanpeng, HUANG Xiaolin, HUANG Zhong, YU Wei, XUN Pengwei, WU Yang, ZHANG Yu, LIN Heizhao. Effects of dietary alginate oligosaccharide on growth performance, antioxidative capacity and immune function of juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2022, 18(3): 118-128. DOI: 10.12131/20210161
Citation: HUANG Jianbin, CHI Yan, ZHOU Chuanpeng, HUANG Xiaolin, HUANG Zhong, YU Wei, XUN Pengwei, WU Yang, ZHANG Yu, LIN Heizhao. Effects of dietary alginate oligosaccharide on growth performance, antioxidative capacity and immune function of juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2022, 18(3): 118-128. DOI: 10.12131/20210161

褐藻寡糖对卵形鲳鲹幼鱼生长性能、抗氧化能力和免疫功能的影响

基金项目: 中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2020TD55);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021XK02);深圳市科技计划项目 (JCYJ20180306180203889);广东省现代农业产业技术体系创新团队建设专项资金 (2019KJ143)
详细信息
    作者简介:

    黄健彬 (1994—),男,硕士研究生,研究方向为动物营养与饲料科学。E-mail: hjb15626205505@163.com

    通讯作者:

    林黑着 (1965—),男,研究员,博士,从事动物营养与饲料学研究。E-mail: linheizhao@163.com

  • 中图分类号: S 963.73+9

Effects of dietary alginate oligosaccharide on growth performance, antioxidative capacity and immune function of juvenile Trachinotus ovatus

  • 摘要: 采用3组实验饲料养殖225尾卵形鲳鲹 (Trachinotus ovatus) 幼鱼58 d,以不添加褐藻寡糖组(TC) 作为对照,研究0.7 g·kg−1 (A1) 和6.0 g·kg−1 (A2) 褐藻寡糖对卵形鲳鲹生长、血浆生化及免疫指标、肝脏抗氧化能力、肠道形态和Nf-κb信号通路相关基因表达的影响。结果显示,A1和A2组增重率和特定生长率显著高于TC组 (P<0.05),A1组饲料系数显著低于TC组 (P<0.05);A1和A2组血浆补体C3质量浓度显著高于TC组 (P<0.05),A2组碱性磷酸酶 (AKP) 活性显著高于TC组 (P<0.05);与TC组相比,A1和A2组肝脏超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、过氧化物酶 (POD) 、谷胱甘肽还原酶 (GR) 活性和总抗氧化能力 (T-AOC) 显著升高,丙二醛 (MDA) 浓度显著降低 (P<0.05);A1和A2组肠绒毛高度显著高于TC组 (P<0.05);与TC组相比,A1和A2组ikknf-κbtnf-αil-8表达量显著降低,tgf-β表达量显著升高 (P<0.05)。综上,添加褐藻寡糖可以改善卵形鲳鲹肠道形态和生长性能,提高血浆免疫指标和肝脏抗氧化能力,抑制肠道Nf-κb和促炎细胞因子mRNA的转录,并促进抗炎细胞因子mRNA的转录,建议卵形鲳鲹幼鱼饲料中褐藻寡糖的添加量为0.7 g·kg−1
    Abstract: Trachinotus ovatus juveniles (225 individuals) were fed for 58 d with three diets containing 0 (Control: TC), 0.7 (A1) and 6.0 g·kg−1 (A2) alginate oligosaccharide (AO) to investigate the effects of AO on the growth, plasma biochemical and immune indexes, hepatic antioxidative capacity, intestine morphology and expression of genes involved in Nf-κb signaling pathway of T. ovatus. The results show that the weight gain rate and specific growth rate of T. ovatus of both A1 and A2 group were significantly higher than those of TC group (P<0.05). The feed coefficient of A1 group was significantly lower than that of TC group (P<0.05). Compared with TC group, the mass concentration of plasma C3 increased in both A1 and A2 group significantly (P<0.05), and the activity of alkaline phosphatase increased in A2 group significantly (P<0.05). Compared with TC group, the activities of SOD, CAT, POD and GR and T-AOC increased in both A1 and A2 significantly, while the concentration of MDA decreased significantly (P<0.05). The height of villus in A1 and A2 group were significantly higher than those of TC group (P<0.05). Compared with TC group, the expressions of ikk, nf-κb, tnf-α and il-8 decreased in A1 and A2 group significantly, while the expressions of tgf-β increased significantly (P<0.05). In conclusion, AO supplementation in diet can improve the growth and intestine morphology of T. ovatus, enhance the plasma immune indexes and hepatic antioxidative capacity, inhibit the expression of intestinal Nf-κb and proinflammatory cytokine mRNA, and improve the expression of antiinflammatory cytokine mRNA. The suitable level of AO in diet is 0.7 g·kg−1.
  • 鱼类在水体中的生命活动会受到不同环境的影响,水中的溶解氧浓度变化对鱼类有至关重要的影响。水中溶解氧质量浓度在4.0 mg·L−1以上时,鱼类可以正常生长发育;低于1.0 mg·L−1时,大部分鱼类会出现浮头现象[1]。水中溶解氧浓度降低,不仅使鱼类呼吸和摄氧能力下降[2],还会影响鱼类细胞的存活和信号传递[3],并直接影响其产卵、交配、生长、发育等一系列生命活动[4],严重时还会出现死亡,破坏种群内部的动态平衡。

    斑马鱼 (Danio rerio) 具有易繁殖、发育快等优点[5],一直作为模式生物用于生物医学研究[6-7]。作为模式生物,斑马鱼的应激调节功能、心血管系统功能等与人类高度相似[8-9]。鳃是鱼类重要的黏膜免疫器官和呼吸器官,在鱼类低氧适应研究中常作为主要的研究对象,如低氧胁迫下鳃组织中热休克蛋白的研究[10],草鱼 (Ctenopharyngodon idellus) 在低氧胁迫下鳃的差异蛋白质组学及热休克诱导[11],低氧胁迫对卵形鲳鲹 (Trachinotus ovatus) 鱼体鳃器官的影响[12]等。

    miRNAs可以通过调控其靶基因的表达水平从而参与细胞的各类进程,并参与许多关键的生理进程与病理过程[13]。已有多项研究表明,miRNAs是植物和动物面临环境胁迫作出响应的关键调节剂,一些miRNAs可以通过调控基因表达,恢复或重建新的表达程序,从而增强细胞对胁迫的耐受性[14]。低氧是生物常常面临的一种胁迫,目前已有一些应对低氧胁迫miRNAs的报道。如缺氧性神经胶质瘤来源的外泌体通过信号转导和转录活化因子3 (STAT3) 和核因子κB (NF-κB) 途径靶向端粒重复结合因子2 (terf2ip),传递microRNA-1246诱导M2巨噬细胞极化[15]。miR-204可以作用于血管内皮生长因子 (vegf) 的3'-UTR区,是一个内源性的vegf表达调控因子。miR-204通过基因网络调控应答低氧胁迫[16]。miR-126-5p可以作为一种新型的miRNA,在缺氧条件下靶向白细胞介素17 (IL-17A) 来调节大鼠心肌细胞 (H9c2) 的活力和凋亡[17]

    热休克蛋白 (Heat shock proteins, HSPs) 是生物在面对环境中的物理、化学、生物等刺激发生应激反应后大量产生的,常被称为应激蛋白[18]。热休克蛋白是生物体内最古老的分子之一。生物体为抵御环境变化所带来的刺激,会减少其他正常蛋白的合成,同时增加HSP的合成以应对环境的变化,帮助生物体恢复正常[10]。因此本文在对常氧和低氧胁迫下的斑马鱼鳃组织进行小RNA组测序的基础上,进一步筛选可能与低氧胁迫相关的micRNAs,并用其对热休克蛋白基因进行了靶基因预测,以期进一步挖掘斑马鱼的低氧适应机制。

    small RNA分离试剂盒,DEPC水 (生物生工有限公司),氯仿 (24∶1),Trizol 试剂,异丙醇,无水乙醇 (吉泰生物公司)。

    研磨棒、EP管、超净工作台、冰块、移液器、各类枪头、剪刀、镊子、锡纸均购买于上海生物生工有限公司,低氧驯化箱 (长沙华晓电子科技有限公司定制),离心机,旋涡仪 (德国Eppendorf有限公司)。

    将本实验室培养的多代斑马鱼分别置于1.0 mg·L−1的低氧驯化箱中,保持该浓度进行低氧胁迫,同时保留6.7 mg·L−1的溶解氧质量浓度作为常氧对照组。在使用1.0 mg·L−1的溶解氧质量浓度进行低氧胁迫时,发现2周后斑马鱼不再出现浮头的现象,推测经2周低氧胁迫后其逐渐适应了低氧环境。故采用低氧驯化2周后的斑马鱼与常氧下的斑马鱼进行比对。低氧胁迫2周后,取出常氧/低氧条件下的斑马鱼,每个溶解氧质量浓度下取样本15尾 (体长3~4 cm),解剖取出两组样本的鳃组织,备用。

    提取RNA样本,按照NucleoZOL试剂盒进行。将所提取的RNA进行电泳检测。检测后将EP管放入−80 ℃冰箱进行保存。将上述常氧和低氧下斑马鱼鳃组织提取后检测合格的RNA[19],按照small RNA分离试剂盒的方法,分别进行small RNA的分离。将提取的small RNA进行纯化,运用荧光光度计进行定量,上机检测测序得到原始测序结果。为保证数据的质量,对原始数据进行处理。去除低质量的reads (N比例大于10%的reads、有5'接头污染的reads、无3'接头序列和插入片段的reads、3'接头序列以及polyA/T/G/C的reads) 后得到的clean small RNA reads数。其中大多数小RNA的长度为21~23 nt。对于该物种的ncRNA注释,若有该物种小RNA的注释信息,就用该物种ncRNA注释所测的small RNA。若没有该物种的信息,则选择Rfam数据库中rRNA、tRNA、snRNA和 snoRNA来注释测序所得的small RNA。

    本实验室前期通过对低氧、常氧条件下鳃组织的转录组比较分析发现,常氧低氧条件下斑马鱼鳃中一共筛选获得28个显著差异表达的热休克蛋白基因,包括表达量显著下调基因12个,显著上调基因16个[12]。对miRNAs 测序和斑马鱼鳃转录组进行关联分析。针对低氧胁迫和常氧条件下斑马鱼鳃中显著差异表达的miRNAs,对实验室前期筛选获得的28个差异热休克蛋白基因进行靶基因的预测分析。miRNAs的靶基因预测使用TargetScanFish (http://www.targetscan.org/fish_62/)、miRanda (http://www.microrna.org/microrna/home.do) 2个网站同时进行。

    常氧和低氧斑马鱼鳃样本的小RNA组测序分别产生6 995 009和6 662 504 bp的原始数据。去除低质量的数据后分别得到6 585 748和5 941 304 bp的clean data。

    常氧与低氧小RNA序列比对后获得了相应结果,获得饼状图 (图1)。根据饼图比例分析,可以看出,其中常氧的miRNA约占整个small RNA总数量的40%。而低氧的约占20%。提示与常氧相比,低氧胁迫下的miRNA有降低的趋势 (图1)。

    图  1  常氧与低氧中鳃组织miRNA占小RNA的比例
    Figure  1.  Proportion of miRNA in whole small RNAs sequence in normoxic and hypoxic gill tissues

    根据测序结果,首先排除tRNA、rRNA等小分子的RNA。利用归一化法对比低氧胁迫斑马鱼与常氧斑马鱼中同一个miRNA的表达差异量。利用火山图呈现差异miRNAs的整体分布情况。结果显示,低氧/常氧条件下的斑马鱼鳃间一共筛选出差异表达的miRNAs共32个 (图2)。使用校正后的显著水平 (P) 和差异倍数 (Fold change) 2个水平进行评估,设置显著差异表达miRNAs的筛选条件为P<0.01和 |log2(fold change)|>1。

    图  2  常氧和低氧鳃组织差异miRNAs火山图
    Figure  2.  miRNAs volcano map of difference between normoxic and hypoxic gill tissues

    针对32个差异miRNAs,同时使用 |log2FC|≥1,P<0.05,且表达量≥50作为临界值,从低氧和常氧的比较中,一共鉴定获得低氧与常氧条件下显著差异表达的15个miRNAs。其中,13个miRNAs在低氧胁迫斑马鱼鳃中的表达量显著上调、2个miRNAs (miR-455-3p、miR-125b-5p) 的表达量显著下调。图3为显著差异表达miRNAs的聚类。

    图  3  常氧和低氧鳃组织差异miRNAs聚类图
    Figure  3.  miRNAs clustering map of difference between normoxic and hypoxic gill tissues

    针对前期筛选获得的低氧胁迫与常氧条件下显著差异表达的28个热休克蛋白基因 (包括12个表达量显著下调的hsp基因、16个显著上调的hsp基因)[11]进行靶基因预测,结果显示,7个显著差异表达的miRNAs可以靶向9个热休克蛋白基因。图4显示出单个miRNA靶向热休克蛋白基因的数量。

    图  4  差异miRNAs靶基因数量统计分析
    Figure  4.  Statistical analysis of number of differential miRNAs target genes

    表达量显著下调的miR-455-3p可以靶向2个显著上调的热休克蛋白基因 (表1)。表达量显著上调的miRNAs (dre-miR-194a、dre-miR-155、dre-miR-130c、dre-miR-9、dre-miR-29a、dre-miR-96-5p) 可以靶向7个显著下调的热休克蛋白基因 (表2)。

    表  1  斑马鱼低氧与常氧鳃中下调的miRNAs靶基因预测
    Table  1.  Prediction of down-regulated miRNAs target genes in hypoxic and normoxic gills of D. rerio
    miRNA名称
    miRNA name
    靶基因
    Gene binding
    结合位点
    Site
    目标区域的预测配对
    Predicted pairing of target region
    dre-miR-455-3p hspa14 935—941
    dnajb6b 1157—1163
    1829—1835
    下载: 导出CSV 
    | 显示表格
    表  2  斑马鱼低氧与常氧鳃中上调miRNAs靶基因预测
    Table  2.  Prediction of up-regulated miRNAs target genes in hypoxic and normoxic gills of D. rerio
    miRNA名称  
    miRNA name  
    靶基因
    Gene binding
    结合位点
    Site
    目标区域的预测配对
    Predicted pairing of target region
    dre-miR-194a hspa12a 2262—2268
    dnajc5aa 4114—4120
    hspb7 1644—1650
    hsp70.3 245—251
    dnajb2 3834—3840
    dre-miR-155 hspa12a 2771—2777
    hspg2 3611—3617
    hspa13 308—314
    903—910
    dnajb2 1484—1490
    3420—3426
    dre-miR-130c hspa12a 3219—3225
    4709—4715
    dnajb2 920—926
    dre-miR-9 dnajc5aa 2348—2354
    dnajb2 5033—5039
    dre-miR-29a hspg2 2832—2839
    dre-miR-96-5p dnajb2 2290—2296
    5045—5051
    5094—5100
    下载: 导出CSV 
    | 显示表格

    针对差异miRNAs靶向的热休克蛋白基因进行富集分析发现,富集到的生物过程功能前6条通路主要与发育相关,包括dnajb6bhspg2两个靶基因 (图5)。低氧胁迫的斑马鱼鳃中表达量显著上调的miR-455-3p靶向dnajb6b,而hspg2同时受到2个上调的miRNAs (miR-155和miR-29a) 调控。差异miRNAs靶向的热休克蛋白基因富集的前20条通路主要涉及的基因除了上面提及的2个miRNAs外,还包括miR-194a和miR-130c同时靶向的hspb7。

    图  5  差异miRNAs靶向的热休克蛋白基因GO富集
    Figure  5.  GO enrichment of differential miRNAs-targeted heat shock protein genes

    本研究发现了在缺氧反应中差异表达的15个miRNAs,13个miRNAs在低氧胁迫的斑马鱼鳃中表达量上调,2个miRNAs的表达显著下调。也有研究表明,在下调的miRNAs中,miR-125b-5p的靶基因rps3a通过在翻译机制中发挥调节作用以抑制细胞凋亡[20];而在上调的miRNAs中,mir-192可以通过靶向E盒结合锌指蛋白基因 (Zeb2) 来保护肝脏免受氧化应激诱导的损伤,增强肝脏的低氧耐受性[21-22]。在人类细胞中,miR-29b的上调可以靶向TNF受体相关因子5 (TRAF5) 保护心肌细胞免受缺氧诱导的细胞凋亡[23]。miR-29b在调节细胞凋亡中显示出重要作用[24]。另外,小鼠中miR-216b可以作用于自噬相关蛋白13基因 (Atg13),且使缺氧条件下细胞的自噬减少,并减少细胞的凋亡[25]

    高海拔人群中的miR-210-3p水平与红细胞计数以及血红蛋白和血细胞比容显示出强正相关性,被认为是人类适应高海拔地区生活的重要miRNA[26]。miR-194过表达可以保护缺氧诱导的人肾皮质近曲小管上皮细胞 (HK-2) 损伤[27]。miR-155被发现在低氧条件下促进内皮细胞的血管生成[28]。人参皂甙 (GS-Rb1) 可以增加mir-29a的表达量,保护缺氧的心肌细胞[29]。大鼠中Hif-1α诱导的miR-9上调在缺氧期间有助于肺动脉平滑肌细胞的表型调节[30],miR-96-5p已知有抑制细胞凋亡的功能[31]。miR-1可能在转录后水平直接或间接调控HSP90aa1和HSP90b1。过表达miR-1后缺氧复氧的HSP90蛋白及其亚型90aa1和90b1表达水平更低,结合之前的结果提示miR-1可能在心肌缺氧复氧中调控HSP90[32]。在高血压心肌肥厚的早期代偿阶段,心肌miR-378表达的下降使其对内源性HSF1转录后抑制作用减弱,进而对HSF1的代偿性升高发挥了重要的调控作用[33]。可见,miRNAs在低氧条件下在其他器官起着抑制细胞凋亡,增强器官的低氧耐受性,保护细胞免受缺氧带来的损伤等一系列功能。因此,本研究筛选出的低氧和常氧之间差异表达的miRNAs很可能在低氧适应机制中起重要作用。已知生物体在面对环境变化时会通过改变蛋白或者调节mRNAs的翻译以适应环境,本实验室已经发表过低氧胁迫下鳃组织相关热休克差异蛋白基因,验证了一些热休克蛋白基因应对低氧胁迫的作用[11]。因此,本研究利用筛选到的斑马鱼低氧与常氧状态下差异表达的15条miRNAs对28个热休克蛋白基因[11]进行靶基因预测,再结合miRNAs与预测的mRNAs的表达呈负相关这一特性,对预测的靶基因进行分析。

    热休克蛋白被认为与正常和异常的胚胎发育密切相关。低氧胁迫下,低表达的miR-455-3p通过同时靶向提高hspa14和dnajb6b的表达,有可能增强了生物体的发育和机体保护,进而增强对低氧的适应。本研究发现,miR-194a同时靶向5个热休克蛋白基因 (hspa12adnajc5aahspb7、hsp70.3、dnajb2);而miR-155可以同时靶向4个热休克蛋白基因 (hspa12ahspg2、hspa13、dnajb2)。本研究还发现,热休克蛋白基因dnajb2同时受到5个miRNAs调控。基因dnajb2是HSP70的伴侣调节剂,主要在神经系统中表达[34]。等距遗传性运动神经病 (dHMN) 是一组罕见的遗传性神经肌肉疾病,其特征是在没有感觉症状的情况下会影响腓骨肌肉的萎缩,dnajb2是23个与dHMN有关的基因之一,主要从dnajb2起始[35]。可以推测,5个miRNAs靶向抑制dnajb2基因的表达,有可能减轻了对低氧环境下生物体神经系统的伤害。

    Hspa14可能是肢体发育的相关基因[36],在成年斑马鱼中进行无偏见的诱变筛选,确定了dnajb6b是心肌病的新型遗传修饰剂[37]。缺乏热休克蛋白基因hspg2可减轻在低氧中引起的动脉高压[38]。另外,在靶向的热休克蛋白基因GO功能富集前20条通路中,均有hspg2的参与。miR-155和miR-29a同时靶向hspg2,很可能通过抑制hspg2的表达来降低低氧胁迫下引起的动脉高压,增强对低氧环境的适应。

    综上,本研究结合常氧与低氧下差异表达的miRNAs和热休克蛋白基因的关联分析,为探究鱼类低氧适应机制提供了新的研究思路。

  • 图  1   摄食不同浓度褐藻寡糖饲料的卵形鲳鲹幼鱼的肠道形态 (HE 染色)

    Figure  1.   Intestine morphology of T. ovatus fed with different levels of dietary AO (HE staining)

    图  2   卵形鲳鲹幼鱼肠道Nf-κb信号通路相关基因的相对表达量

    Figure  2.   Relative expression of genes involved in Nf-κb signaling pathway in gut of T. ovatus

    表  1   卵形鲳鲹幼鱼实验饲料组成与近似成分

    Table  1   Ingredients and proximate composition of experimental           diets of juvenile T. ovatus      g·(100 g)−1

    原料
    Ingredient
    饲料组 Diet group
    TCA1A2
    鱼粉 Fish meal 26.00 26.00 26.00
    豆粕 Soybean meal 15.00 15.00 15.00
    花生饼 Peanut meal 12.00 12.00 12.00
    啤酒酵母 Beer yeast powder 5.00 5.00 5.00
    猪肉粉 Swine by-product meal 4.00 4.00 4.00
    大豆浓缩蛋白 Soy protein concentrate 8.50 8.50 8.50
    小麦面粉 Wheat meal 20.00 19.93 19.40
    大豆卵磷脂 Soybean lecithin 1.00 1.00 1.00
    鱼油 Fish oil 6.00 6.00 6.00
    维生素+矿物质预混料a Vitamin+mineral premix 1.00 1.00 1.00
    氯化胆碱 Choline chloride (50%) 0.50 0.50 0.50
    磷酸二氢钙 Monocalcium phosphate 0.50 0.50 0.50
    褐藻寡糖 Alginate oligosaccharide 0 0.07 0.60
    甜菜碱 Betaine 0.50 0.50 0.50
    总计 Total 100 100 100
    近似成分 Proximate composition/%
     干物质 Dry matter 93.89 93.13 92.75
     粗蛋白 Crude protein 43.28 42.71 42.48
     粗脂肪 Crude lipid 9.38 8.99 9.62
     粗灰分 Ash 11.49 11.63 11.71
    注:a. 购自无锡华诺威动物保健品有限公司,按照产品说明书,每1 kg饲料中添加10 g 维生素矿物质预混料。 Note: a. Purchased from Wuxi Hanove Animal Health Products Co., Ltd., China. According to the instruction, 10 g vitamin/mineral premix was added into per 1 kg feed.
    下载: 导出CSV

    表  2   实时荧光定量PCR引物序列

    Table  2   Sequences of primers used for real-time PCR

    基因 Gene序列 Sequence
    κB抑制蛋白 iκb[20] F: 5'-CCTGGAGAACTGCTGTGGAATGAG-3'
    R: 3'-ATGGAGGTAGGTCAGAGCCGAAG-5'
    Iκb激酶 ikk[20] F: 5'-GCTGGTCCATTGCCTCCTGAAC-3'
    R: 3'-GTGCCGTCTTCTCGTACAACTGG-5'
    核因子-κB nf-κb[21] F: 5'-TGCGACAAAGTCCAGAAAGAT-3'
    R: 3'-CTGAGGGTGGTAGGTGAAGGG-5'
    肿瘤坏死因子-α tnf-α[21] F: 5'-CGCAATCGTAAAGAGTCCCA-3'
    R: 3'-AAGTCACAGTCGGCGAAATG-5'
    转化生长因子-β tgf-β[21] F: 5'-TATCCCTCTACAACAGCACCA-3'
    R: 3'-GGTCAGCAGGCGGTAATC-5'
    白细胞介素-8 il-8[21] F: 5'-GAGAAGCCTGGGAATGGA-3'
    R: 3'-GAGCCTCAGGGTCTAAGCA-5'
    β-肌动蛋白 β-actin[21] F: 5'-TGAACCCCAAAGCCAACAGG-3'
    R: 3'-CCGCAGGACTCCATACCAAG-5'
    下载: 导出CSV

    表  3   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼生长性能和饲料利用率的影响

    Table  3   Effects of dietary AO on growth performance and feed utilization of juvenile T. ovatus

    项目 Item  组别 Group
    TCA1A2
    初始体质量 Initial body mass/g 6.10±0.09 6.03±0.05 6.06±0.01
    终末体质量 Final body mass/g 73.86±1.09a 84.11±1.75b 83.73±2.15b
    增重率 Weight gain rate/% 1 111.72±23.29a 1 295.81±38.57b 1 281.88±37.95b
    特定生长率 Specific growth rate/(%·d−1) 4.30±0.03a 4.54±0.05b 4.53±0.05b
    饲料系数 Feed coefficient 1.55±0.02b 1.46±0.02a 1.51±0.03ab
    成活率 Survival rate/% 98.67±1.33 100.00±0.00 92.00±6.11
    脏体指数 Viscerosomatic index/% 6.72±0.16 6.46±0.24 6.90±0.23
    肝体指数 Hepatosomatic index/% 1.40±0.11 1.17±0.09 1.31±0.01
    肥满度 Condition factor /(g·cm−3) 3.83±0.05a 3.85±0.09a 4.10±0.06b
    注:同行不同字母表示组间差异显著(P<0.05),下表同此。 Note: Values with different letters within the same row have significant difference (P<0.05). The same in the following tables.
    下载: 导出CSV

    表  4   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼全鱼成分和肌肉成分的影响

    Table  4   Effects of dietary AO on proximate composition of       whole body and muscle of juvenile T. ovatus    %

    项目 Item  组别 Group
    TCA1A2
    全鱼 Whole body
     水分 Moisture 66.82±1.13 65.99±0.83 65.81±0.46
     粗蛋白 Crude protein 17.17±0.18 17.11±0.09 16.78±0.11
     粗脂肪 Crude lipid 11.96±1.06 12.78±0.70 12.96±0.45
     粗灰分 Ash 3.73±0.02 3.57±0.07 3.62±0.06
    肌肉 Muscle
     水分 Moisture 25.55±0.52 24.64±0.24 25.66±0.29
     粗蛋白 Crude protein 56.44±1.18b 55.63±0.35b 52.02±0.50a
     粗脂肪 Crude lipid 8.11±0.34a 8.32±0.86a 10.38±0.37b
     粗灰分 Ash 3.74±0.22 3.83±0.09 3.79±0.17
    下载: 导出CSV

    表  5   饲料中添加褐藻寡糖对卵形鲳鲹血浆生化及免疫指标的影响

    Table  5   Effects of dietary AO on plasma biochemical and immune parameters of juvenile T. ovatus

    项目 Item      组别 Group
    TCA1A2
    血糖浓度 Glucose/(mmol·L−1) 14.02±0.58b 12.21±0.51a 13.96±0.21b
    甘油三酯浓度 Triglyceride/(mmol·L−1) 1.62±0.01b 1.46±0.01a 1.53±0.06ab
    总蛋白质量浓度 Total protein/(g·L−1) 38.30±1.57 39.30±1.65 40.47±1.77
    补体C3质量浓度 Complement C3/(mg·L−1) 40.48±1.65a 55.42±0.56b 51.30±4.92b
    补体C4质量浓度 Complement C4/(mg·L−1) 54.19±2.38b 52.75±3.37b 42.34±1.46a
    碱性磷酸酶活性 Alkaline phosphatase/(U·L−1) 40.00±2.31a 46.33±2.03ab 53.00±2.65b
    下载: 导出CSV

    表  6   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼肝脏抗氧化能力的影响

    Table  6   Effects of dietary AO on hepatic antioxidative capacity of juvenile T. ovatus

    项目 Item      组别 Group
    TCA1A2
    超氧化物歧化酶活性 SOD/(U·mg−1) 176.22±3.23a 211.86±1.39b 211.03±2.58b
    过氧化氢酶活性 CAT/(U·mg−1) 92.82±5.07a 112.58±3.53b 141.91±2.02c
    过氧化物酶活性 POD/(U·mg−1) 17.53±0.08a 21.66±0.21b 21.92±0.55b
    谷胱甘肽还原酶活性 GR/(U·g−1) 2.19±0.21a 4.18±0.10b 3.77±0.15b
    谷胱甘肽过氧化物酶活性 GSH-Px/(U·mg−1) 7.66±0.42 8.12±0.17 7.72±0.48
    总抗氧化能力 T-AOC/(mmol·g−1) 36.85±0.44a 42.03±0.61b 43.03±0.61b
    丙二醛质量摩尔浓度 MDA/(nmol·g−1) 2.27±0.06b 1.81±0.07a 1.88±0.08a
    下载: 导出CSV

    表  7   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼肠道组织形态学指标的影响

    Table  7   Effects of dietary AO on intestine morphological parameters of juvenile T. ovatus μm

    项目 Item   组别 Group
    TCA1A2
    绒毛高度 Villus height 631.53±8.72a 765.77±14.73c 726.84±2.86b
    隐窝深度 Crypt depth 55.41±1.41 55.50±2.04 52.91±0.48
    肌层厚度 Muscular layer thickness 243.57±25.16 250.67±6.32 248.10±12.41
    下载: 导出CSV
  • [1] 李明波, 沈凡, 崔庆奎, 等. 壳寡糖对杂交黄颡鱼“黄优1号” (黄颡鱼♀×瓦氏黄颡鱼♂) 生长性能与免疫机能的影响[J]. 水生生物学报, 2020, 44(4): 707-716. doi: 10.7541/2020.085
    [2] 胡凌豪, 杨红玲, 赵芸, 等. 果寡糖对斜带石斑鱼免疫功能和肠道形态的影响[J]. 水产科学, 2019, 38(5): 589-594.
    [3] 刘爱君, 冷向军, 李小勤, 等. 甘露寡糖对奥尼罗非鱼 (Oreochromis niloticus×O. aureus) 生长、肠道结构和非特异性免疫的影响[J]. 浙江大学学报 (农业与生命科学版), 2009, 35(3): 329-336.
    [4] 田娟, 孙立威, 文华, 等. 壳寡糖对吉富罗非鱼幼鱼生长性能、前肠组织结构及肠道主要菌群的影响[J]. 中国水产科学, 2013, 20(3): 561-568.
    [5] 陈嘉俊, 石韫玉, 施斐, 等. 壳寡糖改善珍珠龙胆石斑鱼非特异性免疫能力的机制研究[J/OL]. 水产学报, 2021: 1-12. [2021-09-09]. http://kns.cnki.net/kcms/detail/31.1283.s.20210625.0940.002.html.
    [6] 胡晓伟, 上官静波, 黎中宝, 等. 低聚木糖对花鲈幼鱼生长性能、血清生化和免疫指标及肠道菌群组成的影响[J]. 动物营养学报, 2018, 30(2): 734-742. doi: 10.3969/j.issn.1006-267x.2018.02.039
    [7] 王杰, 杨红玲, 赵芸, 等. 果寡糖对斜带石斑鱼生长性能和消化酶活性的影响[J]. 饲料与畜牧, 2016(12): 54-57.
    [8] 赵峰, 陆娟娟, 夏中生, 等. 果寡糖对奥尼罗非鱼生长性能、血清生化指标和肠道菌群的影响[J]. 饲料工业, 2018, 39(20): 28-33.
    [9] 张荣斌, 曹俊明, 黄燕华, 等. 饲料中添加低聚木糖对奥尼罗非鱼生长性能和血清生化指标的影响[J]. 动物营养学报, 2011, 23(11): 2000-2008. doi: 10.3969/j.issn.1006-267x.2011.11.022
    [10] 张荣斌, 曹俊明, 黄燕华, 等. 低聚木糖对奥尼罗非鱼肠道形态、菌群组成和抗嗜水气单胞菌感染的影响[J]. 上海海洋大学学报, 2012, 21(2): 233-240.
    [11] 于朝磊, 常青, 吕云云. 甘露寡糖对半滑舌鳎 (Cynoglossus semilaevis Günther) 稚鱼生长、肠道发育和非特异性免疫水平的影响[J]. 渔业科学进展, 2014, 35(6): 53-59. doi: 10.11758/yykxjz.20140608
    [12] 孙盛明, 谢骏, 朱健, 等. 饲料中添加甘露寡糖对团头鲂幼鱼生长性能、抗氧化能力和肠道菌群的影响[J]. 动物营养学报, 2014, 26(11): 3371-3379. doi: 10.3969/j.issn.1006-267x.2014.11.025
    [13] 徐磊, 刘波, 谢骏, 等. 甘露寡糖对异育银鲫生长性能、免疫及HSP70基因表达的影响[J]. 水生生物学报, 2012, 36(4): 656-664.
    [14] 傅政, 张凤超, 李玉姣, 等. 褐藻胶寡糖生物活性研究进展[J]. 中国海洋药物, 2020, 39(5): 65-74.
    [15]

    GUPTA S, LOKESH J, ABDELHAFIZ Y, et al. Macroalga-derived alginate oligosaccharide alters intestinal bacteria of Atlantic salmon[J]. Front Microbiol, 2019, 10: 2037. doi: 10.3389/fmicb.2019.02037

    [16]

    van DOAN H, HOSEINIFAR S H, TAPINGKAE W, et al. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2016, 58: 678-685. doi: 10.1016/j.fsi.2016.10.013

    [17]

    HU J, ZHANG J, WU S. The growth performance and non-specific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary alginate oligosaccharide[J]. 3 Biotech, 2021, 11(2): 46. doi: 10.1007/s13205-020-02589-4

    [18]

    ASHOURI G, SOOFIANI N M, HOSEINIFAR S H, et al. Influence of dietary sodium alginate and Pediococcus acidilactici on liver antioxidant status, intestinal lysozyme gene expression, histomorphology, microbiota, and digestive enzymes activity, in Asian sea bass (Lates calcarifer) juveniles[J]. Aquaculture, 2020, 518: 734638. doi: 10.1016/j.aquaculture.2019.734638

    [19]

    HUANG Q, LIN H, WANG R, et al. Effect of dietary vitamin B6 supplementation on growth and intestinal microflora of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Res, 2019, 50(9): 2359-2370. doi: 10.1111/are.14117

    [20]

    XIE J, FANG H, HE X, et al. Study on mechanism of synthetic astaxanthin and Haematococcus pluvialis improving the growth performance and antioxidant capacity under acute hypoxia stress of golden pompano (Trachinotus ovatus) and enhancing anti-inflammatory by activating Nrf2-ARE pathway to antagonize the NF-κB pathway[J]. Aquaculture, 2020, 518: 734657. doi: 10.1016/j.aquaculture.2019.734657

    [21]

    ZHOU C P, LIN H Z, HUANG Z, et al. Effects of dietary leucine levels on intestinal antioxidant status and immune response for juvenile golden pompano (Trachinotus ovatus) involved in nrf2 and nf-κb signaling pathway[J]. Fish Shellfish Immunol, 2020, 107: 336-345. doi: 10.1016/j.fsi.2020.10.012

    [22]

    LIVAK K J, SCHMIYYGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262

    [23]

    van DOAN H, HOSEINIFAR S H, TAPINGKAE W, et al. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2017, 62: 139-146. doi: 10.1016/j.fsi.2017.01.014

    [24]

    WAN J, ZHANG J, CHEN D, et al. Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs[J]. Anim Feed Sci Technol, 2017, 234: 118-127. doi: 10.1016/j.anifeedsci.2017.09.006

    [25]

    BAGNI M, ROMANO N, FINOIA M G, et al. Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax)[J]. Fish Shellfish Immunol, 2005, 18(4): 311-325. doi: 10.1016/j.fsi.2004.08.003

    [26]

    JONES R E, RETRELL R J, PAULY D. Using modified length-weight relationships to assess the condition of fish[J]. Aquac Eng, 1999, 20(4): 261-276. doi: 10.1016/S0144-8609(99)00020-5

    [27]

    SCHULTE-HOSTEDDE A I, ZINNER B, MILLAR J S, et al. Restitution of mass-size residuals: validating body condition indices[J]. Ecology, 2005, 86(1): 155-163. doi: 10.1890/04-0232

    [28]

    HOSEINIFAR S H, DADAR M, RINGØ E. Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario[J]. Aquac Res, 2017, 48(8): 3987-4000. doi: 10.1111/are.13368

    [29] 严晶. 饲料脂肪水平和脂肪酸种类对大黄鱼脂肪沉积的影响[D]. 青岛: 中国海洋大学, 2015: 4-7.
    [30] 赵旭, 徐群, 侯彦茹, 等. ANGPTL4在肠道微生物影响动物脂肪代谢中的作用[J]. 生物技术通报, 2020, 36(6): 230-235.
    [31]

    WANG Y, LI L, YE C, et al. Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice[J]. Appl Microbiol Biotechnol, 2020, 104(8): 3541-3554. doi: 10.1007/s00253-020-10449-7

    [32]

    ABUQWIDER J N, MAURIELLO G, ALTAMIMI M. Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review[J]. Microorganisms, 2021, 9(5): 1098. doi: 10.3390/microorganisms9051098

    [33]

    VERHOOG S, TANERI P E, DÍAZ Z M R, et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review[J]. Nutrients, 2019, 11(7): 1565-1584. doi: 10.3390/nu11071565

    [34]

    den BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7): 2398-2408. doi: 10.2337/db14-1213

    [35]

    WAN J, ZHANG J, CHEN D, et al. Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs[J]. J Anim Sci Biotechnol, 2018, 9: 58. doi: 10.1186/s40104-018-0273-x

    [36] 江晓路, 杜以帅, 王鹏, 等. 褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响[J]. 中国海洋大学学报, 2009, 39(6): 1188-1192.
    [37] 王鹏, 江晓路, 江艳华, 等. 褐藻低聚糖对提高大菱鲆免疫机能的作用[J]. 海洋科学, 2006, 30(8): 6-9. doi: 10.3969/j.issn.1000-3096.2006.08.003
    [38]

    VALENTE L M P, BATISTA S, RIBEIRO C, et al. Physical processing or supplementation of feeds with phytogenic compounds, alginate oligosaccharide or nucleotides as methods to improve the utilization of Gracilaria gracilis by juvenile European seabass (Dicentrarchus labrax)[J]. Aquaculture, 2021, 530: 735914. doi: 10.1016/j.aquaculture.2020.735914

    [39]

    MALO M S, MOAVEN O, MUHAMMAD N, et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306: G826-G838. doi: 10.1152/ajpgi.00357.2013

    [40] 薛静波, 刘希英, 张鸿芬. 海带多糖对小鼠腹腔巨噬细胞的激活作用[J]. 中国海洋药物, 1999(3): 23-25.
    [41] 闵力, 刘立恒, 许兰娇, 等. 功能性寡糖的研究进展[J]. 饲料研究, 2012(9): 18-22. doi: 10.3969/j.issn.1002-2813.2012.09.007
    [42]

    CIRCU M L, AW T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Rad Biol Med, 2010, 48(6): 749-762. doi: 10.1016/j.freeradbiomed.2009.12.022

    [43]

    HSIEH C C, PAPACONSTANTINOU J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived snell dwarf mice[J]. Faseb J, 2006, 20(2): 259-268. doi: 10.1096/fj.05-4376com

    [44]

    VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Bioch Cell Biol, 2007, 39(1): 44-84. doi: 10.1016/j.biocel.2006.07.001

    [45]

    NORDBERG J, ARNER E S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system[J]. Free Rad Biol Med, 2001, 31(11): 1287-1312. doi: 10.1016/S0891-5849(01)00724-9

    [46] 张说, 赵强, 武雨心, 等. 红细胞抗氧化损伤研究进展[J]. 包头医学院学报, 2020, 36(1): 104-106.
    [47]

    WINSTON G W, GIULIO R T D. Prooxidant and antioxidant mechanisms in aquatic organisms[J]. Aquat Toxicol, 1991, 19(2): 137-161. doi: 10.1016/0166-445X(91)90033-6

    [48]

    GEBICKA L, KRYCH-MADEJ J. The role of catalases in the prevention/promotion of oxidative stress[J]. J Inorg Biochem, 2019, 197: 110699. doi: 10.1016/j.jinorgbio.2019.110699

    [49]

    HUNG M Y, FU T Y, SHIH P H, et al. Du-Zhong (Eucommia ulmoides Oliv.) leaves inhibits CCl4-induced hepatic damage in rats[J]. Food Chem Toxicol, 2006, 44(8): 1424-1431. doi: 10.1016/j.fct.2006.03.009

    [50] 曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57. doi: 10.12131/20210028
    [51] 虞为, 杨育凯, 林黑着, 等. 牛磺酸对花鲈生长性能、消化酶活性、抗氧化能力及免疫指标的影响[J]. 南方水产科学, 2021, 17(2): 78-86. doi: 10.12131/20200223
    [52]

    VIZCAINO A J, LOPEZ G, SAEZ M I, et al. Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles[J]. Aquaculture, 2014, 431: 34-43. doi: 10.1016/j.aquaculture.2014.05.010

    [53] 麦浩彬, 郭鑫伟, 王金港, 等. 摄食不同水平饲料蛋白质对珍珠龙胆石斑鱼幼鱼肠道组织形态和菌群组成的影响[J]. 大连海洋大学学报, 2020, 35(1): 63-70.
    [54]

    ZHAO H, CAO J, HUANG Y, et al. Effects of dietary nucleotides on growth, physiological parameters and antioxidant responses of juvenile yellow catfish Pelteobagrus fulvidraco[J]. Aquac Res, 2017, 48(1): 214-222. doi: 10.1111/are.12875

    [55]

    BECATTINI S, TAUR Y, PAMER E G. Antibiotic-induced changes in the intestinal microbiota and disease[J]. Trends Mol Med, 2016, 22(6): 458-478. doi: 10.1016/j.molmed.2016.04.003

    [56]

    WULLAERT A, BONNET M C, PASPARAKIS M. NF-κB in the regulation of epithelial homeostasis and inflammation[J]. Cell Res, 2011, 21(1): 146-158. doi: 10.1038/cr.2010.175

    [57]

    KAVITHA K, KOWSHIK J, KISHORE T K, et al. Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer[J]. Biochim Biophys Acta, 2013, 1830(10): 4433-4444. doi: 10.1016/j.bbagen.2013.05.032

    [58]

    KARIN M, GRETEN F R. NF-κB: linking inflammation and immunity to cancer development and progression[J]. Nat Rev Immunol, 2005, 5(10): 749-759. doi: 10.1038/nri1703

    [59]

    YU Y, HE J, LI S, et al. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway[J]. Int Immunopharmacol, 2016, 38: 144-152. doi: 10.1016/j.intimp.2016.05.026

    [60]

    RAIDA M K, BUCHMANN K. Bath vaccination of rainbow trout (Oncorhynchus mykiss Walbaum) against Yersinia ruckeri: effects of temperature on protection and gene expression[J]. Vaccine, 2008, 26(8): 1050-1062. doi: 10.1016/j.vaccine.2007.12.029

    [61]

    FEI Y, CHEN Z, HAN S, et al. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota[J/OL]. Crit Rev Food Sci Nutr, 2021: 1-18. [2021-09-09]. DOI: 10.1080/10408398.2021.1958744.

    [62]

    RAMNANI P, CHITARRARI R, TUOHY K, et al. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds[J]. Anaerobe, 2012, 18(1): 1-6. doi: 10.1016/j.anaerobe.2011.08.003

图(2)  /  表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2021-09-01
  • 录用日期:  2021-10-19
  • 网络出版日期:  2021-10-31
  • 刊出日期:  2022-06-04

目录

/

返回文章
返回